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ABSTRACT
We study a distributed version of the order scheduling problem that
arises when scheduling memory requests in shared DRAM systems
of many-core architectures. In this problem, a set of n customer
orders needs to be scheduled on multiple facilities. An order can
consist of multiple requests, each of which has to be serviced on
one designated facility, and an order is completed only when all its
requests have been serviced. In the distributed setting, every facility
has its own request buffer and must schedule the requests having
only limited knowledge about the buffer state at other facilities.

In this paper, we quantify the trade-off between the amount of
communication among different facilities and the quality of the re-
sulting global solution. We show that without communication, the
average completion time of all orders can be by a factor Ω(

√
n)

worse than in the optimal schedule. On the other hand, there ex-
ists a 2-approximation algorithm if the complete buffer states are
exchanged in n communication rounds. We then prove a general
upper bound that characterizes the region between these extreme
points. Specifically, we devise a distributed scheduling algorithm
that, for any k, achieves an approximation ratio of O(k) in n/k
communication rounds. Finally, we empirically test the perfor-
mance of our different algorithms in a many-core environment us-
ing SPEC CPU2006 benchmarks as well as Windows desktop ap-
plication traces.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories—Dynamic
memory (DRAM);
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory
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Distributed scheduling, order scheduling, distributed approxima-
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1. INTRODUCTION
In this paper, we study a distributed version of the so-called (cus-

tomer) order scheduling problem (also referred to as the concurrent
open shop scheduling problem) [8]. In this problem, a set of cus-
tomer orders needs to be scheduled on multiple facilities. An or-
der can consist of multiple requests (jobs), each of which has to be
serviced on one particular facility. That is, unlike in general paral-
lel machine scheduling problems, the facilities in our problem are
dedicated, i.e., requests can only be serviced by one specific facil-
ity. The scheduler has to choose in which order the different re-
quests are scheduled on the facilities. An order is completed when
all its requests have been serviced and a natural objective function
in many application scenarios is to minimize the total (or average)
completion time of all orders.

The order scheduling problem has numerous practical applica-
tions, for instance in industrial manufacturing [3]. Essentially, the
problem is applicable to any setting in which clients issue orders
consisting of different parts, each of which has to be manufactured
on a dedicated production resource. With this manufacturing back-
ground in mind, it is not surprising that the order scheduling prob-
lem has been studied exclusively in a centralized context (and in
fact, the same is true for many other classic scheduling problems).
Traditionally, it has been assumed that there is one central scheduler
that controls access to all facilities and is therefore able to coordi-
nate scheduling decisions across all facilities in a globally desirable
way.

Motivated by a problem arising when scheduling memory re-
quests in shared DRAM systems of multi-core computer architec-
tures, we study the order scheduling problem in a distributed set-
ting. In particular, we assume that facilities are distributed and that
each facility has its own individual request buffer and scheduler that
controls access to this facility. If the facilities are physically sepa-
rated, then without communication (or any other means of sharing
state information) each facility scheduler has knowledge only about
the state of its own buffer and must base its scheduling decisions
solely on this local information.

The problem is that such locally generated schedules can be glob-
ally suboptimal. To see this, consider a simple scenario in which
there are two facilities, F1 and F2, and two orders O1 and O2.
Order O1 consists of two requests: R11 to facility F1 and R12 to
F2. Order O2 also consists of two requests, R21 and R22, one to
each facility. In a globally optimal solution, each of the two fa-
cilities would first schedule the corresponding requests of O1, and
subsequently the request of O2. Assuming unit processing times
for each request, orders O1 and O2 would be serviced at time 1
and 2, respectively, and the average completion time would be 1.5.
In contrast, if both facility schedulers decide on their schedule lo-
cally, one facility may schedule R11 ahead of R21, whereas the
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other may schedule the requests in opposite order, i.e., R22 before
R12. As a result, both orders are finished only at time 2, i.e., the
average completion time is 2. This simple example illustrates the
trade-off between the amount of communication between facility
schedulers and the quality of the resulting global solution. Intu-
itively, the more state information the facility schedulers exchange,
the better they are able to coordinate their decisions, which can lead
to shorter average completion times.

In this paper, we quantify this trade-off by providing new upper
and lower bounds. In particular, we show that without communica-
tion, any distributed scheduling algorithm for the order scheduling
problem may generate schedules that are by a factor Ω(

√
n) worse

than the optimal schedule, where n is the number of orders. In
contrast, if schedulers can exchange their entire buffer state, factor
2 approximations become possible. We then prove a general up-
per bound on the achievable trade-off curve in between these two
extremes points by studying a model in which each scheduler is
allowed to broadcast state information for ⌊n/k⌋ communication
rounds, where 1 ≤ k ≤ n is an arbitrary parameter. We propose
a distributed scheduling algorithm that, for any such k, achieves
an approximation ratio of O(k). We then empirically evaluate the
performance of this algorithm compared to existing heuristics in a
many-core environment using SPEC CPU2006 benchmarks as well
as Windows desktop application traces.

2. MOTIVATION: REQUEST SCHEDULING
IN SHARED DRAM MEMORY

Our impetus for studying order scheduling problems in a dis-
tributed context stems from our work on memory request schedul-
ing in multi-core architectures. In such systems, multiple process-
ing units (threads) on different cores share the same DRAM mem-
ory system. Modern DRAM chips are organized into different banks
(=facilities), so that memory requests destined for different banks
can be serviced in parallel. Each thread (=order) may simultane-
ously issue several requests, each of which must be serviced by a
particular bank. Because, roughly speaking, a thread is stalled until
all its outstanding memory requests are serviced by the DRAM1,
the goal is to minimize the average completion times of all threads
that currently have outstanding memory requests. However, be-
cause each DRAM bank is controlled by an individual scheduler
(the so-called bank-scheduler), the resulting order scheduling prob-
lem is of distributed nature.

While memory request scheduling in DRAM systems has served
as our primary motivation to study this problem, there are many
other settings in distributed databases or networks in which order
scheduling problems arise in a distributed context. As we evaluate
our methods using the framework of memory request scheduling,
Section 7 provides additional relevant background about DRAM
controllers in modern processing systems. A more detailed treat-
ment of DRAM controllers can be found in [21, 14].

3. RELATED WORK
One of the key aspects characterizing our problem is that, unless

there is a means for exchanging information about the state of the
different buffers, each bank-scheduler (=facility) must take schedul-
ing decisions based on local buffer information only. To the best of
our knowledge, there are no studies on distributed order scheduling

1In reality, the systems are very complex. A thread can make some, albeit
little, progress even if one of its requests, rather than all, is serviced. How-
ever, previous work showed that for our purposes it is sufficiently accurate
to assume that a thread is stalled until all its outstanding memory requests
are serviced [6, 7, 13].

problems or, more specifically, on DRAM memory request schedul-
ing problems in a distributed context.

