
Effective Compiler Support for Predicated Execution
Using the Hyperblock

Scott A. Mahlke David C. Lin’ William Y. Chen Richard E. Hank Roger A. Bringmann

Center for Reliable and High-Performance Computing
University of Illinois

Urbana-Champaign, IL 61801

Abstract

Predicated execution is an effective technique for dealing
with conditional branches in application programs. How-
ever, there are several problems associated with conventional
compiler support for predicated execution. First, all paths
of control are combined into a single path regardless of their
execution frequency and size with conventional if-conversion
techniques. Second, speculative execution is difficult to com-
bine with predicated execution. In this paper, we propose
the use of a new structure, referred to as the hyperblock,
to overcome these problems. The hyperblock is an efficient
structure to utilize predicated execution for both compile-
time optimization and scheduling. Preliminary experimen-
tal results show that the hyperblock is highly effective for a
wide range of superscalar and VLIW processors.

1 Introduction

Superscalar and VLIW processors can potentially provide
large performance improvements over their scalar predeces-
sors by providing multiple data paths and function units.
In order to effectively utilize the resources, superscalar and
VLIW compilers must expose increasing amounts of instruc-
tion level parallelism (ILP). Typically, global optimization
and scheduling techniques are utilized by the compiler to
find sufficient ILP. A common problem all global optimiza-
tion and scheduling strategies must resolve is conditional
branches in the target application. Predicated execution is
an efficient method to handle conditional branches. Predi-
cated or guarded execution refers to the conditional execu-
tion of instructions based on the value of a boolean source
operand, referred to as the predicate. When the predicate
has value T, the instruction is executed normally and when
the predicate has value F, the instruction is treated as a
no_op. With predicated execution support provided in the
architecture, the compiler can eliminate many of the condi-
tional branches in an application.

The process of eliminating conditional branches from a
program to utilize predicated execution support is referred
to as if-conversion [l] [2] [3]. If-conversion was initially pro-
posed to assist automatic vectorization techniques for loops
with conditional branches. If-conversion basically replaces
conditional branches in the code with comparison instruc-
tions which set a predicate. Instructions control dependent

*David Lin is now with Amdahl Corporation, Sunnyvale, CA.

O-8186-3175-9/92 $3.00 0 1992 IEEE

on the branch are then converted to predicated instructions
dependent on the value of the corresponding predicate. In
this manner, control dependences are converted to data de-
pendences in the code. If-conversion can eliminate all non-
loop backward branches from a program.

Predicated execution support has been used effectively for
scheduling both numeric and non-numeric applications. For
numeric code, overlapping the execution of multiple loop it-
erations using software pipeline scheduling can achieve high-
performance on superscalar and VLIW processors [4] [5] [6].
With the abiity to remove branches with predicated exe-
cution support, more compact schedules and reduced code
expansion are achieved with software pipelining. Software
pipelining taking advantage of predicated execution sup-
port is productized in the Cydra 5 compiler [7] [8]. For
non-numeric applications, decision tree scheduling utilizes
guarded instructions to achieve large performance improve-
ments on deeply pipelined processors as well as multiple-
instruction-issue processors [9]. Guarded instructions allow
concurrent execution along multiple paths of control and ex-
ecution of instructions before the branches they depend on
may be resolved.

There are two problems, though, associated with utiliz-
ing conventional compiler support for predicated execution.
First, if-conversion combines all execution paths in a region
(typically an inner loop body) into a single block. There-
fore, instructions from the entire region must be examined
each time a particular path through the region is entered.
When a.ll execution paths are approximately the same size
and have the same frequency, this method is very effective.
However, the size and frequency of different execution paths
typically varies in an inner loop. Infrequently executed paths
and execution paths with comparatively larger number of
instructions often limit performance of the resultant predi-
cated block. Also, execution paths with subroutine calls or
unresolvable memory accesses can restrict optimization and
scheduling within the predicated block.

The second problem is that speculative execution does not
fit in conveniently with predicated execution. Speculative
or eager execution refers to the execution of an instruction
before it is certain its execution is required. With predicated
instructions, speculative execution refers to the execution of
an instruction before its predicate is calculated. Speculative
execution is an important source of ILP for superscalar and
VLIW processors by allowing long latency instructions to be
initiated much earlier in the schedule.

45

In this paper, we propose the use of a structure, referred
to as the hyperblock, to overcome these two problems. A
hyperblock is a set of predicated basic blocks in which con-
trol may only enter from the top, but may exit from one
or more locations. Hyperblocks are formed using a modi-
fied version of if-conversion. Basic blocks are included in a
hyperblock based on their execution frequency, size, and in-
struction characteristics. Speculative execution is provided
by performing predicate promotion within a hyperblock. Su-
perscalar optimization, scheduling, and register allocation
may also be effectively applied to the resultant hyperblocks.

The remainder of this paper consists of four sections. In
Section 2, the architecture support we utilize for predicated
execution is discussed. Section 3 presents the hyperblock
and its associated transformations. In Section 4, a prelim-
inary evaluation on the effectiveness of the hyperblock is
given. Finally, some concluding remarks are offered in Sec-
tion 5.

2 Support for Predicated Execution

An architecture supporting predicated execution must be
able to conditionally nullify the side effects of selected in-
structions. The condition for nullification, the predicate, is
stored in a predicate register file and is specified via an ad-
ditional source operand added to each instruction. The con-
tent of the specified predicate register is used to squash the
instruction within the processor pipeline. The architecture
chosen for modification to allow predicated execution, the
IMPACT architecture model, is a statically scheduled, mul-
tiple instruction issue machine supported by the IMPACT-I
compiler [lo]. The IMPACT architecture model modifica-
tions for predicated execution are baaed upon that of the
Cydra 5 system [7]. Our proposed architectural modifica-
tions serve to reduce the dependence chain for setting pred-
icates and to increase the number of instructions allowed to
modify the predicate register file. This section will present
the implementation of predicated execution in the Cydra 5,
and discuss the implications that the proposed modifications
to the IMPACT architecture model will have on the archi-
tecture itself, instruction set, and instruction scheduling.

