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It is now generally recognized that not enough parallelism exists within the 
small basic blocks of most general purpose programs to satisfy high per- 
formance processors. Thus, a wide variety of techniques have been developed to 
exploit instruction level parallelism across basic block boundaries. In this paper 
we discuss some previous techniques along with their hardware and software 
requirements. Then we propose a new paradigm for an instruction set architec- 
ture (ISA): block-structuring. This new paradigm is presented, its hardware and 
software requirements are discussed and the results from a simulation study are 
presented. We show that a block-structured ISA utilizes both dynamic and 
compile-time mechanisms for exploiting instruction level parallelism and has 
significant performance advantages over a conventional ISA. 

KEY WORDS: Instruction scheduling; instruction level parallelism; super- 
scalar; VLIW; instruction set architecture. 

1. INTRODUCTION 

A basic block is defined by Aho et  al., ~]) as a sequence of consecutive 
statements in which the flow of control enters at the beginning and leaves 
at the end. When basic blocks are small, performance suffers for several 
reasons. First, the instruction supply hardware is taxed. Changes in the 
flow of control expose the latency in prefetching and decoding from a new 
target address. In addition, small basic blocks limit multiple instruction per 
cycle execution. Issuing a large number of instructions in one cycle 
becomes impractical or at least very hardware intensive, Small basic blocks 
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also complicate the task of the compiler in finding operations to overlap. 
As machines continue in the current trend of wider issue sizes, these are 
guaranteed to become more significant problems. 

Exploiting instruction level parallelism across multiple basic blocks is 
straightforward in some instances. Many scientific programs have basic blocks 
that are fairly easy to enlarge. For example, when the bounds of a loop are 
known statically and there are no conditional tests inside, the loop can be 
trivially unrolled to provide a larger basic block. General purpose programs, 
however, generally fall into a different category. They often have small basic 
blocks and conditional branches that are hard to predict statically. 

There has been a wide variety of techniques developed to exploit 
parallelism across multiple basic blocks. Early techniques involved global 
instruction scheduling by the compiler to move code between basic blocks. 
Currently there is a trend to supplement these techniques with architectural 
constructs (such as conditional instructions) and hardware mechanisms 
(such as speculative execution). There is also a trend toward the use of 
dynamic scheduling to further enhance the exploitation of instruction level 
parallelism. Dynamic scheduling is a microarchitectural mechanism that 
separates instruction issue from instruction execution. This mechanism has 
been implemented and proposed in many variations. The tag fowarding 
scheme of the IBM 360/91 originated the core idea behind dynamic 
schedulingJ 2) HPS generalized the concept of tag fowarding to encompass 
all operations within a processor, including memory operations, and with 
enough backup state to allow dynamic branch prediction and precise 
exceptions. ~3-5) Dynamic scheduling has particular advantages under 
variability in memory latency (e.g. cache hits vs. misses) and for dynamic 
memory disambiguation (e.g., when the compiler can't guarantee the 
independence of two memory references). 

In this paper the idea of a block-structured instruction set architecture 
(ISA) will be introduced, which represents a logical extension of static and 
dynamic scheduling concepts. A block-structured ISA treats an entire 
group of instructions as an atomic unit, much as conventional ISAs treat 
individual instructions. This concept has several important implications 
that will be discussed. We will show that a block-structured ISA allows the 
compiler more flexibility in instruction scheduling, so that it can be more 
effective in uncovering global parallelism. Furthermore, the hardware can 
execute instructions in parallel more efficiently, and the instruction supply 
bottleneck is widened. 

This paper is divided into six sections. In Section 2, we define some 
terms and provide some general background. Section 3 presents a survey 
of previous techniques for exploiting instruction level parallelism across 
multiple basic blocks. The hardware and software requirements of each are 
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discussed along with their trade-offs. In Section 4 the concept of a block- 
structured ISA is detailed, and we discuss the hardware and software 
requirements. Section 5 presents some results from a preliminary simulation 
study of a block-structured ISA. We conclude with Section 6. 

2. B A C K G R O U N D  

2.1. Atomic  Blocks 

As previously noted, a basic block is a sequence of consecutive instruc- 
tions in which the flow of control enters at the beginning and leaves at the 
end. In this paper we define an atomic block similarly but as a collection of 
instructions rather than a sequence of instructions. There is no explicit 
sequencing of the instructions within an atomic block. Data flow depen- 
dencies within the atomic block are represented only by the source and 
destination fields of the constituent instructions, and there are no limita- 
tions on the order in which these instructions are stored in memory. 

In an atomic block, only variables that are live upon exit from the 
block are assigned to architectural registers. A result not used outside the 
block is referenced by the index (relative to the beginning of the block) of 
the instruction generating the result. This index is converted to a physical 
register number  at execution time. 