Customer Order Scheduling: In a centralized context, the cus-
tomer order scheduling problem2 has been studied in several pa-
pers. The problem was proven to be NP-hard even for the case of
three [8] and two [26, 22] facilities, respectively. In [8], a number
of heuristics are discussed, all of which have worst-case approxima-
tion ratio of Ω(m), where m is the number of facilities. Based on an
indexed linear programming formulation, a 16/3-approximation al-
gorithm for the weighted version was presented in [27]. Finally, as
we discuss in Section 5, the work of [20] implies a 2-approximation
algorithm although it does not explicitly state so. Several indepen-
dent parties have then discovered this 2-approximation algorithm
for the problem [2, 9, 5]. Whereas all of the above papers focus on
minimizing the average (weighted) completion time of all orders,
minimizing the number of tardy jobs has been studied in [17].

Memory Request Scheduling: Existing controllers for DRAM
memory systems typically implement a so-called FR-FCFS schedul-
ing algorithm [21] that does not require any coordination among
bank schedulers. While the FR-FCFS scheduling policy optimizes
the system throughput in single-core systems, it can be inefficient
and unfair in many-core environments, and is even vulnerable to
denial of memory service attacks [12]. Therefore, fairness-aware
DRAM memory algorithms for multi-core systems have been pro-
posed [14, 16, 15]. The batch-scheduling scheme discussed in Sec-
tion 7 that forms the basis of our model has been proposed in [15].
It is currently the fairest and most efficient request scheduling algo-
rithm for shared DRAM memory systems in many-core systems.

Finally, it is worth noting that there exist numerous other “dis-
tributed scheduling” problems that are unrelated to our work. In
wireless networking, for instance, a distributed scheduling problem
consists of finding time-slots for non-interfering transmissions us-
ing a distributed algorithm.

4. MODEL
Distributed Order Scheduling Problem: Let T = {T1, . . . , Tn}

and B = {B1, . . . , Bm} denote the set of orders (threads) and fa-
cilities (banks) in the system. Each order Ti has a set Rij of out-
standing requests scheduled for Bj . The total processing time of
all requests Rij is denoted by pij . Let Rj = ∪iRij denote the
buffer state of facility Bj , i.e., the set of all requests that need to
be serviced by Bj . Each facility Bj is associated with an inde-
pendent facility scheduler that controls access to this facility. Ev-
ery facility Bj decides on the order in which its requests Rj are
scheduled. Formally, a facility scheduler can therefore be con-
sidered a function that, based on Rj and all information obtained
about the state of other buffers Rk, k 6= j, outputs an ordering
ωj = 〈T j

1 , T j
2 , . . . , T j

n〉 over all orders.3 Here, T j
x denotes the or-

der whose requests are scheduled at the xth position, after all re-
quests from orders T j

1 , . . . , T j
x−1 have been fully processed by Bj .

The totality of all local schedules ωj then implies a global sched-
ule ω. For a given schedule ω, we define Cij to be the completion
time of Ti on facility Bj , i.e., the earliest time when all requests
Rij have been serviced. The completion time of a thread Ti is
Ci = maxBj∈B Cij . The objective function is to minimize the
average completion time

∑
Ti∈T Ci/|T |.

2The problem is sometimes also referred to as the concurrent open shop
problem [22] as it is a relaxation of the classic open job shop problem in
which—unlike in the original job shop problem—jobs can be processed in
parallel by dedicated, request-specific facilities.
3It is known that there is an optimal schedule which is a permutation sched-
ule, i.e., a schedule ω in which all orders are processed in the same order on
all facilities, i.e., ωj = ω for all Bj [26].
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Notice that in the context of the batch scheduling framework dis-
cussed in Section 7, we can assume that all outstanding requests are
known at the outset of the algorithm, i.e., all requests have equal re-
lease time. Also, we can ignore requests that arrive later since such
requests will be part of a subsequent batch.

If access to the different facilities is controlled by individual fa-
cility schedulers (as in the case of DRAM memory scheduling), the
problem inherently becomes distributed. Hence, unless the entire
state information Rj is exchanged between all facilities, it is gener-
ally difficult to ensure that 1) all facility schedulers output the same
ordering ωj and 2) that the resulting schedule is globally efficient.
Intuitively, there exists a trade-off between the amount of communi-
cation between individual facility schedulers and the quality of the
resulting schedule. Without communication, each facility scheduler
must base its scheduling decision only on its own local information
(i.e., the state of its own buffer), which can lead to globally sub-
optimal schedules. In order to formally capture this trade-off we
propose the following distributed model.

Distributed Order Scheduling Model: Time is divided into
synchronous communication rounds. Initially, each facility sched-
uler knows only about the state of its own local buffer. In each
round, every facility scheduler can broadcast a message to all other
facility schedulers. We assume that each message is of the form
(Ti, pij), where Ti marks an order (=thread) and pij is the process-
ing time of the order’s requests to that facility. For simplicity, we
only study algorithms that proceed along the following two-phases:
1) For some parameter k, facility schedulers exchange state infor-
mation messages for ⌊n/k⌋ rounds, and then 2) decide on the order
in which the jobs/requests are scheduled. That is, no further com-
munication takes place once the scheduling decisions are taken. The
parameter k characterizes how much state information the facility
schedulers can exchange before locally deciding on their scheduling
order. If k is large, little communication is allowed, and if k = 1,
the problem becomes equivalent to the standard non-distributed or-
der scheduling problem since the schedulers can exchange their en-
tire state information in n = |T | rounds.

5. BASE CASES: NO COMMUNICATION
VS. COMPLETE INFORMATION

Completely Local Scheduling Decisions: In this section, we es-
tablish results on the two base cases that are 1) no communication
between the schedulers and 2) complete information exchange. In
the former, every facility scheduler needs to decide on a thread or-
dering based entirely on the state of its local buffer Rj . In order to
exclude any form of pre-determined scheduling based for instance
on thread-IDs, we call a local facility scheduler fair if it decides
on the ordering ωj based only on the set of processing times of
requests in its buffer, i.e., {pij |Rij ∈ Rj} → ωj . The following
lower bound shows that in absence of communication and coordina-
tion between facility schedulers, the resulting global schedule may
be highly suboptimal.

THEOREM 5.1. Any (possibly randomized) fair distributed or-
der scheduling algorithm in which schedulers do not communicate,
has a worst-case approximation ratio of Ω(

√
|T |).

PROOF. Consider the following example consisting of n orders
T1, . . . , Tn and m ≤ n facilities B1, . . . , Bm. Let β = n−m. For
each facility, there exists an order whose only request is destined
for this facility. That is, for all such orders Ti, i ∈ {1, . . . , m}, let
pii = 1 and pik = 0 for all k 6= i. We call these orders singleton
orders and their unique request singleton requests. For all orders
Ti, i ∈ {m + 1, . . . , n}, let pik = 1 for all facilities 1 ≤ k ≤ m.