2.1 Support in the Cydra 5 System

The Cydra 5 system is a VLIW, multiprocessor system uti-
lizing a directed-dataflow architecture. Each Cydra 5 in-
struction word contains 7 operations, each of which may
be individually predicated. An additional source operand
added to each operation specifies a predicate located within
the predicate register file. The predicate register file is an
array of 128 boolean (l-bit) registers. Within the processor
pipeline after the operand fetch stage, the predicate spec-
ified by each operation is examined. If the content of the
predicate register is ‘l’, the instruction is allowed to proceed
to the execution stage, otherwise it is squashed. Essentially,
operations whose predicates are ‘0’ are converted to no_ops
prior to entering the execution stage of the pipeline. The
predicate specified by an operation must thus be known by
the time the operation leaves the operand fetch stage.

for (i=O; i<lOO; i++)
if (A[i] 5 50)

(a) j = j+2;
else

j = j+l;

mov rl,O
mov r2,O
Id r3,addr(A)

Ll:
Id r4,mem(r3+r2)
bgt r4,5O,L2
add r5,r5,2
jump L3

L2:
add r5,r5,1

L3:
add rl,rl,l
add r2,r2,4
blt rl,lOO,Ll

mov rl,O
mov r2,O
Id r3,addr(A)

Ll:
Id r4,mem(r3+r2)
i%t r6,r4,50
stuff plJ6
stufF_bar p2,r6
add r5,r5,2 if p2
add r5,r5,1 if pl
add rl,rl,l
add r2,r2,4
blt rl,lOO,Ll

(b) (c)

Figure 1: Example of if-then-else predication, (a) source
code segment, (b) assembly code segment, (c) assembly code
segment after predication.

The content of a predicate register may only be modified

by one of 3 operations: stun, stu#_bar, or brtop. The stufl
operation takes as operands a destination predicate register

and a boolean value, as well as, a source predicate register as

described above. The boolean value is typically produced us-

ing a comparison operation. If the predicate value is ‘I’, the
destination predicate register is assigned the boolean value,
otherwise the operation is squashed. The stuff-bar operation
functions in the same manner, except the destination predi-
cate register is set to the inverse of the boolean value when
the predicate value is ‘1’. The brtop operation is used for

loop control and sets the predicate controlling the next iter-

ation by comparing the contents of a loop iteration counter

to the loop bound.

Figures la and lb show a simple for-loop containing an if-

then-else conditional and its corresponding assembly code.

To set the mutually exclusive predicates for the different exe-
cution paths shown in this example, requires 3 instructions,
as shown in Figure lc. First, a comparison must be per-
formed, followed by a stufl to set the predicate register for

the true path (predicated on pl in Figure lc) and a stufl_bar
to set the predicate register for the false path (predicated on
p2 in Figure lc). This results in a minimum dependence dis-
tance of 2 from the comparison to the first possible reference
of the predicate being set.

2.2 Support in the IMPACT Architecture

The proposed modifications to the Cydra 5 method for the
IMPACT architecture model seek to reduce the number of
instructions’ required to set a predicate and reduce the de-
pendence length from the setting of a predicate to its first
use. Figure 2 shows a basic model of a superscalar processor

‘In this context, instructionrefers to a superscalarinstruction,
as opposed to a VLIW instruction as in Cydra 5.

46

Figure 2: Pipeline model with predicated execution.

pipeline with the addition of a predicate register file. The
fourth stage of the pipeline, Memory Access, in addition
to initiating memory access, is used to access the predicate
register specified by each instruction. This is passed to the
Writeback stage which determines if the result of the in-
struction is to be written to either register file. Thus, rather
than squashing an instruction prior to execution as in the
Cydra 5 system, an instruction is not squashed until the
Writeback stage. The dashed arrow in Figure 2 will be
described later in this section.

The proposed predicate register file is an Nx2 array of
boolean (l-bit) registers. For each of the N possible predi-
cates there is a bit to hold the true value and a bit to hold
the false value of that predicate. Each pair of bits associated
with a predicate register may take on one of three combina-
tions: false/false, true/false, or false/true. The false/false
combination is necessary for nested conditionals in which
instructions from both sides of a branch may not require ex-
ecution. An instruction is then able to specify whether it
is to be predicated on the true value of the predicate or its
false value. This requires the addition of logz(N) + 1 bits to
each instruction.

In the IMPACT model, predicate registers may be mod-
ified by a number of instructions. Both bits of a speci-
fied predicate register may be simultaneously set to ‘0’ by
a p&-clear instruction. New instructions for integer, un-
signed, float, and double comparison are added, whose des-
tination register is a register within the predicate register
file. The T field of the destination predicate register is set
to the result of the compare and the F field is set to the
inverse result of the compare. This allows the setting of
mutually exclusive predicates for if-then-else conditionals in
one instruction. By performing the comparison and setting
of both predicates in one instruction, the previous code ex-
ample reduces to that shown in Figure 3. The true path of
the comparison is predicated on pl_T and the false path is
predicated on plP. In addition, pred_ld and predst instruc-
tions are provided to allow the register allocator to save and
restore individual predicate registers around a function call.
In all, 25 instructions were added to the IMPACT architec-
ture to support predicated execution.