Control dependencies between atomic blocks are represented through 
special instructions within the block known as assert instructions. Each 
assert instruction is associated with a target address. There may be many 
assert instructions (and thus many targets) within an atomic block. 
However, at run-time, only one target will eventually be resolved as the 
location of the next atomic block to execute. We will discuss atomic blocks 
and the use of assert instructions in Section 4. 

2.2. Control  Flow 

Consider the various ways to alter the flow of control in a program. 
We classify control flow into four categories based on whether one-way or 
two-way branches are involved and whether or not targets are explicit or 
generated at run-time. Explicit targets are all addresses detectable statically 
from the instruction stream. Run-time targets include branches through 
registers, jump tables, computed branches and returns from subroutines. 
This branch categorization is shown in Table I. Note that a solid dot is 
used to represent an explicit target and an empty dot is used to indicate a 
run-time target. The symbols shown in Table I will be used later in the 
paper. 

828/23/3-2 
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Table h Branch Types 

One-way branch Two-way branch 

Explicit target(s) Unconditional branches Conditional branches 
Calls to static targets 

L �9 l I �9 �9 

Returns Jump tables 
Jumps through variables 

Run-time target 

2.3. B lock Entr ies and Exits 

Basic blocks and atomic blocks are by definition single-entry, 
single-exit (SESE) constructs. There are other useful ways to classify units 
of work. Multiple-entry, single-exit (MESE) blocks are possible along 
with single-entry, multiple-exit (SEME) and multiple-entry, multiple-exit 
( M E M E )  blocks. The term extended basic block is used to refer to SEME- 
blocks (see Aho e t  a/.(l)). 

It is important to distinguish a block that has multiple targets as 
described earlier from a multiple-exit block. The latter applies only when 
the block has an intermediate exit point where not all instructions within 
the block are executed when that arc is traversed. Similarly, a multiple- 
entry block refers only to intermediate entry points, where not all instruc- 
tions are executed when an intermediate entry arc is traversed. 

All atomic blocks are SESE-blocks. An atomic block does not repre- 
sent a sequence of instructions but merely a collection of work. Thus, it is 
impossible to jump into the middle or leave before all the work is done. 
However, we will see that an atomic block may have many possible 
successors. 

2.4. B lock T r a n s f o r m a t i o n  

There are a variety of different ways to transform blocks to increase 
the available instruction level parallelism. Any two blocks joined by a one- 
way branch with an explicit address can be combined into a larger block. 
This may involve code expansion if there are other blocks that jump to the 
same location. 

Another type of transformation involves code re-arrangement. Blocks 
with two-way branches with explicit targets can be arranged so as to create 
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larger SEME-blocks without involving any changes to the contents of the 
individual blocks. This will be advantageous by not disrupting the sequen- 
tial flow of instructions. Further advantages can be achieved in this case by 
performing optimizations on the entire SEME-block. 

Many scheduling techniques involve moving instructions between two 
blocks across an arc. In the case that the arc is one side of a two-way 
branch, special care must be taken. An instruction following a two-way 
branch may be moved past the branch as long as any side-effects of this 
instruction can be undone in the case that the other direction of the branch 
is taken. This may involve inserting fix-up code in the other path or the use 
of special backup hardware. 

We will discuss these block transformation techniques as well as others 
in more detail in the next section. For now, note that in the case of atomic 
blocks, it is possible in principle to move any instruction across any explicit 
arc. The combination of two or more blocks to create an enlarged atomic 
block involves a complete re-optimization of the resulting atomic block 
without the need to preserving architectural state for nonoptimized paths. 
This procedure is discussed in detail in Section 4. 

3. P R E V I O U S  T E C H N I Q U E S  

There has been much previous work on exploiting instruction level 
parallelism across multiple basic blocks. Some early work was done in con- 
nection with VLIW machines. In these machines the compiler does all the 
scheduling of instructions and there are typically many concurrent 
operations. VLIW machines have been effectively applied only to scientific 
programs where the parallelism is relatively easy to detect. Basic blocks are 
large, branches are easier to predict statically and memory disambiguation 
is more straightforward. 

Trace scheduling ~6'7) is such a VLIW-based technique that involves 
optimizing for a particular path through a program. A particular trace is 
favored, and optimization is performed on that path. Instructions are 
moved across branches to fill in empty slots and maximize parallelism. The 
sequence of basic blocks along the trace represents a SEME-block that is 
being optimized. 