The optimal global schedule first schedules on each facility Bj

the singleton request from order Tj , followed by all the other re-
quests from orders Tm+1, . . . , Tn: ωOPT

j = 〈Tj , Tm+1, . . . , Tn〉.
The total completion time of this schedule is OPT =

∑
i COPT

i ≤
m + β · β+2

2
. Since a fair facility scheduler cannot distinguish

which among the β + 1 non-zero requests in its buffer is the sin-
gleton request, the best it can do is to schedule the requests in a
random order. In expectation, the completion time of a singleton
order is therefore E[Ci] ≥ β

2
. Hence, E[ALG] =

∑
i
CALG

i ≥
β · β+1

2
+m· β

2
. Substituting m = n−β, it follows that the approxi-

mation ratio α of any fair, local algorithm is at least α = E[ALG]
OPT

≥
β·(β+1)+mβ

2m+β(β+2)
= nβ+β

2n+β2 . This is minimized for β =
√

2n, which
yields α > 1

2

√
2n ∈ Ω(

√
n).

It is interesting to note that most DRAM memory scheduling al-
gorithms [21, 16] used in today’s DRAM controllers belong to the
category of fair and completely local algorithms captured in The-
orem 5.1. That is, the total completion time of these scheduling
policies can be by a factor Ω(

√
n) worse than the optimal. As the

number of cores on a chip (and with it n) is bound to increase in the
future, this lower bound indicates the need for better coordination
among bank schedulers in future DRAM memory systems.

Complete Information: In contrast, if the memory schedulers
are capable of exchanging full state information among each other,
significantly better solutions become possible. In particular, algo-
rithms with an approximation ratio of 2 are known [2, 9, 5, 20].

The following linear program (denoted by OSLP) is a relaxation
of the order scheduling problem.

min
1

|T |
∑

Ti∈T

Ci

s.t. Ci − Cij ≥ 0 , ∀Bj ∈ B
∑

Ti∈X

pijCij ≥ 1

2

[(∑

Ti∈X

pij

)2
+

∑

Ti∈X

p2
ij

]
, ∀X⊆T,∀Bj ∈B

The first constraint describes that an order’s completion time is the
maximum over all facilities. The second set of constraints are re-
laxed versions of the machine capacity constraints first described
by Wolsey [28] and Queyranne [19]. In particular, it is proven
in [19] that on a single facility Bj , these linear inequalities com-
pletely describe the convex hull of feasible completion times vec-
tors (C1j , . . . , Cnj). Furthermore, in spite of the exponential num-
ber of constraints, the constraint’s separation problem and hence
the LP itself can be computed in polynomial time. Intuitively, these
constraints prevent too many requests from being completed too
early. In [23, 20], these machine capacity constraints have been
extended to parallel machine problems, similar to the formulation
above.

The problem is that because these constraints are relaxations of
the problem, there is generally no schedule that satisfies the comple-
tion times Cij and Ci as computed by the LP. Consider for instance
a facility Bj with two requests with processing time p1j = p2j = 1.
While the LP can output C1j = C2j = 1.5, which satisfies the ma-
chine capacity constraints, there is clearly no real schedule in which
both completion times are 1.5. We can use the following result by
Schulz [23] in order to obtain an order-by-order bound on each fa-
cility:

LEMMA 5.2 ([23]). Let C1j , . . . , Cnj be a vector of comple-
tion times satisfying the machine capacity constraints, and assume
w.l.o.g. that C1j ≤ · · · ≤ Cnj . Then, for each i = 1, . . . , n, it
holds that

∑i

k=1 pkj ≤ 2Ci.
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This lemma can be used to derive the following theorem on algo-
rithms in which each local scheduler has complete state informa-
tion. The proof consists only of putting together the above results
and follows [20, 9].

THEOREM 5.3. There exists a fair distributed order scheduling
algorithm with communication complexity |T | that achieves an ap-
proximation ratio of 2.

PROOF. Let C̃i and C̃ij denote the completion times as com-
puted by the LP. Because of the first constraints, it holds that C̃i ≥
C̃ij and hence, the vector C̃1, . . . , C̃n satisfies all LP constraints.
Now, schedule all orders in T in non-decreasing order of C̃i and let
Ci and Cij denote the resulting actual completion times. It follows
from Lemma 5.2 that for each order Ti and on each facility Bj , it
holds that Cij =

∑i

k=1 pkj ≤ 2C̃i and hence Ci ≤ 2C̃i. The
theorem now follows from averaging over all Ti and the fact that∑

Ti∈T C̃i is a lower bound on the optimum solution.

6. DISTRIBUTED SCHEDULING
In this section, we explore the trade-off between the amount of in-

formation exchange between the facilities and the achievable qual-
ity of the resulting global schedule. We propose and analyze a
simple distributed algorithm that, for any parameter k such that
t := ⌊n

k
⌋ ∈ {0, . . . , n − 1}, has a running time of t + 1 and

achieves an approximation of O(k).

6.1 Algorithm
The key idea of the algorithm is to prioritize the distribution of

information about those requests at a given facility that can have the
highest impact on the global scheduling decision. In contrast, infor-
mation about requests that can have only little global impact are
distributed in an aggregated fashion. In the absence of any a-priori
global information, it is the “long” requests in a given facility Bj

(requests with large processing time pij relative to other requests)
that potentially have the highest impact on the global schedule. The
reason is that an order is finished only when all its requests are ser-
viced. Hence, if an order consists of one or more long requests in
a facility, suboptimally scheduling the “short” requests of this or-
der on the remaining facilities has no impact as long as they are not
postponed too long.

The above intuition suggests that each facility in the distributed
algorithm should broadcast information about its requests with high-
est processing times. If no additional information is exchanged,
however, some critical piece of information is lost. In particular,
facilities will have no knowledge about the load, i.e., the total pro-
cessing time

∑
pij , at the different facilities. Having knowledge

about the other facilities’ load is important. In the absence of such
information, local facilities are unable to judge the relative impor-
tance of other facilities when deciding on their scheduling order.
For an example, assume that there exists one facility on which ev-
ery order has a very large request (relative to its requests on other
facilities). In such a case, the optimal ordering of orders should sim-
ply follow the shortest-job-first principle, i.e., the scheduling order
〈T1, . . . , Tn〉 should correspond to a non-decreasing order of pro-
cessing times on this facility. If, on the other hand, different orders
have their large requests on different facilities, this simple strategy
fails.

For the above reasons, our algorithm broadcasts exact informa-
tion about the longest, most critical requests, and supplements this
information with an aggregate information about all remaining re-
quests, such that every facility is aware of its relative load. For con-
venience, define t = ⌊n

k
⌋ as the number of communication rounds

minus 1. For a given facility Bj , we define the long set Lj to be the

Input: k
1: define t = ⌊n

k
⌋;

2: for each Bj , define Lj = {Ti ∈ T | pij is among the t largest
processing times for Bj}; Sj = T \ Lj ;

3: for each Ti ∈ Lj broadcast (Ti, pij)

4: broadcast (AV G, P j), where P j = 1
n−t

∑
Ti∈Sj

pij ;
5: Locally invoke OSLP using for every facility Bk ∈ B the exact pik for

all Ti ∈ Lk and p̂ik := P k for all Ti ∈ Sk .
6: Let C

avg
i be the resulting completion times from the above LP. Sched-

ule the orders in non-decreasing order of C
avg
i .