The ability of comparison instructions to set mutually ex-
clusive predicates in the same cycle coupled with the fact

mov rl,O
mov r2,O
Id r3,addr(A)

Ll:
Id r4,mem(r3+r2)
pred_gt pl,r4,50
add r5,r5,2 if p1-F
add r5,r5,1 if pl-T
add rl,rl,l
add r2,r2,4
blt rl,lOO,Ll

Figure 3: Example of if-then-else predication in the
PACT model.

IM-

that instructions are not squashed until the Writeback
stage, reduces the dependence distance from comparison to
first use from 2 to 1. By adding additional hardware to the
Instruction Execute stage that allows the result of a predi-
cate comparison operation to be forwarded to the Memory
Access and Writeback stages (the dashed arrow in Fig-
ure 2), the dependence distance is reducible to 0. This may
be accomplished by scheduling a predicate comparison op
eration and an operation referencing the predicate defined
by the comparison in the same cycle. Note that throughout
this section stuff and comparison instructions are assumed
to take one cycle to execute. In general, for stuffs taking
i cycles and comparisons taking j cycles, the dependence
distance is reduced from i + j to j - 1 by combining the
IMPACT predicate model with predicate forwarding logic
in the pipeline.

3 The Hyperblock

A hyperblock is a set of predicated basic blocks in which con-
trol may only enter from the top, but may exit from one or
more locations. A single basic block in the hyperblock is des-
ignated as the entry. Control flow may enter the hyperblock
only at this point. The motivation behind hyperblocks is
to group many basic blocks from different control flow paths
into a single manageable block for compiler optimization and
scheduling. However, all basic blocks to which control may
flow are not included in the hyperblock. Rather, some ba-
sic blocks are systematically excluded from the hyperblock
to allow more effective optimization and scheduling of those
basic blocks in the hyperblock.

A similar structure to the hyperblock is the superblock. A
superblock is a block of instructions such that control may
only enter from the top, but may exit from one or more loca-
tions [ll]. But unlike the hyperblock, the instructions within
each superblock are not predicated instructions. Thus, a su-
perblock contains only instructions from one path of con-
trol. Hyperblocks, on the other hand, combine basic blocks
from multiple paths of control. Thus, for programs without
heavily biased branches, hyperblocks provide a more flexible
framework for compile-time transformations.

In this section, hyperblock block selection, hyperblock for-
mation, generation of control flow information within hy-
perblocks, hyperblock-specific optimization, and extensions
of conventional compiler techniques to hyperblocks are dis-

cussed.

3.1 Hyperblock Block Selection

The first step of hyperblock formation is deciding which ba-
sic blocks in a region to include in the hyperblock. The
region of blocks to choose from typically is the the body
of an inner most loop. However, other regions, including
non-loop code with conditionals and outer loops containing
nested loops, may be chosen. Conventional techniques for
if-conversion predicate all blocks within a single-loop nest
region together [13]. For hyperblocks, though, only a subset
of the blocks are chosen to improve the effectiveness of com-
piler transformations. Also, in programs with many possible
paths of execution, combining all paths into a single predi-
cated block may produce an overall loss of performance due
to limited machine resources (fetch units or function units).

To form hyperblocks, three features of each basic block in a
region are examined, execution frequency, size, and instruc-
tion characteristics. Execution frequency is used to exclude
paths of control which are not often executed. Removing
infrequent paths reduces optimization and scheduling con-
straints for the frequent paths. The second feature is basic
block size. Larger basic blocks should be given less prior-
ity for inclusion than smaller blocks. Larger blocks utilize
many machine resources and thus may reduce the perfor-
mance of the control paths through smaller blocks. Finally,
the characteristics of the instructions in the basic block are
considered for inclusion in the hyperblock. Basic blocks with
hazardous instructions, such as procedure calls and unresolv-
able memory accesses, are given less priority for inclusion.
Typically hazardous instructions reduce the effectiveness of
optimization and scheduling for all instructions in the hy-
perblock.

A heuristic function which considers all three issues is
shown below.

The Block Selection Value (BSV) is calculated for each basic
block considered for inclusion in the hyperblock. The weight
and size of each basic block is normalized against that of the
“main path”. The main path is the most likely executed
control path through the region of blocks considered for in-
clusion in the hyperblock. The hyperblock initially contains
only blocks along the main path. The variable bb_char; is
the characteristic value of each basic block. The maximum
value of bb_chari is 1. Blocks containing hazardous instruc-
tions have bb_char; less than 1. The variable K is a machine
dependent constant to represent the issue rate of the pro-
cessor. Processors with more resources can execute more
instructions concurrently, and therefore are likely to take
advantage of larger hyperblocks.

An example to illustrate hyperblock block selection is
shown in Figure 4a. This example shows a weighted con-
trol flow graph for a program loop segment. The numbers
associated with each node and arc represent the dynamic fre-
quency each basic block is entered and each control transfer
is traversed, respectively. For simplicity, this example con-
siders only block execution frequency as the criterion for
hyperblock block selection. The main path in this example

Figure 4: An example of hyperblock formation, (a) af-
ter block selection, (b) after tail duplication, (c) after if-
conversion.

is blocks A, B, D, and E. Block C is also executed frequently,
so it is selected as part of the hyperblock. However, Block F
is not executed frequently, and is excluded from the hyper-
block.

3.2 Hyperblock Formation

After the blocks are selected, two conditions must be satis-
lied before the selected blocks may be if-converted and trans-
formed into a hyperblock.
Condition 1 : There exist no incoming control flow arcs
from outside basic blocks to the selected blocks other than
to the entry block.
Condition 2 : There exist no nested inner loops inside the
selected blocks.
These conditions ensure that the hyperblock is entered only
from the top, and the instructions in a hyperblock are ex-
ecuted at most once before the hyperblock is exited. Tail
duplication and loop peeling are used to transform the ba-
sic blocks selected for a hyperblock to meet the conditions.
After the group of basic blocks satisfies the conditions, they
may be transformed using the if-conversion algorithm de-
scribed later in this section.