Other forms of global scheduling, such as percolation scheduling, ~8) 
involve more general approaches that do not require a particular favored 
trace through the program. However, like trace scheduling the state of the 
machine must be preserved at the intermediate exit points. Thus, fix-up 
code may have to be inserted. For example, consider the program structure 
example illustrated in Fig. 1. Each box in this figure represents a basic 
block in the original program. We will refer to this sample structure 
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Fig. 1. A program structure that represents a basic block in 
the original program. 

throughout the rest of the paper. If  the basic block labeled F is optimized 
with D, instructions may be moved up from F to D. However, it may be 
necessary to insert instructions into E in order to reverse the effect of F 's  
instructions in the case that the branch from D to E is taken. It may also 
be necessary to create additional instructions in D itself in order to preserve 
the necessary information. 

Today, superscalar processors are being developed with increasing 
numbers of function units. Many of these processors rely on the run-time 
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detection of independent instructions to be executed in parallel. Some also 
have dynamic scheduling in which instructions are executed out-of-order 
according to when their operands are available. However, these hardware 
constructs don' t  obviate global instruction scheduling. Some recent work in 
global instruction scheduling for superscalar processors is reported by 
Bernstein and Rodeh ~91 and Chang et  aL ~l~ 

Software pipelining is another technique that has been widely used. It 
was used at least as early as the CDC 7600 and has been used extensively 
in VLIW machines. Some more recent work applies software pipelining to 
superscalar machines. ~1"~2~ It involves carefully scheduling instructions 
statically to allow work from multiple iterations of a loop to overlap. This 
approach is most effective for loops with particular types of control struc- 
'tures. Its application to general purpose programs with frequent branches 
and irregular loops is difficult at best. 

Hardware support for conditional and speculative execution can 
remove some restrictions on how instructions are scheduled across basic 
block boundaries. Under conditional execution, the result of an operation 
is retained or discarded based on a run-time condition. In its simplest form, 
conditional execution doesn't require any backup hardware because there 
is nothing that needs to be undone. For  example, a conditional move 
instruction (such as in the Alpha and Sparc V9 architectures) will either 
store a value to a register or not store that value, based on a second value 
stored in another register. 

Conditional moves can be used to eliminate branches in some cases. 
For example, suppose the basic block B in Fig. 1 has only a single live 
variable upon exit. This variable could be updated conditionally based on 
the branch condition at the end of A. Then, A and B can be combined into 
a single basic block. There are several things to note about this type of 
optimization. First, if the branch condition for A is known with a high 
degree of certainty statically, we would be better off optimizing for the 
expected path rather than using the conditional move. In particular, if A 
almost always goes to D, then the compiler should not combine A and B 
into a single basic block. Also, if B is large it may be better to wait for the 
branch test to be resolved before spending time on a computat ion that may 
be discarded. Thus, the decision to combine basic blocks using conditional 
moves involves a trade-off between the amount  of conditional work, the 
probabili ty of requiring the conditional work, and the relative cost of 
branches vs. conditional move instructions. 

Some processors have implemented more general forms of condi- 
tional execution. Arbitrary instructions within a basic block can be made 
conditional based on a run-time condition. The resolution of this condi- 
tion can be done before execution so that the instructions execute 
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without generzLtmg results if the condition is false. The Cydra-5 contained 
support for conditional or "predicated" instructionsJ TM The VLIW 
tree instruction described by Aiker and Nicolau ~4) and Moon and 
Ebcioglu ~15) also support conditional execution. Conditional instructions 
consume machine resources even if the predicate is false. They may also 
add latency to the computation if the predicate is true. A project to 
compile to an architecture with conditional instructions is reported by 
Mahlke et al. (16) and Warter et aL (17) In these papers the term hyperblock 

is used to refer to an optimized SEME-block that contains conditional 
instructions. 

Note that in the case that there is no backup mechanism, conditional 
execution optimizations must not prevent the recovery of the machine state 
if the predicate fails. Unused code can be removed from the optimized path, 
but values needed only in the case of intermediate exits can't be discarded. 
Also, predicated memory loads that have been promoted ahead of a branch 
must be tagged so that memory exceptions are delayed. 

Other hardware models employ backup mechanisms to recover 
machine state in the case of the failure of a conditional test. This can allow 
even more flexibility in instruction scheduling. The "boosting" of instruc- 
tions described by Smith et aL (is) employs this technique. In this case a 
shadow register set holds previous values until it is known that they are 
no longer needed. The necessity to fix up nonoptimized paths has 
been reduced, but boosting past multiple branches is difficult and the 
re-optimization process is restricted to what can be handled by the single 
backup register set. 

