
18-447: Computer Architecture
Lecture 16: Virtual Memory

Justin Meza
Carnegie Mellon University

(with material from Onur Mutlu, Michael Papamichael, and Vivek Seshadri)

1

Notes

• HW 2 and Lab 2 grades will be posted soon

• If you have not filled out the feedback form, please do so!

• This week:

• A couple of short lectures on virtual memory

• A recitation session for HW 3 and last year’s Midterm I

• Midterm coming up soon (March 6)...

2

HW 2 and Lab 2 Distributions

0"

5"

10"

15"

20"

25"

30"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%"100%"

N
um

be
r"o

f"S
tu
de

nt
s"

Score"

HW"2"Score"Distribu?on"

0"

5"

10"

15"

20"

25"

30"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%" 100%"

N
um

be
r"o

f"S
tu
de

nt
s"

Score"

Lab"2"Score"Distribu?on"

3

Notes

• HW 2 and Lab 2 grades will be posted soon

• If you have not filled out the feedback form, please do so!

• This week:

• A couple of short lectures on virtual memory

• A recitation session for HW 3 and last year’s Midterm I

• Midterm coming up soon (March 6)...

4

Midterm 1

• Wed. March 6 during class (12:30 to 2:20pm)

• Arrive early, sit with one seat in between you and the next person

• Closed book, closed notes, single 8.5 x 11 note sheet

• All topics covered (including this week) may be on exam

• Lectures, homeworks, labs, required readings

• Look over the past midterm (http://www.ece.cmu.edu/~ece447/s12)

5

http://www.ece.cmu.edu/~ece447/s12/doku.php?id=wiki:exams
http://www.ece.cmu.edu/~ece447/s12/doku.php?id=wiki:exams

What We Learned Last Time

• Enabling more parallelism with dataflow and SIMD

• We’ll cover a bit more of this material next week

6

Memory: Programmer’s View

Store

Load
Memory

7

Memory: Programmer’s View

Store

Load
Memory Size = ?

8

Memory: Programmer’s View

Store

Load
Memory Size = ∞!

9

Aside: How Memory Really Works

Store

Load

Memory

Size = 16GB

...

Chip

Chip

Chip

M
an

ag
er

10

Aside: How Memory Really Works

Store

Load

Memory

Size = 16GB

...

Chip

Chip

Chip

M
an

ag
er

“An engineer is a man who
can do for a dime what any

fool can do for a dollar”
— Anonymous

11

Aside: How Memory Really Works

Store

Load

Memory

Size = 16GB

...

Chip

Chip

Chip

M
an

ag
er

“An engineer is a man who
can do with 16GB what any

fool can do with ∞”
— Justin

12

Aside: How Memory Really Works

Store

Load

Memory

Size = 16GB

...

Chip

Chip

Chip

M
an

ag
er

More on physical memory
in an upcoming lecture...

13

Today: Virtual Memory

• Why “virtual”?

• If you think it’s there, and it’s there... it’s real

• If you think it’s not there, and it’s not there... it’s non-existent

• If you think it’s not there, and it’s there... it’s transparent

• If you think it’s there, and it’s not there... it’s imaginary

• Virtual memory is imaginary memory

• It gives you the illusion of memory that’s not physically there

14

Overview: Why Virtual Memory?

• Using physical memory efficiently

• Using physical memory simply

• Using physical memory safely

15

Using Physical Memory Efficiently

• Virtual memory uses gets the most out of physical memory

• Demand paging

• Main memory is a cache for portions of virtual address space

• The rest of the virtual address space is stored on disk

• Keep only active areas of virtual address space in fast memory

• Transfer data back and forth as needed

16

Using Physical Memory Simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

• Processes access same large, linear address space

17

Using Physical Memory Safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other

• Because they operate in different address space

• User processes cannot access priviledged information

• Different sections of address space have different permissions

• Think: read-only, read/write, execute, ...

18

Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging: Using physical memory efficiently

• Memory management: Using physical memory simply

• Protection: Using physical memory safely

19

Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging: Using physical memory efficiently

• Memory management: Using physical memory simply

• Protection: Using physical memory safely

20

The Cost of Maintaining the
Illusion of ∞ Memory

• Address space is large:

• 32-bits: ~4,000,000,000 (four billion) bytes

• 64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

• Memory (DRAM) is expensive (1 TB of DRAM ~$10,000)

• But disk storage is relatively cheap (1 TB of disk < $100)

• Store most data on disk to maintain the illusion of ∞ memory in a
cost-effective way

21

The Cost of Maintaining the
Illusion of ∞ Memory

Disk

1 TB ~ $100

DRAM

8 GB ~ $100

SRAM

4 MB ~ $100

22

Aside: The Memory Hierarchy
Registers

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)

23

Aside: The Memory Hierarchy
Registers

Each level holds
(or caches) data

retrieved from level
below it, and data

displaced from level
above it

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)

24

Aside: The Memory Hierarchy
Smaller,
faster,
more

expensive
(per byte)

Registers

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)

25

The Cost of Maintaining the
Illusion of ∞ Memory

• So, DRAM caches disk data and SRAM caches DRAM data

• Should these caches be built in the same way?