Algorithm 1: DOS: Distributed Order Scheduling Approximation
Algorithm (Code at Facility Bj)

set consisting of the t orders Ti with the largest processing times
pij for this facility. The short set Sj is the set of n− t orders whose
requests’ processing times are not among the t longest for this facil-
ity. Notice that an order may be in the large set on some facilities,
and in the short set on others.

Algorithm 1 proceeds as follows. In the first t communication
rounds, every facility exchanges the processing times pij of all long
orders Ti ∈ Lj . In the final t + 1th round, each facility broadcasts
the average processing time P j of the remaining requests. Conse-
quently, at the end of these t + 1 rounds of broadcasts, every local
facility scheduler knows the exact processing times of the long re-
quests in each facility, as well as an average value of all remaining
requests. Using this information, each local facility scheduler then
locally invokes a version of the order scheduling linear program
OSLP in Section 5, using the exact values pij for all long requests.
For all other requests, the exact processing time is unknown and
instead, the average value P j from that facility is used as input to
OSLP. The resulting completion times Cavg

i of this linear program
are then sorted locally at each facility and the orders are scheduled
in non-decreasing order of Cavg

i .

6.2 Analysis
The challenge when analyzing the performance of Algorithm 1

is to bound the suboptimality caused by the imprecision in the input
of OSLP across different facilities. For instance, it may not be suf-
ficient to show that on any single facility Bj , the sum of completion
times, is not significantly increased due to the averaging of process-
ing times of short requests. Because an order’s completion time is
the maximum over all facilities, such a proof does not prevent that
the completion time of almost all orders increases, thereby causing
a prohibitive increase of the sum of completion times.

As for notation, let LPori be the original OSLP linear program
with the real processing times, and let LPavg denote the averaged
linear program used in Line 5 of Algorithm 1. Cori

i and Cavg
i de-

note the optimal completion times of order Ti in LPori and LPavg ,
respectively. Finally, Calg

i is the actual completion time of Ti com-
puted by the algorithm.

The analysis proceeds as follows, we first bound the gap between
the optimal solution to LPavg (as constructed by the algorithm) and
the optimal solution to the original problem LPori by O(k) (Lem-
mas 6.3 and 6.4). In the second step, we then show that the actual
completion times resulting from scheduling the original requests
(with processing times pij ) based on the ordering computed using
the averaged linear program is also within a factor O(k) of the op-
timal solution. Finally, we show that our analysis is asymptotically
tight by constructing a corresponding lower bound example for our
algorithm.

We start with a simple helper lemma. In this lemma and its proof,
we use the notational shortcut j ∈ Xi to denote (cj , pj) ∈ Xi.
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LEMMA 6.1. Let Q = {(c1, p1), . . . , (cr, pr)} be a set of pairs
such that pi, ci ≥ 1 for every 1 ≤ i ≤ r. Further, let X =
{X1, . . . , Xs} be a set of disjunct subsets of Q such that for every
Xi ∈ X , it holds that

∑
j∈Xi

pjcj ≥ 1
2

[( ∑
j∈Xi

pj

)2
+

∑
j∈Xi

p2
j

]
.

It holds that
∑

j∈X

pjcj ≥ 1

2s

[( ∑

j∈X

pj

)2

+
∑

j∈X

p2
j

]
.

PROOF. It follows from the assumption in the lemma that the
term

∑
j∈X pjcj can be bounded by

∑

j∈X

pjcj =
∑

Xi∈X

∑

j∈Xi

pjcj ≥ 1

2




∑

Xi∈X

( ∑

j∈Xi

pj

)2

+
∑

j∈X

p2
j





≥ 1

2



 1

|X |
( ∑

Xi∈X

∑

j∈Xi

pj

)2

+
∑

j∈X

p2
j



 ,

where the final inequality is due to (
∑

i
xi)

2/
∑

i
x2

i ≤ |x|. The
lemma now follows by replacing

∑
Xi∈X

∑
j∈Xi

pj with
∑

j∈X pj ,
and by pulling the term 1

|X|
in front of the parenthesis.

We define Qh to be the t = ⌊n/k⌋ orders with highest comple-
tion time Cori

i . The set Qℓ is the set containing the n− t remaining
orders with lower optimal completion times. We further define a
value D as the average optimal completion time of all orders in Qh,
i.e., D := 1

|Qh|

∑
Ti∈Qh

Cori
i . We can derive the following lower

bound on D in terms of the aggregate values P j at the different
facilities.

LEMMA 6.2. It holds that D ≥ n
2

(
1 − 1

k

)
· maxBj∈B P j .

PROOF. Let Bj ∈ B be the facility with maximal P j . We show
by contradiction that the claim holds for Bj . Assume for contra-
diction that D < n

2

(
1 − 1

k

)
P j . Consider the set Qℓ of n

(
1 − 1

k

)

orders with lowest optimal completion time Cori
i . By the defini-

tion of D, it holds for each order Ti ∈ Qℓ that Cori
i ≤ D. In

the algorithm, the set Sj of orders, whose real processing time on
Bj is unknown and replaced with p̂ij = P j in LPavg , consists of
n

(
1 − 1

k

)
orders. Because these are the orders with shortest pro-

cessing times in this facility, and because the cardinality of Sj is the
same as Qℓ, we can observe that

∑
Ti∈Qℓ

pij ≥ ∑
Ti∈Sj

pij .
Based on the above inequalities, we now go on to show that if

D < n
2

(
1 − 1

k

)
P j , the OSLP constraint for set Qℓ ⊆ T on facil-

ity Bj is violated. Specifically, the left hand side of this constraint
is at most
∑

Ti∈Qℓ

pijC
ori
ij ≤ D ·

∑

Ti∈Qℓ

pij <
n

2

(
1 − 1

k

)
P j

∑

Ti∈Qℓ

pij

=
1

2

∑

Ti∈Sj

pij

∑

Ti∈Qℓ

pij ≤ 1

2

( ∑

Ti∈Qℓ

pij

)2

.

In the above derivation, the equality follows from the fact that by
definition P j = 1

|Sj |

∑
Ti∈Sj

pij holds and hence,
∑

Ti∈Sj
pij =

|Sj | · P j = n
(
1 − 1

k

)
P j . All other inequalities follow from the

discussion above.
The contradiction is now concluded by observing that the in-

equality
∑

Ti∈Qℓ
pij < 1

2

( ∑
Ti∈Qℓ

pij

)2 implies that the OSLP
constraint for set Qℓ is violated. From this, the lemma follows.

In the first step of the proof, we show that the optimal value of
LPavg is by at most a factor O(k) larger than the optimal value of

LPori. For this purpose, we define for each order Ti ∈ T a virtual
completion time as C∗

i := 2max{Cori
i , 2D}.

LEMMA 6.3. It holds that
∑

Ti∈T C∗
i ≤ 2(2k+1)

∑
Ti∈T Cori

i .