More general support for speculative execution involves the implemen- 
tation of multiple checkpoints and memory buffers that allow the machine 
to undo the effects of all operations, including memory wri tes .  (19) Each 
checkpoint may require a backup register set, or it may be possible to save 
only the state of registers that have been changedJ 2~ A checkpoint/repair 
mechanism is typically used to support dynamic branch prediction, so that 
operations issued after a predicted branch can be discarded when a mis- 
prediction occurs. This type of mechanism is particularly relevant in a 
dynamically scheduled machine, where it is possible to issue instructions 
well in advance of when they are executed. 

In all of the techniques discussed earlier, the conventional ISA poses 
limitations on how blocks of code can be optimized. Even if the hardware 
implements speculative execution with multiple checkpoints, the architec- 
ture remains a sequential model of execution. Branches are evaluated in a 
specified order, so at each intermediate exit point, recovery of the program 
state must be possible. In the next section we will discuss an alternative to 
this approach. 
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4. A N E W  ISA P A R A D I G M  

In the previous section we saw that global instruction scheduling by 
the compiler is now being applied to superscalar processors with condi- 
tional and speculative execution and dynamic scheduling. A block- 
structured ISA is a natural outgrowth of this combination. The concept of 
a block-structured ISA was presented by Melvin et al. ~21~ and further dis- 
cussed and analyzed (see Ref. 22). In related work, Franklin and Sohi (23) 
discuss executing windows of instructions as single units. 

In this section we introduce the concept of a block-structured ISA. 
This new paradigm is oriented around the execution of atomic blocks 
rather than individual instructions. It is important to note that we are 
describing an architectural concept, not a new implementation. This notion 
is critical to understanding how issue bandwidth can be increased. A block- 
structured ISA places requirements both on the hardware, which must have 
specific backup capabilities, and the software, which must use global 
scheduling techniques. In this section we describe such an ISA and discuss 
these software and hardware requirements. 

4.1. The B l o c k - S t r u c t u r e d  C o n c e p t  

The fundamental idea behind a block-structured ISA is the specifica- 
tion of atomic blocks. Atomic blocks must appear to execute either com- 
pletely or not at all. This means that backup to the beginning of the atomic 
block must be possible if every instruction can't complete. Thus, every 
instruction is in some sense speculative. Control flow exists at the atomic 
block level rather than at the instruction level. Each atomic block can have 
multiple target addresses, but at run-time only one of these targets will 
ultimately get resolved as the next logical atomic block to be executed. 
Target addresses can be explicit or dynamically generated. 

Note that instructions within an atomic block can be stored in an 
arbitrary order. Flow dependencies are represented by the values of the 
instruction operands, but they don't restrict the placement of instructions 
within the atomic block. Values which are generated and used only within 
an atomic block are not stored in architecturally visible general purpose 
registers (GPRs), but in temporary physical registers. Only results that are 
live upon exit of the atomic block update the GPRs, and all reads from 
GPRs get the value stored upon entry to the atomic block. 

An instruction which needs the result of an instruction in the same 
atomic block refers to it by its relative position. This is an intra-block index 
which will get converted into a physical register number an run-time. Note 
that by definition there are no anti or output dependencies within an 
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atomic block. There are no output dependencies since there will be at most 
one write to each GPR. There are no anti dependencies since any read 
from a G P R  gets the original value of that GPR,  even if it follows an 
instruction that writes to the same GPR.  

Control flow between atomic blocks is handled through the use of 
assert instructions. Assert instructions are operations that test for a 
particular condition and either complete silently (generating no result) or 
produce an assertion signal. Each assert instruction is associated with a 
target address. When an assert instruction signals, the associated target 
address points to the next atomic block to execute. There may be multiple 
assert instructions within an atomic block and they are prioritized such 
that if multiple assert signals are generated, the target address associated 
with the highest priority signaling assert instruction is selected. The com- 
piler guarantees that at least one assertion signal will always be generated. 

There are two types of assert instructions: faults and traps. When a fault 
assertion signals, the atomic block containing that instruction must be undone. 
That is, the associated target address points to the atomic block to be executed 
after restoring the machine state to the condition it was in upon entry to the 
atomic block. When a trap assertion signals, the atomic block containing that 
instruction is not undone. The associated target address points to the next 
atomic block to be executed after the block containing the trap assert 
instruction is completed. Note that all trap assert instructions within an 
atomic block are mutually exclusive. That  is, in the absence of signalling 
fault assertions, one and only one trap assertion will signal. 

If  the basic blocks D and F from Fig. 1 are combined into a single 
atomic block DF, the branch test at the end of D would normally be 
converted to a fault assert instruction, while the branch test at the end of 
F would be converted into a trap assert instruction. If the trap assertion 
signals, the results of block DF can be retained. If, however, the fault asser- 
tion signals, then the block DF must be discarded and execution must 
either continue with D, or with an atomic block DE if the compiler has 
chosen to create one. 