26

The Cost of Maintaining the
Illusion of ∞ Memory

• So, DRAM caches disk data and SRAM caches DRAM data

• Should these caches be built in the same way?

• Big difference: DRAM ~10X slower than SRAM but disk
~100,000X slower than DRAM

• Another big difference: When accessing sequential data on disk
the first byte is ~100,000X slower than successive bytes (DRAM
is much smaller, ~4X)

• Let’s learn a bit more about caches before we build virtual memory

27

Caching Primer
• More detail on this later (just enough for virtual memory for now)

• Some basic terminology

• Block (or line): a chunk of data

• Set: a group of blocks

• Miss: when a requested block is not present in the cache

• Hit: opposite of a miss

• Insertion: triggered by a miss, fills a block into a set

• Eviction: possibly triggered by an insertion, displaces a block from a set

28

Caching Primer

• Important cache design parameters

• Block size: how much data to transfer to and from the cache?

• Associativity: how many blocks per set?

• Write through: whether stores bypass (and invalidate) all cached
versions, and are written through to a lower level in the
hierarchy

• ... versus write back: whether stores are written back to the
next level of the hierarchy

29

Caching Primer

• Let’s apply what we’ve learned so far:

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from): Large or Small ?

• Associativity (blocks per set): High or Low ?

• Write through or write back ?

30

Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from): Large or Small ?

• Associativity (blocks per set): High or Low ?

• Write through or write back ?

Disks are better at transferring large blocks

31

Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from): Large or Small ?

• Associativity (blocks per set): High or Low ?

• Write through or write back ?

Want more diversity in which blocks to evict to reduce number of misses

32

Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from): Large or Small ?

• Associativity (blocks per set): High or Low ?

• Write through or write back ?

Want to coalesce writes and perform large writes back to disk

33

Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from): Large or Small ?

• Associativity (blocks per set): High or Low ?

• Write through or write back ?

• Let’s get back to memory

34

A System with
Only Physical Memory

• Examples:

• Most Cray machines

• Early PCs

• Nearly all embedded systems

• Loads and stores uses directly to access memory

CPU!

0:!
1:!

N-1:!

Memory!

Physical!
Addresses!

35

A System with
Virtual Memory

• Examples:

• Most laptops, server, and modern PCs

• Page (i.e., a block)

• Address translation:
Hardware converts
virtual addresses into
physical addresses
using an OS-managed lookup table
(the page table)

CPU!

0:!
1:!

N-1:!

Memory!

0:!
1:!

P-1:!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

36

Page Faults (i.e., Cache Misses)

• Problem: A page is on disk and not in memory

• Page table entry indicates virtual address is not in memory

• Solution: An OS routine is called to load data from disk to memory

• Current process suspends execution, others may resume

• OS has full control over placement

37

Page Faults (i.e., Cache Misses)

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

Before fault! After fault!

38

Servicing a Page Fault
• Processor communicates with controller

• Read block of length P starting at disk
address X and store starting at memory
address Y

• Read occurs

• Direct Memory Access (DMA)

• Done by I/O controller

• Controller signals completion

• Interrupt processor invokes OS

• OS resumes suspended process
Disk Disk

Memory-I/O bus

Processor

Cache

Memory
I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

39

Why Does Virtual Memory Work?

40

Why Does Virtual Memory Work?

• Locality!