PROOF. The sum of virtual completion times can be written as
∑

Ti∈T

C∗
i = 2

( ∑

Ti|C
ori
i

≥2D

Cori
i +

∑

Ti|C
ori
i

<2D

2D

)

≤ 2

( ∑

Ti∈T

Cori
i +

2 ·
∣∣Ti|Cori

i < 2D
∣∣

|Qh|
∑

Ti∈Qh

Cori
i

)
.

Because
∣∣Ti|Cori

i < 2D
∣∣ ≤ |T | and |Qh| = |T |/k, it follows that∑

Ti∈T C∗
i ≤ 2(2k + 1)

∑
Ti∈T Cori

i .

Having bounded by how much the virtual completion times can
exceed the optimal completion times, we now need to show that the
virtual completion times constitute a feasible solution to LPavg .

LEMMA 6.4. The set of virtual completion times C∗
i constitutes

a feasible solution to LPavg .

PROOF. We prove the lemma by showing that if we set C∗
ij :=

C∗
i in each facility Bj , the constraints of LPavg are satisfied for

every subset X ⊆ T . Let X ⊆ T be an arbitrary such subset and
consider the left-hand side of the corresponding OSLP constraint
in LPavg ,

∑
Ti∈X p̂ijC

∗
i , when using the virtual completion time.

We rewrite this expression as
∑

Ti∈X
p̂ijC

∗
i =

∑
Ti∈X∩Lj

p̂ijC
∗
i +∑

Ti∈X∩Sj
p̂ijC

∗
i and study the two terms separately. For conve-

nience, let SX
j = X∩Sj and LX

j = X∩Lj . First, because the pro-
cessing times pij of orders in Lj remain unchanged, p̂ij = pij , and
because C∗

i ≥ 2Cori
i we know that the virtual completion times of

orders in LX
j must satisfy the property

∑

Ti∈LX
j

p̂ijC
∗
i ≥ 2

∑

Ti∈LX
j

p̂ijC
ori
i

≥ 2 · 1

2

[( ∑

Ti∈LX
j

p̂ij

)2

+
∑

Ti∈LX
j

p̂2
ij

]
(1)

since otherwise, the optimal completion times Cori
i would be infea-

sible for the set X ∩ Lj .
The more intricate case is the sum over all orders in X ∩ Sj

because p̂ij is no longer equivalent to pij , but instead, p̂ij = P j .
We can lower bound the sum as

∑

Ti∈SX
j

p̂ijC
∗
i = P j

∑

Ti∈SX
j

C∗
i ≥

(i)
P j · 4D · |SX

j |

≥
(ii)

2 · P 2
j · |SX

j | · |Sj | ≥
(iii)

2 · P 2
j · |SX

j |2

≥ 2 · 1

2

(
|SX

j | + |SX
j |2

)
P

2
j

= 2 · 1

2

[
|SX

j | · P 2
j +

(
|SX

j | · P j

)2
]

=
(iv)

2 · 1

2

[ ∑

Ti∈SX
j

p̂ij +
( ∑

Ti∈SX
j

p̂ij

)2
]
. (2)

Inequality (i) is due to C∗
i ≥ 4D. Inequality (ii) follows from

Lemma 6.2. Inequality (iii) holds because SX
j is a subset of Sj ,

and finally, Equality (iv) is true because p̂ij = P j for all orders in
SX

j , and therefore |SX
j | · P j =

∑
Ti∈SX

j
p̂ij .
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Inequalities 1 and 2 thus imply that for both subsets X ∩ Lj and
X ∩Sj of X, the OSLP constraint is satisfied with an extra “slack”
factor of 2. We can now use Lemma 6.1 to show that the constraint
is also satisfied for the entire subset X. Specifically, it follows from
Lemma 6.1 (when identifying subsets X∩Lj and X∩Sj as subsets
X1 and X2, respectively) that

∑

Ti∈X

p̂ijC
∗
i ≥ 2 · 1

4

[( ∑

Ti∈X

p̂ij

)2

+
∑

Ti∈X

p̂2
ij

]

=
1

2

[( ∑

Ti∈X

p̂ij

)2

+
∑

Ti∈X

p̂2
ij

]
.

Hence, all constraints in LPavg are satisfied when using the virtual
completion times C∗

i .

Combining the two previous lemmas, we can conclude the first
phase of the proof.

LEMMA 6.5. It holds
∑

Ti∈T Cavg
i ≤ 2(2k+1)

∑
Ti∈T Cori

i .

PROOF. Lemma 6.4 implies that the virtual completion times
C∗

i form a feasible solution to LPavg and therefore,
∑

Ti∈T C∗
i ≥∑

Ti∈T Cavg
i . Finally, we can combine this with the bound derived

in Lemma 6.3,
∑

Ti∈T C∗
i ≤ 2(2k + 1) · ∑

Ti∈T Cori
i .

So far, we have shown that the optimal objective values of LPavg

and LPori differ by at most a factor of O(k). However, we also
need to show that when we actually schedule the original requests
based on the ordering obtained after computing LPavg , the result-
ing completion times Calg

i are good.
For this purpose, we now define a new virtual completion time

as Ĉi := 2max{Cavg
i , 2D}. The difference between Ĉi and the

previously considered C∗
i is that unlike C∗

i , the values Ĉi directly
depend on Cavg

i , which will facilitate our reasoning about the algo-
rithm’s ordering.

LEMMA 6.6. It holds
∑

Ti∈T Ĉi ≤ 2(6k + 2) · ∑
Ti∈T Cori

i .

PROOF. Similar to the proof in Lemma 6.3, the sum of virtual
completion times is
∑

Ti∈T

Ĉi = 2

( ∑

Ti|C
avg
i

≥2D

Cavg
i +

∑

Ti|C
avg
i

<2D

2D

)

≤ 2

( ∑

Ti∈T

Cavg
i +

2 ·
∣∣Ti|Cavg

i < 2D
∣∣

|Qh|
∑

Ti∈Qh

Cori
i

)

≤ 2
(
2(2k + 1)

∑

Ti∈T

Cori
i + 2k

∑

Ti∈T

Cori
i

)

= 2(6k + 2)
∑

Ti∈T

Cori
i .

Where the last inequality follows from applying Lemma 6.5 (for the
first term) as well as the transformation used in Lemma 6.3 (for the
second term).

LEMMA 6.7. The virtual completion times Ĉi form a feasible
solution to LPori.

PROOF. We show that when setting Ĉij := Ĉi, the constraints
of LPori are satisfied for every subset X ⊆ T and in every facil-
ity Bj . Again, we rewrite as

∑
Ti∈X

pijĈi =
∑

Ti∈LX
j

pijĈi +
∑

Ti∈SX
j

pijĈi, and consider each of the two terms individually.

By definition, it holds that
∑

Ti∈LX
j

pijĈi ≥ 2
∑

Ti∈LX
j

pijC
avg
i .

As Cavg
i forms a feasible solution to the averaged linear program,

and because for LX
j it holds that p̂ij = pij , we have

∑

Ti∈LX
j

pijĈi ≥ 2 · 1

2

[( ∑

Ti∈LX
j

pij

)2

+
∑

Ti∈LX
j

p2
ij

]
.