Alternatively, the compiler could choose to convert both branch tests 
into trap assert instructions. In this case, the signaling of the trap assertion 
from D would cause transfer to block E ' .  The compiler would insert fix-up 
code as necessary into E to create E '  to undo the effects that F had on D. 
This kind of optimization is what would have been performed with a con- 
ventional ISA. We have the choice of putting fix-up code in E and always 
completing the execution of DF, or backing out of DF and redoing the 
work of D in the case that the branch test in D fails. Obviously it is 
desirable to minimize the amount  of work that is discarded. This means 
that  fault assertions must be used carefully, and their use must be weighed 
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against the advantages of any increased enlargement of atomic blocks that 
is possible. 

Conditional execution can also be incorporated into a block- 
structured ISA. For example, suppose as before that the basic block B 
contains a single live variable upon exit. Further suppose that the compiler 
determines that the branch test for A is randomly distributed between 
B and D. Then, it would be reasonable to combine A, B and D into a 
single atomic block and use a conditional move instruction to select 
between the value computed in B and the previous value for the variable 
in question. 

An outline for a 64-bit block-structured ISA is shown in Fig. 4. In this 
example, we assume that register operands are 9 bits wide. If the type bit 
is zero, an architectural GPR is specified while if the type bit is one, the 
result of an instruction within the atomic block is referred to. This implies 
that there is a maximum atomic block size of 256 instructions. This also 
implies that any implementation of this architecture must have at least 256 
physical registers to hold temporary results. Note that these registers might 
be distributed among reservation stations associated with each functional 
unit. If the implementation supports several atomic blocks executing 
concurrently, more than 256 registers might be desirable (although not 
necessary). 

The target addresses are either explicit addresses or references to 
instructions within the atomic block (e.g. memory reads or computation 
instructions). The overall format of the atomic block has the header con- 
taining the target address list and the list of instructions. It would be 
possible to store the header separately from the rest of the atomic block. 
In this case we would need another pointer in the header to locate the 
list of instructions. Assert instructions are located in the body of the 
atomic block. There are no restrictions on where they may be located. 
Typically the compiler would put them as early as possible, after memory 
loads. 

4.2. Compiler Support 

A block-structured ISA has special implications for the compiler. 
Global instruction scheduling is just as important if not more important 
than in a conventional ISA. However, the mechanisms needed are different. 
Atomic blocks are not SEME-blocks, which is what conventional global 
instruction scheduling compilers optimize around. There are no inter- 
mediate exit points, and values internal to an atomic block are not 
allocated to GPRs. This makes some aspects of compiling simpler while 
others more complicated. 
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Fig. 2. An optimized structure in a block-structured ISA. 

In creating atomic blocks, the compiler is responsible for choosing 
sequences of basic blocks to combine and creating assert instructions that 
verify the chosen paths. The manner  in which this is done is non-trivial. 
The compiler has at its disposal traps and faults in addition to conditional 
instructions and prediction hints to the hardware. 

Figure 2 illustrates how the structure in Fig. 1 might be optimized in 
a block-structured ISA. The basic blocks A, B, D and F have been com- 
bined and the loop back to A has been unrolled once. The new atomic 
block ABDFABDF represents the work of the eight constituent blocks 
re-optimized as a unit. The seven block exits that were created have been 
converted into fault assert instructions (represented by solid squares). Note 
that in some cases it may be possible to eliminate some of these inter- 
mediate tests. For example, it may be that the test associated with the 
second F block could only succeed if the test associated with the first F 
block also succeeded. In this case the first test can be eliminated. 

For  simplicity we show all the fault asserts pointing to block A. 
Depending on how the compiler evaluates the various intermediate 
branches, these fault asserts could point to other optimized atomic blocks. 
For  example, if the first branch test from B fails, we could jump to an 
atomic block of ABC. Ideally we would like to minimize the number  of 
fault assertions that occur dynamically. One way is to use conditional 
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Fig. 3. Optimized blocks in the program structure. 

move instructions to eliminate branch tests altogether. Another solution is 
to use fix-up code to convert faults into traps. 

Another example of how the same program structure might be 
optimized is shown in Fig. 3. In this case we have not unrolled the loop but 
we have created optimized blocks for the case that B is executed and the case 
that it is excluded. This structure would be useful in cases where the patterns 
ABDF and ADF are both common and they tend to repeat themselves. 

Enlarging atomic blocks must be done carefully. With each enlarge- 
ment the chances of discarding the work increase. Thus, the decision of 
which arcs in the control flow graph of the program to enlarge across is 
complex. The run-time behavior of the specific arc in question as well as 
the characteristics of the blocks are critical to making this determination. 
The compiler would ideally use profiling information to make a better 
selection. 

