18-447: Computer Architecture
Lecture |6:Virtual Memory

Justin Meza
Carnegie Mellon University
(with material from Onur Mutlu, Michael Papamichael, and Vivek Seshadri)

Notes

HW 2 and Lab 2 grades will be posted soon

If you have not filled out the feedback form, please do so!
This week:

® A couple of short lectures on virtual memory

® A recitation session for HW 3 and last year’s Midterm |

Midterm coming up soon (March 6)...

[EN
o

Number of Students
—
Un

o U

0%

HWV 2 and Lab 2 Distributions

HW 2 Score Distribution Lab 2 Score Distribution

=
-

Number of Students
=
on

Ul

B _— e E
0% 10% 20% 30% 40% 50% 60% 70% 80%

Score

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Score

90% 100%

Notes

HW 2 and Lab 2 grades will be posted soon

If you have not filled out the feedback form, please do so!
This week:

® A couple of short lectures on virtual memory

® A recitation session for HW 3 and last year’s Midterm |

Midterm coming up soon (March 6)...

Midterm |

Wed. March 6 during class (12:30 to 2:20pm)

Arrive early, sit with one seat in between you and the next person
Closed book, closed notes, single 8.5 x | | note sheet

All topics covered (including this week) may be on exam

® | ectures, homeworks, labs, required readings

Look over the past midterm (http://www.ece.cmu.edu/~ece44//s|2)

http://www.ece.cmu.edu/~ece447/s12/doku.php?id=wiki:exams
http://www.ece.cmu.edu/~ece447/s12/doku.php?id=wiki:exams

What We Learned Last [ime

® Enabling more parallelism with dataflow and SIMD

® \We'll cover a bit more of this material next week

Memory: Programmer’s View

Memory: Programmer’s View

Memory: Programmer’s View

Aside: How Memory Really VWorks

Size = |16GB

Aside: How Memory Really VWorks

Memory

Store =——
Size = 16GB

Manager

Load <€

“An engineer is a man who
can do for a dime what any
fool can do for a dollar”

— Anonymous

Aside: How Memory Really VWorks

Memory

Store =

Size = 16GB
Load <€

Manager

“An engineer is a man who
can do with 16GB what any

fool can do with o0’
— Justin

More on physical memory
iIn an upcoming lecture...

loday: Virtual Memory

® Why “virtual?
® |[f you think it’s there,and it’s there...it’s real
® |[f you think it’s not there, and it’s not there... it’s non-existent
® |f you think it's not there, and it’s there... it’s transparent
® |[f you think it’s there, and it’s not there...it's Imaginary
® Virtual memory is imaginary memory

® |t gives you the illusion of memory that’s not physically there

Overview:Why Virtual Memory!?

® Using physical memory efficiently
® Using physical memory simply

® Using physical memory safely

Using Physical Memory Efficiently

® Virtual memory uses gets the most out of physical memory

® Demand paging

® Main memory is a cache for portions of virtual address space
® The rest of the virtual address space is stored on disk

® Keep only active areas of virtual address space in fast memory

® [ransfer data back and forth as needed

Using Physical Memory Simply

® Virtual memory simplifies memory management
® Programmer can think in terms of a large, linear address space

® Processes access same large, linear address space

Using Physical Memory Safely

® Virtual memory protests process’ address spaces
® Processes cannot interfere with each other
® Because they operate in different address space
® User processes cannot access priviledged information
® Different sections of address space have different permissions

® Think: read-only, read/write, execute, ...

Virtual Memory Benefits

® VVe'll talk in depth about each of these next
¢ Demand paging: Using physical memory efficiently
¢ Memory management: Using physical memory simply

® Protection: Using physical memory safely

Virtual Memory Benefits

® VVe'll talk in depth about each of these next
¢ Demand paging: Using physical memory efficiently
¢ Memory management: Using physical memory simply

® Protection: Using physical memory safely

The Cost of Maintaining the
lllusion of 0 Memory

Address space is large:

® 32-bits: ~4,000,000,000 (four billion) bytes

® 64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes
Memory (DRAM) is expensive (| TB of DRAM ~$10,000)

But disk storage is relatively cheap (| TB of disk < $100)

Store most data on disk to maintain the illusion of 00 memory in a
cost-effective way

The Cost of Maintaining the
lllusion of 0 Memory

SRAM | €<=—>| DRAM (—)'

4 MB~$100 8 GB~$100 | TB ~ $100

Aside: he Memory Hierarchy

Registers

LI on-chip cache (SRAM)
L2 on-chip cache (SRAM)
Main memory (DRAM)
Local storage (Disks, SSDs)

Remote storage (servers, etc.

