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Notes

• HW 2 and Lab 2 grades will be posted soon

• If you have not filled out the feedback form, please do so!

• This week:

• A couple of short lectures on virtual memory

• A recitation session for HW 3 and last year’s Midterm I

• Midterm coming up soon (March 6)...
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HW 2 and Lab 2 Distributions
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Notes

• HW 2 and Lab 2 grades will be posted soon

• If you have not filled out the feedback form, please do so!

• This week:

• A couple of short lectures on virtual memory

• A recitation session for HW 3 and last year’s Midterm I

• Midterm coming up soon (March 6)...
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Midterm 1

• Wed. March 6 during class (12:30 to 2:20pm)

• Arrive early, sit with one seat in between you and the next person

• Closed book, closed notes, single 8.5 x 11 note sheet

• All topics covered (including this week) may be on exam

• Lectures, homeworks, labs, required readings

• Look over the past midterm (http://www.ece.cmu.edu/~ece447/s12)
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What We Learned Last Time

• Enabling more parallelism with dataflow and SIMD 

• We’ll cover a bit more of this material next week
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Memory: Programmer’s View

Store

Load
Memory
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Memory: Programmer’s View

Store

Load
Memory Size = ?
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Memory: Programmer’s View

Store

Load
Memory Size = ∞!
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Aside: How Memory Really Works
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Aside: How Memory Really Works
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“An engineer is a man who
can do for a dime what any

fool can do for a dollar”
— Anonymous
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Aside: How Memory Really Works
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“An engineer is a man who
can do with 16GB what any

fool can do with ∞”
— Justin
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Aside: How Memory Really Works
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More on physical memory 
in an upcoming lecture...
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Today:  Virtual Memory

• Why “virtual”?

• If you think it’s there, and it’s there... it’s real

• If you think it’s not there, and it’s not there... it’s non-existent

• If you think it’s not there, and it’s there... it’s transparent

• If you think it’s there, and it’s not there... it’s imaginary

• Virtual memory is imaginary memory

• It gives you the illusion of memory that’s not physically there
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Overview: Why Virtual Memory?

• Using physical memory efficiently

• Using physical memory simply

• Using physical memory safely
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Using Physical Memory Efficiently

• Virtual memory uses gets the most out of physical memory

• Demand paging

• Main memory is a cache for portions of virtual address space

• The rest of the virtual address space is stored on disk

• Keep only active areas of virtual address space in fast memory

• Transfer data back and forth as needed
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Using Physical Memory Simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

• Processes access same large, linear address space
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Using Physical Memory Safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other

• Because they operate in different address space

• User processes cannot access priviledged information

• Different sections of address space have different permissions

• Think: read-only, read/write, execute, ...
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Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging:  Using physical memory efficiently

• Memory management:  Using physical memory simply

• Protection:  Using physical memory safely
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Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging:  Using physical memory efficiently

• Memory management:  Using physical memory simply

• Protection:  Using physical memory safely
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The Cost of Maintaining the 
Illusion of ∞ Memory

• Address space is large:

• 32-bits:  ~4,000,000,000 (four billion) bytes

• 64-bits:  ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

• Memory (DRAM) is expensive (1 TB of DRAM ~$10,000)

• But disk storage is relatively cheap (1 TB of disk < $100)

• Store most data on disk to maintain the illusion of ∞ memory in a 
cost-effective way
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The Cost of Maintaining the 
Illusion of ∞ Memory

Disk

1 TB ~ $100

DRAM

8 GB ~ $100

SRAM

4 MB ~ $100
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Aside: The Memory Hierarchy
Registers

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)
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Aside: The Memory Hierarchy
Registers

Each level holds
(or caches) data

retrieved from level
below it, and data

displaced from level
above it

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)
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Aside: The Memory Hierarchy
Smaller,
faster,
more

expensive
(per byte)

Registers

L1 on-chip cache (SRAM)

L2 on-chip cache (SRAM)

Main memory (DRAM)

Local storage (Disks, SSDs)

Remote storage (servers, etc.)
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The Cost of Maintaining the 
Illusion of ∞ Memory

• So, DRAM caches disk data and SRAM caches DRAM data

• Should these caches be built in the same way?
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The Cost of Maintaining the 
Illusion of ∞ Memory

• So, DRAM caches disk data and SRAM caches DRAM data

• Should these caches be built in the same way?

• Big difference:  DRAM ~10X slower than SRAM but disk 
~100,000X slower than DRAM

• Another big difference:  When accessing sequential data on disk 
the first byte is ~100,000X slower than successive bytes (DRAM 
is much smaller, ~4X)

• Let’s learn a bit more about caches before we build virtual memory
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Caching Primer
• More detail on this later (just enough for virtual memory for now)

• Some basic terminology

• Block (or line):  a chunk of data

• Set:  a group of blocks

• Miss:  when a requested block is not present in the cache

• Hit:  opposite of a miss

• Insertion:  triggered by a miss, fills a block into a set

• Eviction:  possibly triggered by an insertion, displaces a block from a set

28



Caching Primer

• Important cache design parameters

• Block size:  how much data to transfer to and from the cache?