828/23/3-3 
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4.3.  H a r d w a r e  S u p p o r t  

Besides putting special requirements on the compiler, a block-struc- 
tured ISA has specific hardware requirements as well. The atomic nature of 
the atomic block requires that there be at a minimum a backup register set 
and a memory write buffer. This allows register writes and memory writes 
that occur within an atomic block to be undone if necessary. There also 
must be a buffer to hold instruction results to be fowarded from one 
instruction to another within the atomic block. GPR writes are always held 
up until the atomic block is retired and GPR reads always take the value 
in the register upon entry to the atomic block. 

The GPRs of the ISA represent logical registers while the processor 
internally operates on physical registers. As instructions are issued, each 
instruction that generates a result is allocated a physical register. The 
GPRs are also assigned to physical registers, and the GPRs for reading are 
assigned to different registers from the GPRs for writing. 

The cost of this backup and register hardware is minimal in many 
cases because many of these mechanisms are already present in some 
implementations of conventional ISAs. Some kind of backup hardware 
is required for machines that support speculative execution. Also, the 
required register mechanism is already present on dynamically scheduled 
machines. 

A processor implementing a block-structured ISA must have at least 
limited dynamically scheduling capability. This is mainly because the 
packing of instructions within an atomic block is not restricted. That  is, an 
instruction that uses a value generated within an atomic block can be 
placed before the instruction that generates that value. One advantage of 
eliminating restrictions on instruction placement is that issue bandwidth is 
greatly increased. Suppose that an atomic block has very little inherent 
parallelism due to a long flow dependency chain. In a conventional ISA, 
this block would take a long time to issue. In a block-structured ISA, the 
block can be packed into the smallest possible number of cycles for issue. 
The flow dependencies will be enforced by the execution logic. This notion 
of issue compression eliminates the issue bottleneck associated with many 
dynamically scheduled machines. 

A block-structured ISA processor supports speculative execution 
within the atomic block being executed since it must retain the ability to 
back up until execution of the entire atomic block is complete. It is also 
possible to support speculative execution between multiple atomic blocks. 
This would require backup capability for each active atomic block. The 
hardware would predict targets dynamically and continue to issue instruc- 
tions along the predicted path. When multiple atomic blocks are executing, 
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signals from assert instructions can be processed to discard some ongoing 
work and proceed along another target while other work continues. 

An important point to understand is that there is a trade-off between 
speculative execution exploited within the atomic block as a result of static 
analysis and speculative execution exploited across multiple atomic blocks 
as a result of dynamic analysis. In the case that the hardware can execute 
multiple atomic blocks simultaneously, we have the ability to discard each 
atomic block individually. If those atomic blocks were combined into a 
single atomic block by the compiler, they would only be able to execute as 
a unit. 

The hardware can use dynamic informaton to predict the target 
address for the next atomic block. The compiler provides a static hint on 
which target to predict in the absence of dynamic information. Trap 
prediction and fault prediction require different handling. Target prediction 
in the case that an atomic block generates a trap assertion is fairly 
straightforward. The hardware can maintain an atomic block target buffer 
which holds the previous target(s) of the most recently executed atomic 
blocks. The use of history information and branch prediction counters can 
be used in much the same way as is common for conventional ISAs. 

Fault prediction is more complex. In the simplest case, the hardware 
could assume that the compiler has been successful in generating the code 
such that faults are uncommon. It would thus be unnecessary to update 
any dynamic information when a fault occurs. Execution would merely 
continue with the atomic block pointed to by the fault instruction. 
Alternatively, the hardware could track faults and update prediction 
information when they occur. Note, however, that this involves updating 
the predicted target for the atomic block before the atomic block that 
contains the faulting assert instruction. 

The ability to do fault prediction relies on the following property of 
the way code is generated. The atomic block pointed to by the target 
address associated with each fault instruction is in an equivalent class with 
the atomic block containing that instruction. If control is passed to a par- 
ticular atomic block, it is OK to pass control instead to any other atomic 
block in the same equivalence class. 

5. P R E L I M I N A R Y  P E R F O R M A N C E  S T U D Y  

In this section we report on a preliminary study in which a block- 
structured ISA was simulated. This study does not represent a 'comparison 
of block-structured versus conventional ISAs. Due to the complex nature of 
compiling to a block-structured ISA, a definite comparison of that sort will 
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involve much long term research. The study does illustrate some experien- 
ces with generating code for a block structured ISA and compares the 
hardware and software speedup potential. 