Tail Duplication. Tail duplication is used to remove con-
trol flow entry points into the selected blocks (other than
the entry block) from blocks not selected for inclusion in
the hyperblock. In order to remove this control flow, blocks
which may be entered from outside the hyperblock are repli-
cated. A tail duplication algorithm transforms the control
flow graph by first marking all the flow arcs that violate Con-
dition 1. Then all selected blocks with a direct or indirect
predecessor not in the selected set of blocks are marked. Fi-
nally, all the marked blocks are duplicated and the marked
flow arcs are adjusted to transfer control to the correspond-
ing duplicate blocks. To reduce code expansion, blocks are
duplicated at most one time by keeping track of the current
set of duplicated blocks.

48

I.,

Figure 5: An example of loop peeling, (a) original flow graph,
(b) after peeling one iteration of the inner loop and tail du-
plication.

An example to illustrate tail duplication is shown in Fig-
ure 4b. In this example block E contains a control flow entry
point from a block not selected for the hyperblock (block
F). Therefore, block E is duplicated and the control flow
arc from F to E is adjusted to the duplicated block E. The
selected blocks after tail duplication are only entered from
outside blocks through the entry block, therefore Condition 1
is satisfied.

Loop Peeling. For loop nests with inner loops that iter-
ate only a small number of times, efficient hyperblocks can
be formed by including both outer and inner loops within
a hyperblock. However, to satisfy Condition 2, inner loops
contained within the selected blocks must be broken. Loop
peeling is an efficient transformation to accomplish this task.
Loop peeling unravels the first several iterations of a loop,
creating a new set of code for each iteration. The peeled iter-
ations are then included in the hyperblock, and the original
loop body is excluded. A loop is peeled the average number
of times it is expected to iterate based on execution profile
information. The original loop body then serves to execute
when the actual number of iterations exceeds the expected
number.

An example illustrating loop peeling is shown in Figure 5.
All the blocks have been selected for one hyperblock, how-
ever there is an inner loop consisting of blocks B and C. The
inner loop is thus peeled to eliminate the backedge in the
hyperblock. In this example, it assumed the loop executes
an average of one iteration. Note also that tail duplication
must be applied to duplicate block D after peeling is applied.
After peeling and tail duplication (Figure 5b), the resultant
hyperblock, blocks A, B’, C’, and D, satisfies Conditions 1
and 2.

Node Splitting. After tail duplication and loop peeling,
node splitting may be applied to the set of selected blocks
to eliminate dependence8 created by control path merges.
At merge points, the execution time of all paths is typically
dictated by that of the longest path. The goal of node split-
ting is to completely eliminate merge points with sufficient
code duplication. Node splitting essentially duplicates all
blocks subsequent to the merge point for each path of con-

trol entering the merge point. In this manner, the merge
point is completely eliminated by creating a separate copy
of the shared blocks for each path of control. Node split-
ting is especially effective for high-issue rate processors in
control-intensive programs where control and data depen-
dences limit the number of independent instructions.

A problem with node splitting is that it results in large
amounts of code expansion. Excessive node splitting may
limit performance within a hyperblock by causing many un-
necessary instructions to be fetched and executed. There-
fore, only selective node splitting should be performed by
the compiler. A heuristic function for node splitting impor-
tance is shown below.

The Flow Selection Value (FSV) is calculated for each con-
trol flow edge in the blocks selected for the hyperblock that
contain two or more incoming edges, e.g., a merge point.
Weight-f lowi is the execution frequency of the control flow
edge. Size_flowi is the number of instructions that are ex-
ecuted from the entry block to the point of the flow edge.
The other parameters are the same parameters used in cal-
culating the BSV. After the FSVs are computed, the node
splitting algorithm proceeds by starting from the node with
the largest differences between the FSVs associated with its
incoming flow edges. Large differences among FSVs indicate
highly unbalanced control flow paths. Thus, basic blocks
with the largest difference should be split first. Node split-
ting continues until there are no more blocks with 2 or more
incoming edges or no difference in FSVs above a certain
threshold. Our node splitting algorithm also places an up-
per limit on the amount of node splitting applied to each
hyperblock.

If-conversion. If-conversion replaces a set of basic blocks
containing conditional control flow between the blocks with a
single block of predicated instructions. Figure 4c illustrates
a resultant flow graph after if-conversion is applied. In our
current implementation, a variant of the RK if-conversion
algorithm is utilized for hyperblock formation [3]. The RK
algorithm first calculates control dependence information be-
tween all basic blocks selected for the hyperblock [12]. One
predicate register is then assigned to all basic blocks with the
same set of control dependences. Predicate register defining
instructions are inserted into all basic blocks which are the
source of the control dependence8 associated with a partic-
ular predicate. Next, dataflow analysis is used to deter-
mine predicates that may be used before being defined, and
inserts resets (pred_clear instructions) to these predicates
in the entry block of the hyperblock. Finally, conditional
branches between basic blocks selected for the hyperblock
are removed, and instructions are predicated based on their
assigned predicate.

An example code segment illustrating hyperblock forma-
tion is shown in Figure 6. In the example, all blocks shown
are selected for the hyperblock except block 5. A control
entry point from block 5 to 7 is eliminated with tail duplica-
tion. If-conversion is then applied to the resultant set of se-
lected blocks. A single predicate (pl) is required for this set
of blocks. Instructions in block 2 are predicated on pl_true
and instructions in block 3 are predicated on PI-false. In-

49

Figure 6: An example program segment for hyperblock for-
mation, (a) original control flow graph, (b) original assembly
code, (c) assembly code after hyperblock formation.