• Associativity:  how many blocks per set?

• Write through:  whether stores bypass (and invalidate) all cached 
versions, and are written through to a lower level in the 
hierarchy

• ... versus write back:  whether stores are written back to the 
next level of the hierarchy
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Caching Primer

• Let’s apply what we’ve learned so far:

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from):   Large or Small ?

• Associativity (blocks per set):  High or Low ?

• Write through or write back ?
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Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from):   Large or Small ?

• Associativity (blocks per set):  High or Low ?

• Write through or write back ?

Disks are better at transferring large blocks
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Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from):   Large or Small ?

• Associativity (blocks per set):  High or Low ?

• Write through or write back ?

Want more diversity in which blocks to evict to reduce number of misses
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Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from):   Large or Small ?

• Associativity (blocks per set):  High or Low ?

• Write through or write back ?

Want to coalesce writes and perform large writes back to disk
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Caching Primer

• Let’s apply what we’ve learned so far

• For a disk cache in DRAM, how would you set (and why):

• Line size (among of data to move to/from):   Large or Small ?

• Associativity (blocks per set):  High or Low ?

• Write through or write back ?

• Let’s get back to memory
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A System with
Only Physical Memory 

• Examples:

• Most Cray machines

• Early PCs

• Nearly all embedded systems

• Loads and stores uses directly to access memory

CPU!

0:!
1:!

N-1:!

Memory!

Physical!
Addresses!
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A System with
Virtual Memory 

• Examples:

• Most laptops, server, and modern PCs

• Page (i.e., a block)

• Address translation:
Hardware converts
virtual addresses into
physical addresses
using an OS-managed lookup table
(the page table)

CPU!

0:!
1:!

N-1:!

Memory!

0:!
1:!

P-1:!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!
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Page Faults (i.e., Cache Misses)

• Problem:  A page is on disk and not in memory

• Page table entry indicates virtual address is not in memory

• Solution:  An OS routine is called to load data from disk to memory

• Current process suspends execution, others may resume

• OS has full control over placement
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Page Faults (i.e., Cache Misses)

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

CPU!

Memory!

Page Table!

Disk!

Virtual!
Addresses! Physical!

Addresses!

Before fault! After fault!

38



Servicing a Page Fault
• Processor communicates with controller

• Read block of length P starting at disk 
address X and store starting at memory 
address Y

• Read occurs

• Direct Memory Access (DMA)

• Done by I/O controller

• Controller signals completion

• Interrupt processor invokes OS

• OS resumes suspended process
Disk Disk 

Memory-I/O bus 

Processor 

Cache 

Memory 
I/O 
controller 

Reg 

(2) DMA 
Transfer 

(1) Initiate Block Read 

(3) Read 
Done 
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Why Does Virtual Memory Work?
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Why Does Virtual Memory Work?

• Locality!

• Temporal locality:  Accessing the same data within a short amount of 
time

• Spatial locality:  Accessing data within a short amount of space

• Working set:  The set of active virtual pages

• Programs with higher temporal locality have smaller working sets

• If working set < memory size:  good performance after initial misses

• If working set > memory size:  thrashing, pages are copied in and out
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Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging:  Using physical memory efficiently

• Memory management:  Using physical memory simply

• Protection:  Using physical memory safely
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Memory Management

• Virtual / physical address spaces divided into equal-sized blocks

• “Virtual pages” in virtual memory

• “Physical pages” or “frames” in physical memory

• Key idea:  Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page
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Memory Management

Virtual 
Address 
Space for 
Process 1: 

Physical Address  
Space (DRAM) VP 1 

VP 2 
PP 2 Address 

Translation 

0 

0 

N-1 

0 

N-1 M-1 

VP 1 
VP 2 

PP 7 

PP 10 

(e.g., read/only 
library code) 

... 

... 