Now, consider the case of SX
j in which generally, pij 6= p̂ij . We

know from the definition of Ĉi that Ĉi ≥ 4D. Using this bound
as well as Lemma 6.2, we can derive the following lower bound on∑

Ti∈SX
j

pijĈi.
∑

Ti∈SX
j

pijĈi ≥ 4D ·
∑

Ti∈SX
j

pij

≥
(Lemma 6.2)

2 · P j · |Sj | ·
∑

Ti∈SX
j

pij

≥ 2 ·
( ∑

Ti∈SX
j

pij

)2

≥ 2 · 1

2

[ ∑

Ti∈SX
j

pij +
( ∑

Ti∈SX
j

pij

)2
]
.

As in the proof of Lemma 6.4, we can now combine these two
lower bounds for LX

j and SX
j using Lemma 6.1. From this, it fol-

lows that
∑

Ti∈X

pijĈi ≥ 1

2

[( ∑

Ti∈X

pij

)2

+
∑

Ti∈X

p2
ij

]
.

This shows that the set of Ĉi satisfies the constraints of LPori.

Using the previous lemmas, we can now prove the actual comple-
tion times Calg

i resulting from Algorithm 1 are efficient compared
to the virtual completion times Ĉi.

LEMMA 6.8. It holds that
∑

Ti∈T Calg
i ≤ 2 · ∑

Ti∈T Ĉi.
PROOF. Assume w.l.o.g. that the Ti are named in non-decreasing

order of the completion times computed in Line 5, Cavg
1 ≤ Cavg

2 ≤
. . . ≤ Cavg

n . Because every scheduler schedules the Ti ∈ T ac-
cording to this order, it holds in every facility Bj that the comple-
tion time of Ti computed by the algorithm is Calg

ij =
∑i

k=1 pkj .
By Lemma 6.7, the set of Ĉi is feasible for LPori. This implies

that in each facility Bj , the constraints of OSLP are satisfied,
i∑

k=1

pkjĈk ≥ 1

2

[( i∑

k=1

pkj

)2

+
i∑

k=1

p2
kj

]
. (3)

By the definition of the virtual completion times Ĉi, we know that
if Cavg

a ≤ Cavg
b then Ĉa ≤ Ĉb also holds. It follows that Ĉ1 ≤

Ĉ2 ≤ . . . ≤ Ĉn, or alternatively Ĉk ≤ Ĉi for every 1 ≤ k ≤
i. Therefore,

∑i

k=1 pkjĈk ≤ Ĉi

∑i

k=1 pkj and hence, we can
rewrite Inequality (3) as

Ĉi

i∑

k=1

pkj ≥ 1

2

[( i∑

k=1

pkj

)2

+
i∑

k=1

p2
kj

]
.

When dividing both sides of the inequality by
∑i

k=1 pkj , this im-
plies that

∑i

k=1 pkj < 2 · Ĉi. The lemma now follows because for
every Ti ∈ T and all facilities Bj , Calg

ij =
∑i

k=1 pkj .

We now have all ingredients to prove the main theorem. It shows
that the sum of completion times achieved by the algorithm can be
at most by a factor of O(k) larger than the optimal solution with
global knowledge.
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THEOREM 6.9. Let OPT and ALG(k) be the optimal solution
with perfect global knowledge, and the solution achieved by Algo-
rithm 1, respectively. It holds that ALG(k) ≤ 4(6k + 2) · OPT .

PROOF. Because LPori denotes the optimal fractional solution
to the original problem, we know that its solution

∑
Ti∈T Cori

i con-
stitutes a lower bound on OPT . By Lemmas 6.6 and 6.8, we know
that

∑
Ti∈T Calg

i ≤ 2
∑

Ti∈T Ĉi ≤ 4(6k + 2) ·
∑

Ti∈T Cori
i ,

which proves the theorem.

Tightness of Analysis: We now show that our analysis is asymp-
totically tight by presenting an example in which the schedule pro-
duced by Algorithm 1 is by a factor of Ω(k) worse than the optimal
schedule. Intuitively, the proof consists of an example in which
there are 2t orders having processing time 1 on every facility, while
the remaining orders only have very short requests. Because the
facility schedulers exchange information about only up to t orders,
there remain t large orders that the facility schedulers do not have
specific information about. Hence, instead of scheduling all short
requests first, Algorithm 1 might schedule t large orders before all
short ones, thereby unnecessarily delaying them.

THEOREM 6.10. There are instances of the distributed order
scheduling problem in which, for all k, the schedule produced by
Algorithm 1 is by a factor of Ω(k) worse than the optimum.

PROOF. Let t = ⌊n/k⌋. In our example, the processing times
of all orders T1, . . . , Tt are pij = 1 on all facilities. The process-
ing times of orders Tt+1, . . . , T2t are pij = 1 − ǫ on all facilities,
and all remaining processing times T2t+1, . . . , Tn are pij = ǫ on
all facilities Bj . In an optimal schedule, all orders are scheduled
purely on a “shortest-job-first” basis, i.e., orders T2t+1, . . . , Tn are
scheduled first on all machines, followed by Tt+1, . . . , T2t and fi-
nally T1, . . . , Tt. The sum of completion times in this schedule is
no more than

OPT ≤ ǫ

2
(n − 2t)(n − 2t + 1) + 2t((n − 2t)ǫ + t + 1),

which, for ǫ → 0, approaches OPT ≤ 2t(t + 1).
In Algorithm 1, all facilities broadcast the exact processing times

of the t = ⌊n/k⌋ requests T1, . . . , Tt with largest processing times,
but only average values for the remaining requests. Facility sched-
ulers do not know the exact values of Tt+1, . . . , Tn and, hence,
cannot distinguish between the long orders Tt+1, . . . , T2t and the
remaining short orders. For this reason, it is possible that the order-
ing computed in Line 6 first schedules orders Tt+1, . . . , T2t before
all short orders T2t+1, . . . , Tn. The sum of completion times re-
sulting from this ordering is at least

ALG(k)≥ 1

2
t(t−ǫ)+(n−2t)

(
t(1−ǫ)+

1

2
(n−2t)ǫ

)
+t

(
t+

t

2

)
.

For ǫ → 0, this approaches ALG(k) ≥ nt. Hence, ALG(k)
OPT

=
nt

2t(t+1)
≥ kn

2(n+k)
∈ Ω(k).

7. BACKGROUND ON DRAM MEMORY
AND DRAM CONTROLLERS

In this section, we describe how the distributed order scheduling
problem models an important problem in shared DRAM memory
scheduling in many-core systems.