1 pred-clear p4
2 predne p3,rVJ
3 pred-eq ~5~2~0
4 predne p4,rO,O if p3_T
5 pred-eq p5,rO,O if p3_T
6 rn0” r2,&1 if p4_T
7 sub r2,r2,rO if p5_T
8 add rl,rl,l

Figure 7: Example hyperblock.

structions in block 6 do not need to be predicated since block
6 is the only block in the hyperblock that may be reached
from block 4. Note that hyperblock if-conversion does not
remove branches associated with exits from the hyperblock.
Only control transfers within the hyperblock are eliminated.

3.3 Generating Control Flow Information for a

Hyperblock

Many compiler tools, including dependence analysis, data
flow analysis, dominator analysis, and loop analysis, require
control flow information in order to be applied. Control flow
may easily be determined among basic basic blocks since
instructions within a basic block are sequential and flow be-
tween basic blocks is determined by explicit branches. How-
ever, instructions within a hyperblock are not sequential,
and thus require more complex analysis. For example, in
Figure 7, instructions 6 and 7 demonstrate both an out-
put dependence and a flow dependence if the predicate is
not considered. These instructions, though, are predicated
under mutually exclusive predicates, and therefore have no
path of control between them. As a result, there is no de-
pendence between these two instructions.

A predicate hierarchy graph (PHG) is a graphical repre-
sentation of boolean equations for all of the predicates in a
hyperblock. The PHG is composed of predicate and con-
dition nodes. The ‘0’ predicate node is used to represent
the null predicate for instructions that are always executed.
Conditions are added as children to their respective parent

W w

Figure 8: An example (a) predicate hierarchy graph, and (b)
corresponding control flow graph.

predicate nodes. Subsequent predicates are added to their
parent condition nodes. The PHG for Figure 7 is shown in
Figure 8a. Instructions 2 and 3 in Figure 7 are considered
the same condition in the PHG since they set complemen-
tary predicates. Thus, instruction 2 causes the creation of
the topmost condition (cl) and results in the creation of a
child predicate node for p3. Instruction 3 will add predicate
p5 as another child predicated to condition node cl.

The goal of the PHG is to determine, based on the predi-
cates, if two instructions can ever be executed in a single pass
through the hyperblock. If they can, then there is a control
flow path between these two instructions. A boolean expres-
sion is built for the predicate of each instruction to determine
the condition under which the instruction is to be executed.
Their corresponding expressions are ANDed together to de-
cide if the two instructions can be executed in the same pass
through the hyperblock. If the resultant function can be
simplified to 0, then there can never be a control path. It
is now a relatively simple matter to determine if there is a
path between any two instructions. For example, in Fig-
ure 7, there is no control path between instructions 6 and
7. To show this, we must first build the equations for pred-
icates p4 and p5. These equations are formed by ANDing
together the predicates from the root predicate node down
to the current predicate node. If multiple paths may flow to
the same predicate, these paths are ORed together. Thus,
p4 = (cl - c2) since it is created by the predicates active at
the first condition node (cl) and the second condition node
(~2). The equation for p5 = (-1c1 + cl . 1~2) since it may
be reached by two paths. ANDing these equations results in
p4 * p5 = (cl * c2) * (-cl+ cl * 1~2) which can be simplified
to zero. Therefore, there is no control path between these
two instructions. Figure 8b shows the complete control flow
graph that is generated with the aid of the predicate hierar-
chy graph shown in Figure 8a.

3.4 Hyperblock-Specific Optimizations

Two optimizations specific to improving the efficiency of hy-
perblocks are utilized, instruction promotion and instruction
merging. Each is discussed in the following section.

Instruction Promotion. Speculative execution is pro-
vided by performing instruction promotion. Promotion of
a predicated instruction removes the dependence between

50

instructionpromotioril() {
for each instruction, op(~), in the hyperblock {

if all the following conditions are true:
1. op(~) is predicated.
2. op(z) has a destination register.
3. there is a unique op(y), y < I, such that

de&(y) = pred(z).
4. de&(l) is not live at op(y).
5. &St(j) # d&(Z) in {op(j),j = y + 1.. .2 - 1).

then do:
set pred(c) = pred(y).) }

Figure 9: Algorithm for type 1 instruction promotion.

the predicated instruction and the instruction which sets

the corresponding predicate value. Therefore, instructions

can be scheduled before their corresponding predicate are

determined. Instruction promotion is effective by allowing

long latency instructions, such as memory accesses, to be

initiated early. Tirumalai et al. first investigated instruc-

tion promotion to enable speculative execution for software

pipelined repeat-until loops [13]. In this paper, instruction

promotion is extended to more general code sequences in the

context of the hyperblock.

Promoted instructions execute regardless of their original

predicate’s value. Therefore, promoted instructions must

not overwrite any register or memory location which is re-

quired for correct program execution. Also, exceptions for

speculative instructions should only be reported if the spec-

ulative instruction was supposed to execute in the original

code sequence. Exceptions for speculative instructions are

assumed to be handled with sentinel scheduling architecture

and compiler support [14]. Therefore, hyperblock instruc-

tion promotion concentrates on handling the first condition.

Three algorithms for instruction promotion are utilized to

handle different types of instructions. The first algorithm,

shown in Figure 9, is used for the simplest form of promo-

tion (type 1). Type 1 instruction promotion is utilized for

instructions with predicates that are not defined multiple

times. When the destination of the instruction considered

for promotion is not live (defined before used along all possi-

ble control paths) at the definition point of its predicate, its

predicate can be promoted to that of the predicate defini-

tion instruction it is dependent upon. In this manner, each

application of type 1 promotion reduces the predicate depth
by one until the null predicate is reached.