This study involved two basic components: a code generator and a 
run-time simulator. The code generator takes an intermediate representa- 
tion of various UNIX utility programs and generates optimized code for 
a variety of different block-structured ISA configurations. The run-time 
simulator performs a cycle by cycle simulation of the program. System calls 
embedded in the original program are executed by the system on which the 
simulator runs. The simulator collects statistics on the execution of the 
entire program except for the system calls themselves, thus capturing 
the user level or unprivileged portion of the execution. 

The optimization performed by the code generator was assisted by 
profiling information fed back from the simulator. The programs were run 
once using a first data set. Control flow statistics were collected for the 
entire program. The code generator then used this information to create 
enlarged atomic blocks. The resulting program was re-simulated using a 
different data set. 

Atomic blocks with high frequency control transfer between them were 
combined into larger atomic blocks and re-optimized. In the case of loops, 
multiple iterations were unrolled. The run-time simulator also supports 
static information used to supplement the dynamic control flow prediction. 

The parameters specifying the processor model fall into three 
categories: window size, issue model and enlargement. The window size is 
the total number of atomic blocks that may be active, partially issued but 
not fully executed, at any time. The issue model concerns the makeup of 
the instruction word, its width and breakdown between memory and ALU 
instructions. The third parameter concerns atomic block enlargement. The 
range of each parameter is shown in Table II. 

We vary the window size in order to see how much parallelism is 
being exploited across atomic blocks that are predicted dynamically. The 
window size is specified in terms of the number of active atomic blocks 
allowed: 1, 4, or 256. If the window size is set to 1, this means that each 
atomic block is completely retired before the next atomic block can be 
issued. Thus, no inter-atomic block parallelism will be exploited. 

The issue model specifies the format of the instruction word, that is 
how many instructions and what types can be issued in each cycle. Data we 
collected from the benchmarks indicate that the static ratio of ALU to 
memory instructions is about 2.5 to 1. Therefore, we have simulated 
machine configurations for both 2 to 1 and 3 to 1. We also simulated a 
model with a. single memory instruction and a single ALU instruction since 
several commercial processors embody this format. Finally, we included a 
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Table II. S imulat ion Parameters 

Configuration parameter Range of values 

Window size 1 Atomic block 
4 Atomic blocks 
256 Atomic blocks 

Issue model A. Sequential model 
B. Instruction word = 1 memory, ! ALU 
C. Instruction word = 1 memory, 2 ALU 
D. Instruction word = 1 memory, 3 ALU 
E. Instruction word = 2 memory, 4 ALU 
F. Instruction word = 2 memory, 6 ALU 
G. Instruction word = 4 memory, 8 ALU 
H. Instruction word = 4 memory, 12 ALU 

Enlargement Atomic blocks = original basic blocks 
Atomic blocks enlarged 

sequential model,  in which only a single instruction per cycle, of  either type, 
is issued. 

The third variable used in our  study specifies whether or  not  a tomic 
blocks are enlarged. Note  that enlarged atomic blocks can take advantage  
of  parallelism based on a static analysis of  the p rogram (in compar i son  to 
large windows, which can take advantage of  parallelism based on a 
dynamic analysis of  the control  flow). The simulator implements a 2-bit 
counter  for dynamic control  flow prediction. The counter  can optionally be 
supplemented by static control  flow prediction information. This static 
information is used only the first time a control  flow transfer is 
encountered;  all future instances of  the a tomic block will use the counter  
as long as the information remains in the atomic block target buffer. 

Several limitations of  the dynamic control  flow prediction scheme 
suggest that  it may  underest imate realistic performance. First, the 2-bit 
counter  is a fairly simple scheme, even when supplemented with static con- 
trol flow information. More  sophisticated techniques yield better predict ion 
accuracy. (24) Also, the simulator doesn' t  do fault assert prediction dynami-  
cally, only trap assert prediction. This means that  control  flow transfers to 
atomic blocks will always execute the initial a tomic block first. A more  
sophisticated scheme would predict on faults such that  repeated faults to 
the same atomic block would cause control  flow transfers to j u m p  directly 
to that  a tomic  block. 

For  benchmarks  we selected the following U N I X  utilities. They repre- 
sent the kinds of  jobs that have been considered difficult to speed up with 
conventional  ISAs. 
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�9 sort (sorts lines in a file) 

�9 grep (print lines with a matching string) 

�9 diff (find differences between two files) 

�9 cpp (C pre-processor, macro expansion) 

�9 compress (file compression) 

The atomic block enlargement process employed is straightforward. 
The control flow arc densities from the first simulated run are sorted by 
use. Starting from the most heavily used, atomic blocks are enlarged until 
one of two criteria are met. The weight on the most common arc out of an 
atomic block can fall below a threshold or the ratio between the two arcs 
out of an atomic block can be below a threshold. Only two-way conditional 
control flow transfers to explicit destinations can be optimized and a maxi- 
mum of 16 instances are created for each PC (this means that for example 
a loop will be unrolled at most 16 times). A more sophisticated enlarge- 
ment procedure would consider correlations between branches and would 
employ more complex tests to determine where enlarged atomic blocks 
should be broken. 