Organization of DRAM memory and DRAM controller: As
shown in Figure 1, the DRAM system in modern computer sys-
tems is organized into multiple banks, such that accesses to differ-
ent banks can be serviced in parallel. Each core (i.e., processor
or thread) connected to the DRAM can generate memory requests.
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Figure 1: DRAM controller organization in modern multi-core
processors

Each memory request is destined for a specific bank based on its ad-
dress. To buffer outstanding requests, there is a bank request buffer
associated with each bank. A bank scheduler operates on its local
bank request buffer to determine which of the outstanding requests
should be serviced next by that bank (if the bank is not already
busy servicing a request). Due to packaging cost limitations, only
one request can be sent to the DRAM at a given clock cycle, i.e.
there is one single bus connected to each DRAM bank. Therefore,
a separate DRAM bus scheduler chooses which bank scheduler’s
request will be serviced next. The DRAM bus scheduler usually
takes the oldest request among the ones selected by the individual
bank schedulers.4 Note that a DRAM bank access takes hundreds
of clock cycles; as such multiple requests can be serviced in paral-
lel in DRAM banks. As a result, the local decisions made by each
DRAM bank scheduler determines which requests are serviced in
parallel in the banks, which is precisely the problem captured by
our distributed order scheduling problem.

Minimizing the average completion time in our framework is the
right objective, because at any given time, a thread can have multi-
ple requests to different banks outstanding. Due to the nature of out-
of-order instruction processing in modern processors, a thread is
stalled until all of its outstanding memory requests are serviced [6,
7, 13]. Hence, as modeled by the distributed order scheduling prob-
lem, the execution time (i.e., completion time) of the thread will be
determined by the bank that services the requests most slowly. For
this reason, the decisions taken locally by each bank scheduler af-
fect the completion time of a thread. And, the completion time of a
thread is a critical measure to determine the scheduling efficiency in
a DRAM controller. If the average completion time of all threads is
low, the threads stall less and can make faster progress, ultimately
leading to better performance.
4Note that this is true in the absence of any row hits, i.e. requests that hit
in the row buffers associated with DRAM banks [12, 14]. Actual DRAM
scheduling is significantly more complicated than what we describe. We
only describe those scheduling decisions that result in first order perfor-
mance effects to build our theoretical framework.
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Batch-Scheduling: In order to avoid starvation and to guarantee
efficient and fair distribution of the DRAM bandwidth to all cores
sharing the DRAM system, batch-scheduling of memory requests
has recently been introduced [15]. In this scheme, scheduling pro-
ceeds in batches. The idea of batching is to consecutively group
outstanding requests in the bank request buffers into larger units
called batches. Each bank marks the oldest N requests from each
thread in its request buffer as belonging to the current batch. When
scheduling, marked requests are prioritized over all other requests
by the bank schedulers. Once no marked requests remain (i.e. all
marked requests are serviced by the DRAM banks), a new batch is
formed by repeating the marking process.

A thread’s completion time within a batch is defined as the time
between the initial formation of the batch and the time when the
last request of the thread in the batch is serviced. As argued above,
a thread’s completion time within a batch determines its perfor-
mance and in order to maximize overall system performance, a
batch-scheduling based DRAM controller should schedule requests
such that the average completion time of threads within a batch is
minimized [15].

In view of the above, it is clear that the problem of scheduling
DRAM memory requests in multi-core systems maps directly to the
order scheduling problem outlined in the introduction. The banks
correspond to the different facilities, and the threads correspond to
orders. Within a batch, all requests issued by a certain thread to a
certain bank can be regarded as one request.

8. EMPIRICAL EVALUATION
We evaluate the distributed order scheduling algorithm within the

context of multi-core DRAM controllers, as described in Sections 2
and 7. We use microarchitectural simulation to empirically evalu-
ate order scheduling and analyze its effects using real workloads.
Our evaluation is based on the cycle-accurate simulation of a real-
istic multi-core system that implements the x86 instruction set ar-
chitecture. The simulator takes as input instruction-level traces of
x86 applications generated using the Pin [10] and iDNA [1] tracing
tools. These instruction traces are then simulated via the proces-
sor models. Memory instructions, loads (reads) and stores (writes),
access the processor’s caches to load data. Each processor has a
private L1 cache and a private L2 cache. A memory request that
misses in both caches is entered into the corresponding bank re-
quest buffer in the DRAM controller. Each L2 cache is connected
to the DRAM controller. Figure 2 shows the high-level architecture
modeled by our simulator. We model especially the memory system
in detail, faithfully capturing bandwidth limitations, contention, and
enforcing bank/port/channel/bus conflicts. Table 1 shows the major
DRAM and processor parameters.

8.1 Evaluated Applications
Table 2 describes the applications we have used in our evaluation.

Table 3 then details the application mixes we have used to run on
the different cores of the many-core system. Each application was
compiled using gcc 4.1.2 with -O3 optimizations and run for 500
thousand instructions chosen from a representative execution phase
using a methodology similar to [18].

Applications: We use several of the SPEC CPU2006 bench-
marks [25], which are commonly used for processor performance
evaluation, and two large Windows desktop applications (Matlab
and an XML parsing application) for evaluation. We evaluate four
different combinations of multiprogrammed workloads running on
4- and 8-core systems. The applications and application combina-
tions listed in Tables 2 and 3 are selected to evaluate the average
case behavior of different scheduling algorithms.
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Metrics: We use the average batch completion time (ABCT) of
threads to compare the scheduling efficiency of the controllers. A
batch’s average completion time is equal to the sum of comple-
tion times of the threads within the batch divided by the number
of threads with marked requests. ABCT is computed by averaging
average completion times over all batches at the end of the simula-
tion runs. We also measure the system throughput provided by each
controller, using the weighted-speedup metric, which is commonly
used in multiprogrammed performance evaluation of microarchi-
tecture designs [24].

8.2 Evaluated DRAM Scheduling Policies
We empirically evaluate several different schedulers, that use vary-

ing amount of communication between different bank (=facility)
schedulers. All schedulers run within a batching scheme (see Sec-
tion 7) to avoid starvation and ensure fairness [15]. The evaluated
scheduling algorithms differ from each other in two aspects: 1) how
they determine the order of threads to be serviced within a batch
of requests, 2) how much information is communicated among the
bank schedulers to compute the order of threads.

SJF scheduler: The SJF scheduler is the baseline scheduler if
there is no communication between different bank schedulers. Each
bank scheduler independently employs the shortest job first princi-
ple to decide the order in which it schedules its requests. As a result,
the servicing order of threads in one bank can be completely differ-
ent from the servicing order of threads in another bank.

Max-Total controller: The MAX-TOT scheduler [15] requires
complete thread information among all bank schedulers. In par-
ticular, each bank scheduler conveys to every other bank scheduler
the number of requests (in the current batch) from each thread in
its own bank request buffer. Using this information, the schedulers
compute the ordering of threads shown in Algorithm 2.