An example illustrating type 1 promotion is shown in Fig-

ure 10a (the original code sequence is shown in Figure 6~).

The load instruction indicated by the arrow is promoted with

a type 1 promotion. Since the instruction which defines pred-

icate pl is not predicated, the indicated instruction is also

promoted to be always executed. After promotion, the load

instruction is no longer flow dependent on the predicate com-

parison instruction and can be scheduled in the first cycle of

the hyperblock.

Type 2 instruction promotion is utilized for instructions

with predicates defined multiple times. The algorithm (Fig-

ure 11) is similar to type 1 promotion except that the in-
struction is promoted all the way to the null predicate. A

single level of promotion cannot be utilized due to the mul-

w

Figure 10: Example of hyperblock-specific optimizations, (a)

after type 1 instruction promotion, (b) after renaming in-

struction promotion, (c) after instruction merging.

instructionpromotion2() {
for each instruction, op(z), in the hyperblock (

if all the following conditions are true:
1. on(z) is predicated.
2. op(~) has a destination register.
3. there exists more than one op(y), y < Z, such that

de&(y) = pred(l).
4. de&(z) is not live at any instructions which either

define pred(z) or define an ancestor of pred(z)

in the PHG.
5. dest(j) # de&(i) in {op(j),j = i + 1.. .I - 1)

where op(;) is all ops which define pred(z) or
ancestors to pred(z).

then do:
set pred(z) = 0. } }

Figure 11: Algorithm for type 2 instruction promotion.

tiple definitions of the instruction’s predicate each possibly

predicated on differing values.

Many instructions cannot be promoted due to their desti-

nation variable being live on alternate control paths (violate

condition 4 in both type 1 and type 2 promotion). Promo-
tion can be performed, though, if the destination register

of the instruction is renamed. An algorithm to perform re-

naming instruction promotion is shown in Figure 12. After

an opportunity for renaming promotion is found, uses of the

destination of the promoted instruction are updated with the

renamed value. A move instruction must be inserted into the

hyperblock to restore the value of the original register when

the original control path is taken.

An example of renaming instruction promotion is shown

in Figure lob. The load instruction indicated by the arrow
cannot be promoted with either type 1 or type 2 promotion

because r4 is live at the definition point of the predicate pl

(the use of r4 on the pl_true control path causes the variable

to be live at the definition of pl). However, renaming the

destination of the load allows it to be promoted. The use of

r4 in the subsequent add is also adjusted to the new desti-

nation (r5) to account for the renaming. Note also that the

move instruction is not necessary here because r4 is immedi-
ately redefined. In normal application of this optimization,
the move is inserted, and subsequently deleted by dead code
elimination.

Instruction Merging. Instruction merging combines
two instructions in a hyperblock with complementary pred-
icates into a single instruction which will execute whether
the predicate is true or false. This technique is derived from
partial redundancy elimination [15]. The goal of instruction

51

renamingand_promotion() {
for each instruction, op(x), in the hyperbloclt {

if all the following conditions are true:
1. op(x) cannot be promoted by either type 1 or type 2.
2. there exists op(y),y > x such that arc(y) = deat(c)

and op(z) dominates op(y).
3. deat(x) # deat(j) in {op(j),j = x + 1.. .y - 1)

for all op(y) in (2).
then do:

rename deat(x) to new register.
rename all arc(y) in (2) to new deat(x).
add new move instruction, op(z), immediately following

op(x) to move the new deat(x) to the old deat(x).
pred(z) = pred(x).
pred(x) = 0.) }

Figure 12: Algorithm for renaming instruction promotion.

instructionmerging() {
for each instruction, op(x), in the hyperblock {

if all the following conditions are true:
1. op(x) can be promoted with type 1 promotion.
2. op(y) can be promoted with type 1 promotion.
3. op(x) is an identical instruction to op(y).
4. pred(x) is the complement form of pred(y).
5. the same definitions of arc(x) reach op(x) and op(y)
6. op(x) is placed before op(y).

then do:
promote op(x).
delete op(y). } }

Figure 13: Algorithm for instruction merging.

merging is to remove redundant computations along multi-
ple paths of control in the hyperblock. An algorithm to per-
form instruction merging is shown in Figure 13. Identical in-
structions with complementary predicates are first identified
within a hyperblock. When the source operands definitions
reaching each instruction are the same, an opportunity for
instruction merging is found. Instruction merging is accom-
plished by performing a type 1 promotion of the lexically
first instruction and eliminating the second instruction.’ In-
struction merging not only reduces the size of hyperblocks,
but also allows for speculative execution of the resultant in-
struction.

An example of hyperblock instruction merging is shown
Figure 10~. In this code segment, there are two add instruc-
tions (add r2, rl, 1) predicated on complementary predicates
in the hyperblock. After instruction merging, the first add
is promoted with type 1 promotion to the ‘0’ predicate and
the second add is eliminated.

3.5 Extending Conventional Compiler Tech-

niques to use Hyperblocks

After control flow information for hyperblocks is derived
(Section 3.3), conventional optimization, register allocation,

2Note that instruction merging may appear to undo some of
the effects of node splitting. However, instructions may only be
merged when they are dependent on the same instructions for
source operands (cond 5), thus node splitting is only undone for
instructions it was not effective for.

and instruction scheduling techniques can be extended in a
straight forward manner to work with hyperblocks. Differing
from basic blocks, control flow within hyperblocks is not se-
quential. However, a complete control flow graph among all
instructions within a hyperblock may be constructed. There-
fore, compiler transformations which utilize the sequential-
ity inherent to basic blocks must just be modified to handle
arbitrary control flow among instructions.