Each of the benchmarks were run under the conditions described 
earlier. Many statistics were gathered for each data point but the main 
datum of interest is the average number of  retired instructions per cycle. This 
represents the total number of machine cycles divided into the total num- 
ber of instructions which were retired (not executed). Un-retired, executed 
instructions are those that are scheduled but end up being thrown away 
due to assertion signals. The number of instructions retired is the same for 
a given benchmark on a given set of input data. Figure 5 summarizes the 
data from all the benchmarks as a function of the issue model. This graph 
represents data from each of the eight issue models. The six lines on this 
graph represent the three window sizes for single and enlarged atomic 
blocks. 

One thing to note from this graph is that variation in performance 
among the different schemes is strongly dependent on the width of the 
instruction word and in particular on the number  of memory instructions 
issued per cycle. In a case like issue model "B," where only one memory  
and one ALU instruction are issued per cycle, the variation in performance 
among all schemes is fairly low. However, for issue model "H," where up 
to 16 instructions can be issued per cycle the variation is quite large. 

We see that atomic block enlargement has a significant performance 
benefit for all window sizes. In addition, there is significant parallelism that 
increased window sizes can take advantage of even for enlarged atomic 
blocks. Note that using enlarged atomic blocks with a window size of one 
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A summary of the data from all the benchmarks as a function of the issue model. 

doesn't perform as well as using single atomic blocks with a window size 
of four (although they are close). These are two different ways of exploiting 
speculative execution. In the case of enlarged atomic blocks without multi- 
ple checkpoints, the hardware can exploit parallelism within the atomic 
block but cannot overlap execution with other atomic blocks. In the case 
of a large instruction window composed of multiple unenlarged atomic 
blocks, we don't  have the advantage of the static optimizations to reduce 
the number of instructions and raise utilization of issue bandwidth. Taking 
advantage of both mechanisms yields significantly higher performance than 
machines using either of the two individually can achieve. 

This performance study represents only a beginning for the analysis of 
block-structured ISAs. We have only studied and optimized the code 
generation process. However, this study does suggest that there are some 
significant performance advantages to block-structured ISAs that warrant 
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further study. A more complete experiment would involve creating a com- 
plete optimizing compiler with global instruction scheduling optimizations 
as well as those studied here. We are continuing research into this area at 
the University of Michigan where a production compiler is being modified 
to target a block-structured ISA. 

6. C O N C L U S I O N S  

We have illustrated in this paper a new paradigm for an ISA that has 
important  advantages for exploiting instruction level parallelism. A block- 
structured ISA is based on atomic blocks, which are collections of instruc- 
tions that are treated as atomic units by the hardware. Control flow 
between atomic blocks is handled through the use of assert instructions. A 
block-structured ISA allows a larger unit of work to be optimized and 
increases the issue bandwidth of the machine. 

The effective use of a block-structured ISA involves a combination of 
hardware and software mechanisms. The hardware must have dynamic 
scheduling as well as speculative execution capability. The compiler also 
has special requirements. It must create atomic blocks by combining work 
across branches in the original program. Re-optimization after the com- 
bination is a critical phase. The decisions of where to break the blocks and 
which arcs to combine across are a key trade-off. 

The payoff for a block-structured ISA is a greatly enhanced potential 
for performance. The current trend of superscalar processors with wider 
issue widths is increasingly hampered by the one instruction at a time format 
of conventional ISAs. A block-structured ISA removes restrictions on how the 
compiler can combine work, since it is not necessary to preserve architectural 
state for nonoptimized paths. Multiple blocks can be combined in arbitrary ways 
to take advantage of the particular control flow paths of the program being 
executed. 

A block-structured ISA also allows a multiple instruction per cycle pro- 
cessor to read in an entire collection of instructions without having to do any 
dependence checking between them. The compiler has already removed anti and 
output dependencies by labeling intermediate results with an intra-atomic block 
index. This decreases the amount of architectural state needed since named 
registers are only needed to convey results across atomic block boundaries. 

An instruction format with the target addresses at the beginning of the 
atomic block can also lead to performance advantages. As soon as the first 
word of the atomic block is decoded, the instructions can be issued 
simultaneously with the pre-fetching of the target for the next atomic block. 
Thus, as the trend towards the combined use of static and dynamic scheduling 
continues, block-structured ISAs hold a future promise for high performance. 
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