Since each bank scheduler has access to the same information,
they all compute the same thread ordering, i.e., the servicing or-
der of threads in all banks is the same. The MAX-TOT heuristic
is based on the observation that the maximum number of outstand-
ing requests to any bank correlates with the “shortness of the job,”
i.e., with the minimal memory latency required to serve all requests
from a thread. A thread with smaller max-bank-load (MLB) has few
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Cores and core pipeline 4 or 8 core systems; 4 GHz processor, 128-entry instruction window, 12-stage pipeline
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency,
DRAM controller 128-entry request buffer per bank, reads prioritized over writes, XOR-based address-to-bank mapping [4]
DRAM chip parameters 8 banks; Micron DDR2-800 timing parameters (see [11]); 200-cycle bank access latency

Table 1: Baseline CMP and memory system configuration
Benchmark Suite Brief description
lbm SPEC CPU2006 Floating-Point Fluid dynamics; simulates incompressible fluids in 3D
mcf SPEC CPU2006 Integer Single-depot vehicle scheduling using combinatorial optimization
GemsFDTD SPEC CPU2006 Floating-Point Solves the Maxwell equations in 3D
omnetpp SPEC CPU2006 Integer Discrete event simulator modeling a large Ethernet campus network
matlab Windows Desktop Mathematical programming language and environment
leslie3d SPEC CPU2006 Floating-Point Computational fluid dynamics
libquantum SPEC CPU2006 Integer Simulates a quantum computer, running Shor’s polynomial-time factorization algorithm
xml-parser Windows Desktop Parses and displays XML files
soplex SPEC CPU2006 Floating-Point Solves a linear program using a simplex algorithm and sparse linear algebra
cactusADM SPEC CPU2006 Floating-Point Solves the Einstein evolution equations
astar SPEC CPU2006 Integer Pathfinding algorithms for 2D maps
hmmer SPEC CPU2006 Integer Protein sequence analysis using profile hidden Markov models
h264ref SPEC CPU2006 Integer A reference implementation of H.264 video compression standard
gromacs SPEC CPU2006 Floating-Point Molecular dynamics; simulates Newtonian equations of motion
bzip2 SPEC CPU2006 Integer In-memory compression/decompression of input files

Table 2: Evaluated applications
Combination Applications
MIX1 lbm, mcf, GemsFDTD, omnetpp
MIX2 matlab, leslie3d, libquantum, mcf
MIX3 xml-parser, matlab, soplex, lbm
MIX8-1 mcf, xml-parser, cactusADM, astar, hmmer, h264ref, gromacs, bzip2

Table 3: Evaluated application combinations

1: Max rule: For each thread, let max-bank-load (MBL) be the
maximum number of requests for any bank. A thread with a
lower MBL is ordered before a thread with a higher MBL.

2: Tie-breaker Total rule: If two threads have the same MBL,
a thread with lower total number of requests (in all banks) is
ordered before a thread with higher total number of requests.

Algorithm 2: Max-Total Controller: Thread Ordering

marked requests going to the same bank and hence can be finished
fast. By prioritizing requests from such threads and allowing banks
to make coordinated thread ordering decisions, MAX-TOT aims to
minimize the average completion time within a batch. It can be
shown (using an example similar to the one used in the proof of
Theorem 5.1) that MAX-TOT has a worst-case performance as bad
as Ω(

√
n). As our evaluations show, however, its performance is

quite good in the practical cases.
Distributed Order Scheduling (DOS) Controller: This con-

troller is the one described in Algorithm 1 of Section 6. The amount
of information communicated between the schedulers varies de-
pending on the parameter t = ⌊n/k⌋. If t = n, all schedulers
have complete global information, whereas if t = 0, each bank
scheduler knows only the average processing time per thread in ev-
ery bank request buffer.
8.3 Experimental Results

Figure 3 shows the average batch completion times of the differ-
ent scheduling algorithms on the simulated 4-core system for three
workloads. Several observations are in order:
• Having no communication between bank schedulers (i.e. SJF

scheduling) results in consistently higher average batch com-
pletion times compared to having even the minimal amount of
communication (i.e., even compared to DOS with t = 0). While
the worst-case analysis in Theorem 5.1 implies a similar result
for the worst-case, the empirical evaluation suggests that both
MAX-TOT and DOS substantially outperform a purely local al-

gorithm in scenarios using Windows desktop application traces
as well.

• As the amount of communication between bank schedulers in-
creases, the scheduling efficiency of DOS increases. This is
demonstrated by the decreasing average batch completion times
observed with increasing t value. Interestingly, the performance
increase is very gradual, suggesting that every new piece of
information can effectively be used to improve the computed
schedule.

• The DOS algorithm with complete information exchange be-
tween bank schedulers (t = 4) provides better scheduling effi-
ciency than MAX-TOT. The reductions in average batch com-
pletion time provided by DOS are respectively 4%, 5.1%, and
3.6% compared to MAX-TOT. This indicates that Algorithm 1
outperforms SJF and MAX-TOT not only in the worst case, but
also in the average case.

We also note that the scheduling efficiency of DOS with t=3 and t=4
is the same because communicating the average processing time of
a single request maintains complete information.

Comparison to LP lower bound: It is interesting to compare
our results with the lower bound provided by the optimal solution
to OSLP. We found that the average batch completion times as de-
termined by OSLP for each mix is respectively 383, 547, and 539
cycles for the three workloads. This suggests that the DOS algo-
rithm (with t = 4) is at most, respectively, 12.5%, 5.5%, and 11.3%
worse than the optimal solution in the three workloads. Notice that
the solution to OSLP only implies a (potentially loose) lower bound
on the optimal schedule, and we assume that DOS is in fact much
closer to the real optimum than these values.

Effect on System Throughput: Our evaluation results show that
the reduction in average batch completion time has indeed an im-
pact on the overall system throughput. Specifically, DOS (with
t = 4) provides respectively 1.1%, 0.8%, and 0.9% improvement in
system throughput over MAX-TOT. Similarly, it improves system
throughput by 2.1%, 1.1%, and 1.4% compared to SJF. Also, as
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Figure 3: Average batch completion times (in processor clock
cycles) of different scheduling algorithms in three different 4-
core workloads
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Figure 4: Average batch completion times of different schedul-
ing algorithms in the 8-core workload

the information communicated between bank schedulers increases
(from t=0 to t=4), system throughput also slightly increases.

8-Core Systems: Figure 4 shows the average batch completion
times of the different scheduling algorithms on the simulated 8-
core system. Note that average batch completion times are higher
in the 8-core system than in the 4-core system because there is
significantly higher pressure exerted on the DRAM system by 8
concurrently running applications. The conclusions from the 8-
core system results are similar to the conclusions we have drawn
from the 4-core system results. As a summary, we conclude that
1) the scheduling efficiency increases with more information ex-
changed among different bank schedulers, 2) having no communi-
cation among bank schedulers (SJF) results in the lowest schedul-
ing efficiency (i.e. highest average batch completion time), and 3)
distributed order scheduling with complete communication among
bank schedulers provides the highest scheduling efficiency. In ad-
dition, in this average case, DOS with t = 8 achieves an average
batch completion time that is at most 6.7% higher than the optimal
solution as bounded from below by the solution to OSLP.

9. CONCLUSION
There has recently been a trend in the distributed computing com-

munity towards studying problems associated with multi- or many-
core computing. So far, the problems most closely studied in this
context deal with new programming paradigms such as transac-
tional memory or parallel algorithms. In this paper, we have studied
an important distributed computing problem that arises in the mi-
croarchitecture of multi-core systems. We feel that—following the
same direction—there exist a vast number of important distributed
computing problems in multi-core system architecture.
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