Hyperblocks provide additional opportunities for improve-
ment with conventional compiler techniques. Traditional
global techniques must be conservative and consider all con-
trol paths between basic blocks. Superblock techniques only
consider a single path of control at a time through a loop
or straight line code and thus may miss some potential opti-
mizations that could be found across multiple paths. How-
ever, a hyperblock may contain anywhere from one to all
paths of control, and therefore can resolve many of the limi-
tations of superblock techniques and traditional global tech-
niques.

4 Performance Evaluation

In this section, the effectiveness of the hyperblock is analyzed
for a set of non-numeric benchmarks.

4.1 Methodology

The hyperblock techniques described in this paper have been
implemented in the IMPACT-I compiler. The IMPACT-
I compiler is a prototype optimizing compiler designed to
generate efficient code for VLIW and superscalar processors.
The compiler utilizes a machine description file to generate
code for a parameterized superscalar processor.

The machine description file characterizes the instruction
set, the microarchitecture (including the number and type of
instructions that can be fetched/issued in a cycle and the in-
struction latencies), and the code scheduling model. For this
study, the underlying microarchitecture is assumed to have
register interlocking and an instruction set and latencies that
are similar to the MIPS R2000. The processor is assumed
to support speculative execution of all instructions except
store and branch instructions. Furthermore when utilizing
hyperblock techniques, the processor is assumed to support
predicated execution (as described in Section 2) with an un-
limited supply of predicate registers.

For each machine configuration, the execution time, as-
suming a 100% cache hit rate, is derived from execution-
driven simulation. The benchmarks used in this experiment
consist of 12 non-numeric programs, 3 from the SPEC set,
eqntott, espresso, li, and 9 other commonly used applica-
tions, cccp, cmp, compress, grep, lex, qsort, tbl, WC, yacc.

4.2 Results

The performance of the hyperblock techniques are compared
for superscalar processors with issue rates 2, 4, and 8. The
issue rate is the maximum number of instructions the pro-
cessor can fetch and issue per cycle. No limitation has been
placed on the combination of instructions that can be is-
sued in the same cycle. Performance is reported in terms

52

Figure 14: Performance comparison of various scheduling
structures, (0) basic block, (IP) hyperblock with all execu-
tion paths, (PP) hyperblock with selected execution paths.

of speedup, the execution time for a particular configura-
tion divided by the execution time for a base configuration.
The base machine configuration for all speedup calculations
has an issue rate of 1 and supports conventional basic block
compiler optimization and scheduling techniques.

Figure 14 compares the performance using three struc-
tures for compile-time scheduling of superscalar processors.
Note that hyperblock specific optimizations (promotion and
merging) are not applied for this comparison. From the fig-
ure, it can be seen combining all paths of execution in in-
ner loops into a hyperblock (IP) can often result in perfor-
mance loss. Cccp and compress achieve lower performance
for all issue rates for IP compared to basic block (0). Many
of the benchmarks show performance loss with IP only for
lower issue rates. This can be attributed to a large number
of instructions from different paths of control filling up the
available instruction slots. However, when the issue rate is
increased sufficiently, thii problem is alleviated. The per-
formance with blocks selectively included in the hyperblock
(PP), as discussed in Section 3.1, is generally the highest for
all benchmarks and issue rates. PP provides a larger schedul-
ing scope from which the scheduler can identify independent
instructions compared to scheduling basic blocks. Several
benchmarks achieve lower performance with PP compared
to 0 for issue 2, due to a lack of available instruction slots
to schedule instructions along all selected paths of execu-
tion. PP also achieves higher performance than IP for all
benchmarks and issue rates. Exclusion of undesirable blocks
from hyperblocks reduces conflicts when there is a lack of
available instruction slots, and provides more code reorder-
ing opportunities.

Figure 15 represents the performance with and without
hyperblock-specific optimizations. These optimizations con-
sist of instruction promotion to provide for speculative exe-
cution and instruction merging to eliminate redundant com-
putations in hyperblocks. Comparing hyperblocks with all
paths of execution combined (IP and IO), an average of 6%
performance gain for an 8-issue processor is achieved with
hyperblock specific optimizations. For hyperblocks with se-
lected paths of execution combined (PP and PO), an aver-
age of 11% speedup is observed for an 8-issue processor. The
largest performance gains occur for compress, grep, and lex.

Figure 16 compares the hyperblock with the superblock.

3Note that optimizations to increase ILP, such as loop un-
rolling, are not applied to either the superblock or the hyperblock
for this comparison.

Figure 15: Effectiveness of hyperblock specific optimiza-
tions, (IP) hyperblock with all execution paths, (IO) IP
with optimization, (PP) hyperblock with selected execution
paths, (PO) PP with optimization.

Figure 16: Performance comparison of hyperblock and su-
perblock structure for scheduling, (0) basic block, (Tl) su-
perblock, (PO) hyperblock.

From the figure, it can be seen that both structures pro-
vide significant performance improvements over basic blocks.
The superblock often performs better than the hyperblock
for lower issue rates due to the lack of available instruction
slots to schedule the instructions from the multiple paths
of control. However, the hyperblock generally provides per-
formance improvement for higher issue rate processors since
there are a greater number of independent instructions from
the multiple paths of control to fill the available processor
resources.

Up to this point, an infinite supply of predicate registers
has been assumed. The combined predicate register usage
distribution for all 12 benchmarks is shown in Figure 17.
The graph presents the number of hyperblocks which use
the specified number of predicate registers. Two alternate
configurations of predicate registers are compared. PRl rep
resents a scheme without complementary predicate registers
similar to the Cydra 5. PR2 utilizes the complementary
predicate register organization discussed in Section 2. From
the figure, it can be seen that between 16-32 predicate regis-
ters satisfy the requirements of all benchmarks used in this
study. Comparing PRl and PR2 distributions shows that in
many cases both the true and false predicates are used in the
PR2 organization. The average number of predicate regis-
ters used in a hyperblock is 3.5 with PRl and 2.0 with PR2.
However, each register in the PR2 organization is equivalent
to 2 registers in the PRl organization (true and false loca-
tions), so the PR2 organization uses an average of 0.5 more

predicate registers in each hyperblock. Overall though, the
complementary predication organization can be efficiently
utilized to reduce the overhead of setting predicate register
values.