Aside: he Memory Hierarchy

above it Local storage (Disks, SSDs)

Remote storage (servers, etc.

Each level holds L1 on-chip cache (SRAM)
(or caches) data .
retrieved from level L2 on-chip cache (SRAM)
below it, and data Main memory (DMM)

i
Aside: he Memory Hierarchy

Smaller,

Registers
faster,
mnore LI on-chip cache (SRAM)
expensive L2 on-chip cache (SRAM)
(per byte)

Main memory (DRAM)
Local storage (Disks, SSDs)

Remote storage (servers, etc.

The Cost of Maintaining the

lllusion of o0 Memory
® So, DRAM caches disk data and SRAM caches DRAM data

® Should these caches be built in the same way!?

The Cost of Maintaining the

lllusion of o0 Memory
® So, DRAM caches disk data and SRAM caches DRAM data

® Should these caches be built in the same way!?

® Big difference: DRAM ~10X slower than SRAM but disk
~100,000X slower than DRAM

® Another big difference: When accessing sequential data on disk
the first byte is ~100,000X slower than successive bytes (DRAM
is much smaller, ~4X)

® Let’s learn a bit more about caches before we build virtual memory

Caching Primer

® More detail on this later (just enough for virtual memory for now)
® Some basic terminology

® Block (or line): a chunk of data

® Set: a group of blocks

® Miss: when a requested block is not present in the cache

® Hit: opposite of a miss

® |nsertion: triggered by a miss, fills a block into a set

® FEviction: possibly triggered by an insertion, displaces a block from a set

Caching Primer

® |mportant cache design parameters
® Block size: how much data to transfer to and from the cache?
® Associativity: how many blocks per set!?

® Write through: whether stores bypass (and invalidate) all cached
versions, and are written through to a lower level in the
hierarchy

® ..versus write back: whether stores are written back to the
next level of the hierarchy

Caching Primer

® |et’s apply what we’ve learned so far:

® For a disk cache in DRAM, how would you set (and why):
® Line size (among of data to move to/from): Large or Small ?
® Associativity (blocks per set): High or Low ?

® Write through or write back !

Caching Primer

® |et’s apply what we’ve learned so far

® For a disk cache in DRAM, how would you set (and why):
® Line size (among of data to move to/from): Large or Small ?
® Associativity (blocks per set): High or Low ?

® Write through or write back !

Disks are better at transferring large blocks

Caching Primer

® |et’s apply what we’ve learned so far

® For a disk cache in DRAM, how would you set (and why):
® Line size (among of data to move to/from): Large or Small ?
® Associativity (blocks per set): High or Low ?

® Write through or write back !

Want more diversity in which blocks to evict to reduce number of misses

Caching Primer

® |et’s apply what we’ve learned so far

® For a disk cache in DRAM, how would you set (and why):
® Line size (among of data to move to/from): Large or Small ?
® Associativity (blocks per set): High or Low ?

® Write through or write back ?

Want to coalesce writes and perform large writes back to disk

Caching Primer

® |et’s apply what we’ve learned so far

® For a disk cache in DRAM, how would you set (and why):
® Line size (among of data to move to/from): Large or Small ?
® Associativity (blocks per set): High or Low ?
® Write through or write back ?