• Temporal locality: Accessing the same data within a short amount of
time

• Spatial locality: Accessing data within a short amount of space

• Working set: The set of active virtual pages

• Programs with higher temporal locality have smaller working sets

• If working set < memory size: good performance after initial misses

• If working set > memory size: thrashing, pages are copied in and out

41

Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging: Using physical memory efficiently

• Memory management: Using physical memory simply

• Protection: Using physical memory safely

42

Memory Management

• Virtual / physical address spaces divided into equal-sized blocks

• “Virtual pages” in virtual memory

• “Physical pages” or “frames” in physical memory

• Key idea: Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page

43

Memory Management

Virtual
Address
Space for
Process 1:

Physical Address
Space (DRAM) VP 1

VP 2
PP 2 Address

Translation

0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

44

Memory Management

• Key idea: Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page

• Simplifies linking and loading

45

Memory Management

• Linking

• Each program has similar
virtual address space

• Code, stack, and shared
libraries always start at the
same address

• Loading

• Virtual pages can be loaded on
demand (on first access)

kernel virtual memory

Memory mapped region
forshared libraries

runtime heap (via malloc)

Read-only segment
(.init, .text, .rodata)

Read/write segment
(.data, .bss)

User stack
(created at runtime)

Unused
0

%esp
(stack ptr)

memory
invisible to
 user code

the “brk” ptr

0x40000000

0xc0000000

0x08048000

Loaded from
executable file

46

Memory Management

• Key idea: Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page

• Simplifies linking and loading

• Great that it’s simple, but what good is that if it’s not secure?

47

Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging: Using physical memory efficiently

• Memory management: Using physical memory simply

• Protection: Using physical memory safely

48

Protection with Virtual Memory

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data

• How does virtual memory help?

• Address space isolation

• Protection information in page table

• Efficient clearing of data on newly allocated pages

49

Protection: Address Isolation

• Processes only access virtual addresses

• Cannot access physical addresses directly

• Go through per-process page table to perform translation

• If physical page is not in page table, it is not accessible

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data

50

Protection: Page Table Information

• Page table entry contains permission information

• Hardware enforces this protection

• OS is summoned if a violation occurs (send process SIGSEGV,
segmentation fault)

• The page table itself is in protected memory (only OS can update)

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data

51

Protection: Leaked Information

• Example (with the virtual memory we’ve discussed so far):

• Process A writes “my password = ...” to virtual address 2

• OS maps virtual address 2 to physical page 4 in page table

• Process A no longer needs virtual address 2

• OS unmaps virtual address 2 from physical page 4 in page table

• Attack vector:

• Sneaky Process B continually allocates pages and searches for “my
password = <string>”

52

Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory

53

Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory

• Remember shared pages? New pages can share an all-zero page

• Saves a lot of initial stores of the value zero to memory

• The OS can copy-on-write when the all-zero page is stored to

• Allocates a new virtual page on demand (what is this also
useful for?)

54

Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory

• Remember shared pages? New pages can share an all-zero page

• Saves a lot of initial stores of the value zero to memory

• The OS can copy-on-write when the all-zero page is stored to

• Allocates a new virtual page on demand (what is this also
useful for? ➔ forking / threading)

55

Aside: Evolution of
Memory Management Mechanisms
• Single-user machines

• Base and bound registers

• Segmented address space

56

Single-User Machines

• Early machines had no concept of protection and address
translation

• No need with a single process and a single user

• Such machines were automatically private and had a uniform
view of the address space

• Programs operated on physical addresses directly

57

Base and Bound Registers

• Multi-tasking machines complicated things slightly

• Each process is given a non-overlapping, contiguous physical
memory region

• All data had to fit in that region!

• When a process is swapped in, the OS sets a register for the
base of the process’ memory region and the bound to the end

• Hardware checked if addresses were in bound

58

Base and Bound Registers

physical mem.

active process’s
region

another process’s
region

Base

Bound

privileged control
registers

59

Base and Bound Registers

physical mem.

active process’s
region

another process’s
region

Base

Bound

privileged control
registers

Why not use base and bound registers in today’s machines?

60

Segmented Address Space

• More flexible than base and bound registers

• A segment is a single base and bound pair

• A process may possess multiple segments

• Early machines used separate segments for code and data

• What about stack? Add another segment! (Can get complex)

61

Segmented Address Space

SEG # EA

segment
table

+,<
base

&
bound

PA
&

okay?

segment tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

62

Segmented Address Space

SEG # EA

segment
table

+,<
base

&
bound

PA
&

okay?

segment tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

Why not use a segmented address space in today’s machines?

63

Adding Protection to
Page-Based Virtual Memory

• Extend page table entries with permission bits

• OS page handling routine checks these before accessing / mapping

• If violated, send process SIGSEGV (segmentation fault)

64

What We Learned Today

• Virtual memory allows processes to access memory efficiently
(demand paging), simply (memory management), and safely
(protection)

• Virtual memory uses DRAM like a cache for data on disk

• But it’s designed differently from on-chip caches

• How virtual memory is mapped to physical pages (page table)

• How virtual memory on disk is placed in physical memory (page
fault)

65

What We’ll Learn Next Time

• The details of translating a virtual address to a physical address

• How this data is stored and managed in on-chip caches

66