The results presented in this section represent a prelimi-

53

Figure 17: Predicate register usage distribution comparison,
(PRl) without complementary predicate registers, (PR2)
with complementary predicate registers.

nary evaluation of the hyperblock structure. The evaluation
does not include compiler optimizations to increase ILP for
superscalar processors, such as loop unrolling or induction
variable expansion, applied to any structures. Currently,
these optimizations are available for superblocks within the
IMPACT-I compiler, however they have not been fully im-
plemented for the hyperblock. To make a fair comparison,
superblock ILP optimizations were disabled for this study.
A complete analysis of the hyperblock, though, requires ILP
optimizations be applied. In our current research, we are
incorporating ILP optimizations with hyperblocks and eval-
uating their effectiveness.

5 Concluding Remarks

Conventional compiler support for predicated execution has
two major problems: all paths of control are combined into a
single path with conventional if-conversion, and speculative
execution is not allowed in predicated blocks. In thii paper,
the hyperblock structure is introduced to overcome these
problems. Hyperblocks are formed by selectively including
basic blocks in the hyperblock according to their execution
frequency, size, and instruction characteristics. Systemati-
cally excluding basic blocks from the hyperblocks provides
additional optimization and scheduling opportunities for in-
structions within the hyperblock. Speculative execution is
enabled by performing instruction promotion and instruc-
tion merging on the resultant hyperblocks. Preliminary ex-
perimental results show that hyperblocks can provide sub
stantial performance gains over other structures. Hyper-
blocks are most effective for higher issue rate processors
where there are sufficient resources to schedule instructions
for multiple paths of control. However, additional super-
scalar optimization and scheduling techniques must be in-
corporated with hyperblocks to measure their full effective-
ness.

Acknowledgements

The authors would like to thank Bob Rau at HP Labs along
with all members of the IMPACT research group for their
comments and suggestions. This research has been sup-
ported by JSEP under Contract N00014-90-J-1270, Dr. Lee
Hoevel at NCR, the AMD 29K Advanced Processor Devel-
opment Division, Matsushita Electric Industrial Co. Ltd.,

Hewlett-Packard, and NASA under Contract NASA NAG
1-613 in cooperation with ICLASS.

References

PI

PI

131

141

151

PI

[71

PI

PI

PO1

WI

P21

1131

[I41

P51

Ft. A. Towle, Control and Data Dependence for Program
Transformationa. PhD thesis, Department of Computer Sci-
ence, University of Ihinois, Urbana-Champai8n IL, 1976.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Con-
version of control dependence to data dependence,” in Pro-
ceedinga of the 10th ACM Symposium on Principlea of PTO-
gramming Languages, pp. 177-189, January 1983.

J. C. H. Park and M. S. SchIansker, “On predicated execu-
tion,” Tech. Rep. HPL-91-58, HP Laboratories, Palo Alto,
CA, May 1991.

B. R. Rau and C. D. Glaeser, “Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing,” in Proceedings of the 20th
Annual Workshop on Microprogramming and Microarchitec-
lure, pp. 183-198, October 1981.

M. S. Lam, ‘Software pipelining: An effective scheduling
technique for VLIW machines,” in Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language De-
sign and Implementation, pp. 318328, June 1988.

A. Aiken and A. Nicolau, “Optimal loop parallehzation,” in
Proceeding8 of the ACM SIGPLAN 1988 Conference on PTO-
gramming Language Design and Implementation, pp. 308-
317, June 1988.

B. R. Rau, D. W. L. Yen, W. Yen, and R. A. ,Towle, “The
Cydra 5 departmental supercomputer,” IEEE Computer,
pp. 12-35, January 1989.

J. C. Dehnert, P. Y. T. Hsu, and J. P. Bratt, “Overlapped
loop support in the Cydra 5,” in Proceedings oj the 17th
International Symposium on Computer Architecture, pp. 26-
38, May 1989.

P. Y. T. Hsu and E. S. Davidson, “Highly concurrent scelar
processing,” in Proceeding8 of the 13th International Sym-
posium on Computer Architecture, pp. 386-395, June 1986.

P. P. Chang, S. A. MahIke, W. Y. Chen, N. J. Warter,
and W. W. Hwu, “IMPACT: An architectural framework
for muhiple-instruction-issue processors,” in Proceedings of
the 18th International Symposium on Computer Architec-
ture, pp. 266-275, May 1991.

W. W. Hwu, S. A. MahIke, W. Y. Chen, P. P. Chang, N.
J. Water, R. A. Bringmann, R. G. OueIIette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Hohn, and D. M. Lavery,
“The superblock: An effective structure for VLIW and su-
perscelar compilation,” To appear Journal of Sapercomput-
ing, January 1993.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The
program dependence graph and its use in optimization,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 9, pp. 319-349, July 1987.

P. TiiaIai, M. Lee, and M. SchIansker, “ParaIIeIization of
loops with exits on pipelined architectures,” in Proceeding8
of Supercomputing ‘90, November 1990.

S. A. MahIke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S.
SchIansker, “Sentinel scheduling for VLIW and superscalar
processors,” in Proceedings of 5th International Conference
on Architectural Support for Programming Languages and
Operating Systema, October 1992.

E. Morel and C. Renviose, “Global optimization by suppres-
sion of partial redundancies,” Communications of the ACM,
pp. 96-103, February 1979.

54