Virtual 
Address 
Space for 
Process 2: 
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Memory Management

• Key idea:  Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page

• Simplifies linking and loading
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Memory Management

• Linking

• Each program has similar 
virtual address space

• Code, stack, and shared 
libraries always start at the 
same address

• Loading

• Virtual pages can be loaded on 
demand (on first access)

kernel virtual memory 

Memory mapped region  
forshared libraries 

runtime heap (via malloc) 

Read-only segment 
(.init, .text, .rodata) 

Read/write segment 
(.data, .bss) 

User stack 
(created at runtime) 

Unused 
0 

%esp 
(stack ptr) 

memory 
invisible to 
 user code 

the “brk” ptr 

0x40000000 

0xc0000000 

0x08048000 

Loaded from 
executable file 
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Memory Management

• Key idea:  Each process has its own virtual address space

• Simplifies memory allocation

• A virtual page can be mapped to any physical page

• Simplifies sharing code and data among processes

• The OS can map virtual pages to same shared physical page

• Simplifies linking and loading

• Great that it’s simple, but what good is that if it’s not secure?
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Virtual Memory Benefits

• We’ll talk in depth about each of these next

• Demand paging:  Using physical memory efficiently

• Memory management:  Using physical memory simply

• Protection:  Using physical memory safely
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Protection with Virtual Memory

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data

• How does virtual memory help?

• Address space isolation

• Protection information in page table

• Efficient clearing of data on newly allocated pages
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Protection: Address Isolation

• Processes only access virtual addresses

• Cannot access physical addresses directly

• Go through per-process page table to perform translation

• If physical page is not in page table, it is not accessible

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data
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Protection: Page Table Information

• Page table entry contains permission information

• Hardware enforces this protection

• OS is summoned if a violation occurs (send process SIGSEGV, 
segmentation fault)

• The page table itself is in protected memory (only OS can update)

• A normal user process should not be able to:

• Read/write another process’ memory

• Write into shared library data
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Protection: Leaked Information

• Example (with the virtual memory we’ve discussed so far):

• Process A writes “my password = ...” to virtual address 2

• OS maps virtual address 2 to physical page 4 in page table

• Process A no longer needs virtual address 2

• OS unmaps virtual address 2 from physical page 4 in page table

• Attack vector:

• Sneaky Process B continually allocates pages and searches for “my 
password = <string>”
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Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory
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Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory

• Remember shared pages?  New pages can share an all-zero page

• Saves a lot of initial stores of the value zero to memory

• The OS can copy-on-write when the all-zero page is stored to

• Allocates a new virtual page on demand (what is this also 
useful for?)
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Protection: Leaked Information

• Programmer shouldn’t have to worry about their data being leaked

• OS can ensure that pages are initialized to all zeros when allocated

• Let’s use what we’ve learned to do this quickly in virtual memory

• Remember shared pages?  New pages can share an all-zero page

• Saves a lot of initial stores of the value zero to memory

• The OS can copy-on-write when the all-zero page is stored to

• Allocates a new virtual page on demand (what is this also 
useful for? ➔ forking / threading)
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Aside: Evolution of
Memory Management Mechanisms
• Single-user machines

• Base and bound registers

• Segmented address space
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Single-User Machines

• Early machines had no concept of protection and address 
translation

• No need with a single process and a single user

• Such machines were automatically private and had a uniform 
view of the address space

• Programs operated on physical addresses directly
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Base and Bound Registers

• Multi-tasking machines complicated things slightly

• Each process is given a non-overlapping, contiguous physical 
memory region

• All data had to fit in that region!

• When a process is swapped in, the OS sets a register for the 
base of the process’ memory region and the bound to the end

• Hardware checked if addresses were in bound
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Base and Bound Registers

 
 
 
 
 
 
 
 

physical mem. 
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Base and Bound Registers

 
 
 
 
 
 
 
 

physical mem. 

active process’s 
region 

another process’s 
region 

Base 

Bound 

privileged control 
registers 

Why not use base and bound registers in today’s machines?
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Segmented Address Space

• More flexible than base and bound registers

• A segment is a single base and bound pair

• A process may possess multiple segments

• Early machines used separate segments for code and data

• What about stack?  Add another segment!  (Can get complex)
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Segmented Address Space

SEG # EA 

segment 
table 

+,< 
base  

& 
bound 

PA 
& 

okay? 

segment tables 
must be 1.  

privileged data 
structures and 2. 
private/unique to 

each process 
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Segmented Address Space

SEG # EA 

segment 
table 

+,< 
base  

& 
bound 

PA 
& 

okay? 

segment tables 
must be 1.  

privileged data 
structures and 2. 
private/unique to 

each process 

Why not use a segmented address space in today’s machines?
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Adding Protection to
Page-Based Virtual Memory

• Extend page table entries with permission bits

• OS page handling routine checks these before accessing / mapping

• If violated, send process SIGSEGV (segmentation fault)
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What We Learned Today

• Virtual memory allows processes to access memory efficiently 
(demand paging), simply (memory management), and safely 
(protection)

• Virtual memory uses DRAM like a cache for data on disk

• But it’s designed differently from on-chip caches

• How virtual memory is mapped to physical pages (page table)

• How virtual memory on disk is placed in physical memory (page 
fault)
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What We’ll Learn Next Time

• The details of translating a virtual address to a physical address

• How this data is stored and managed in on-chip caches
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