® Let’s get back to memory

A System with
Only Physical Memory

® Examples:

® Most Cray machines Physical
Addresses
® Early PCs

® Nearly all embedded systems

CPU

® | oads and stores uses directly to access memory

A System with
Virtual Memory

® Examples:

® Most laptops, server, and modern PCs

® Page (i.e., a block) i 23€ Table

Addresses 0:

Physical
Addresses

® Address translation:
Hardware converts
virtual addresses into)
physical addresses =<’ N
using an OS-managed lookup table - "]

(the page table) EDlska

CPU

Page Faults (i.e., Cache Misses)

® Problem: A page is on disk and not in memory
® Page table entry indicates virtual address is hot in memory

® Solution: An OS routine is called to load data from disk to memory
® Current process suspends execution, others may resume

® OS has full control over placement

Page Faults (i.e., Cache Misses)

Before fault After fault

Memory
Memory

Page Table

— | | Physical
| JAddresses| ..:

Virtual Page Table

Addresses

Virtual

Addresses Physical

Addresses| .:

CPU

CPU

Servicing a Page Fault

1) Initiate Block Read

® Processor communicates with controller

Processor
® Read block of length P starting at disk Reg
address X and store starting at memory
address Y Cache
® Read occurs
® Direct Memory Access (DMA) Memopr=tTOr s =
® Done by I/O controller (2) DMA
, | ot ransfer |1/O
® (Controller signals comp.etlcn Vemory I cdtroller
® |nterrupt processor invokes OS
® OS resumes suspended process — [~—
O P P Disk | | Disk

Why Does Virtual Memory Work?

Why Does Virtual Memory Work!?

® [ocality!

® Temporal locality: Accessing the same data within a short amount of
time

® Spatial locality: Accessing data within a short amount of space
® Working set: The set of active virtual pages
® Programs with higher temporal locality have smaller working sets
® [f working set < memory size: good performance after initial misses

® [f working set > memory size: thrashing, pages are copied in and out

Virtual Memory Benefits

® VVe'll talk in depth about each of these next
¢ Demand paging: Using physical memory efficiently
¢ Memory management: Using physical memory simply

® Protection: Using physical memory safely

Memory Management

® Virtual / physical address spaces divided into equal-sized blocks
® “Virtual pages” in virtual memory
® “Physical pages™ or “frames” in physical memory
® Key idea: Each process has its own virtual address space
® Simplifies memory allocation
® A virtual page can be mapped to any physical page
® Simplifies sharing code and data among processes

® The OS can map virtual pages to same shared physical page

Memory Management

Virtual 0 Add | Physical Address
Address VP 1 | resSs » PP 2 Space (DRAM)

Space for VP 2 Translation
Process 1: n_4

(e.g., read/only

PP7 |~ library code)

VP 1
Address AR | N—
Space for

Process 2: N[YR

Memory Management

® Key idea: Each process has its own virtual address space
® Simplifies memory allocation
® A virtual page can be mapped to any physical page
® Simplifies sharing code and data among processes
® The OS can map virtual pages to same shared physical page

® Simplifies linking and loading

Memory Management

. . kernel virtual memory
@
LI n kl ng Oxc0000000
.. User stack
® Each program has similar (created at runtime)

virtual address space

® (Code, stack, and shared VT ——————
libraries always start at the 0x40000000 j—2rShared libraries
same address

® LOading runtime heap (via malloc)
. Read/write segment
® Virtual pages can be loaded on (.data, .bss)
demand (on first access) oy oo

0x08048000
0

Unused

memory
Invisible to

1 user code

%esp
(stack ptr)

—

the “brk” ptr

Loaded from
executable file

46

i

Memory Management

® Key idea: Each process has its own virtual address space
® Simplifies memory allocation
® A virtual page can be mapped to any physical page
® Simplifies sharing code and data among processes
® The OS can map virtual pages to same shared physical page
® Simplifies linking and loading

® Great that it's simple, but what good is that if it’'s not secure!

Virtual Memory Benefits

® VVe'll talk in depth about each of these next
¢ Demand paging: Using physical memory efficiently
¢ Memory management: Using physical memory simply

® Protection: Using physical memory safely

i

Protection with Virtual Memory

® A normal user process should not be able to:
® Read/write another process’ memory
® Write into shared library data
® How does virtual memory help!?
® Address space isolation
® Protection information in page table

® Efficient clearing of data on newly allocated pages

Protection: Address Isolation

Processes only access virtual addresses

Cannot access physical addresses directly

Go through per-process page table to perform translation
® |[f physical page is not in page table, it is not accessible

A normal user process should not be able to:

’

. - G & A N - AVa AVa [A a AAVFaAalaAaaAaVa
C N Q. ‘A ¢ \od w Ao \od

® WWrite into shared library data

Protection: Page Table Information

® Page table entry contains permission information

® Hardware enforces this protection

® OS is summoned if a violation occurs (send process SIGSEGYV,
segmentation fault)

® The page table itself is in protected memory (only OS can update)

® A normal user process should not be able to:

’

‘ - G & A s -a AVa AVa Y area -_a AAVFAIAAFVYa
¢ = ¥y N @ \od L J B \J \

o Write intocharad i |

Protection: Leaked Information

® Example (with the virtual memory we’ve discussed so far):

® Process A writes “my password = ...” to virtual address 2

® OS maps virtual address 2 to physical page 4 in page table

® Process A no longer needs virtual address 2

® OS unmaps virtual address 2 from physical page 4 in page table
® Attack vector:

® Sneaky Process B continually allocates pages and searches for “my
password = <string>"

Protection: Leaked Information

® Programmer shouldn’t have to worry about their data being leaked
® OS can ensure that pages are initialized to all zeros when allocated

® Let’s use what we've learned to do this quickly in virtual memory

Protection: Leaked Information

® Programmer shouldn’t have to worry about their data being leaked
® OS can ensure that pages are initialized to all zeros when allocated
® |et’s use what we've learned to do this quickly in virtual memory
® Remember shared pages! New pages can share an all-zero page
® Saves a lot of initial stores of the value zero to memory
® The OS can copy-on-write when the all-zero page is stored to

® Allocates a new virtual page on demand (what is this also
useful for?)

Protection: Leaked Information

® Programmer shouldn’t have to worry about their data being leaked
® OS can ensure that pages are initialized to all zeros when allocated
® |et’s use what we've learned to do this quickly in virtual memory
® Remember shared pages! New pages can share an all-zero page
® Saves a lot of initial stores of the value zero to memory
® The OS can copy-on-write when the all-zero page is stored to

® Allocates a new virtual page on demand (what is this also
useful for? => forking / threading)

Aside: Evolution of
Memory Management Mechanisms

® Single-user machines

® Base and bound registers

® Segmented address space

Single-User Machines

® Early machines had no concept of protection and address
translation

® No need with a single process and a single user

® Such machines were automatically private and had a uniform
view of the address space

® Programs operated on physical addresses directly

Base and Bound Registers

® Multi-tasking machines complicated things slightly

® Each process is given a hon-overlapping, contiguous physical
memory region

® All data had to fit in that region!

® When a process is swapped in, the OS sets a register for the
base of the process’ memory region and the bound to the end

® Hardware checked if addresses were in bound

Base and Bound Registers

Base -

Bound -

privileged control
reqisters

physical mem.

Base and Bound Registers

Base -

Bound -

privileged control
reqisters

physical mem.

Why not use base and bound registers in today’s machines?

Segmented Address Space

® More flexible than base and bound registers
® A segment is a single base and bound pair
® A process may possess multiple segments
® Early machines used separate segments for code and data

® VWhat about stack! Add another segment! (Can get complex)

Segmented Address Space

SEG 1T

segment tables
must be 1.
privileged data
structures and 2.
private/unique to
each process

segment
table

EA

N

base
&
bound

PA

okay?

Segmented Address Space

SEG # EA
segment tables \
must be 1. PA
privileged data |_,| segment + < . &
structures and 2. table base ’
private/unique to & okay'?
bound

each process

Why not use a segmented address space in today’s machines!?

Adding Protection to
Page-Based Virtual Memory

® Extend page table entries with permission bits
® OS page handling routine checks these before accessing / mapping

® |f violated, send process SIGSEGV (segmentation fault)

VVhat Ve Learned loday

Virtual memory allows processes to access memory efficiently
(demand paging), simply (memory management), and safely
(protection)

Virtual memory uses DRAM like a cache for data on disk
® But it’'s designed differently from on-chip caches
How virtual memory is mapped to physical pages (page table)

How virtual memory on disk is placed in physical memory (page
fault)

What We'll Learn Next Time

® The details of translating a virtual address to a physical address

® How this data is stored and managed in on-chip caches

