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Abstract

This paper proposes and evaluates single-ISA hetero-
geneous multi-core architectures as a mechanism to re-
duce processor power dissipation. Our design incorpo-
rates heterogeneous cores representing different points in
the power/performance design space; during an applica-
tion’s execution, system software dynamically chooses the
most appropriate core to meet specific performance and
power requirements.

Our evaluation of this architecture shows significant en-
ergy benefits. For an objective function that optimizes for
energy efficiency with a tight performance threshold, for 14
SPEC benchmarks, our results indicate a 39% average en-
ergy reduction while only sacrificing 3% in performance.
An objective function that optimizes for energy-delay with
looser performance bounds achieves, on average, nearly a
factor of three improvement in energy-delay product while
sacrificing only 22% in performance. Energy savings are
substantially more than chip-wide voltage/frequency scal-
ing.

1 Introduction

As processors continue to increase in performance and
speed, processor power consumption and heat dissipation
have become key challenges in the design of future high-
performance systems. For example, Pentium-4 class pro-
cessors currently consume well over 50W and processors in
the year 2015 are expected to consume close to 300W [1].
Increased power consumption and heat dissipation typically
leads to higher costs for thermal packaging, fans, electricity,
and even air conditioning. Higher-power systems can also
have a greater incidence of failures.

In this paper, we propose and evaluate a single-ISA het-
erogeneous multi-core architecture [26, 27] to reduce pro-
cessor power dissipation. Prior chip-level multiproces-
sors (CMP) have been proposed using multiple copies of
the same core (i.e., homogeneous), or processors with co-
processors that execute a different instruction set. We pro-
pose that for many applications, core diversity is of higher
value than uniformity, offering much greater ability to adapt
to the demands of the application(s). We present a multi-
core architecture where all cores execute the same instruc-
tion set, but have different capabilities and performance lev-
els. At run time, system software evaluates the resource re-
quirements of an application and chooses the core that can
best meet these requirements while minimizing energy con-
sumption. The goal of this research is to identify and quan-
tify some of the key advantages of this novel architecture in
a particular execution environment.

One of the motivations for this proposal is that differ-
ent applications have different resource requirements dur-
ing their execution. Some applications may have a large
amount of instruction-level parallelism (ILP), which can be
exploited by a core that can issue many instructions per
cycle (i.e., a wide-issue superscalar CPU). The same core,
however, might be wasted on an application with little ILP,
consuming significantly more power than a simpler core
that is better matched to the characteristics of the applica-
tion.

A heterogeneous multi-core architecture could be im-
plemented by designing a series of cores from scratch, by
reusing a series of previously-implemented processor cores
after modifying their interfaces, or a combination of these
two approaches. In this paper, we consider the reuse of ex-
isting cores, which allows previous design effort to be amor-
tized. Given the growth between generations of processors
from the same architectural family, the entire family can



typically be incorporated on a die only slightly larger than
that required by the most advanced core.

In addition, clock frequencies of the older cores would
scale with technology, and would be much closer to that
of the latest processor technology than their original imple-
mentation clock frequency. Then, the primary criterion for
selecting between different cores would be the performance
of each architecture and the resulting energy dissipation.

In this paper, we model one example of a single-ISA
heterogeneous architecture – it includes four representative
cores (two in-order cores and two out-of-order cores) from
an ordered complexity/performance continuum in the Al-
pha processor roadmap. We show that typical applications
not only place highly varied demands on an execution archi-
tecture, but also that that demand can vary between phases
of the same program. We assume the ability to dynami-
cally switch between cores. This allows the architecture to
adapt to differences between applications, differences be-
tween phases in the same application, or changing priori-
ties of the processor or workload over time. We show re-
ductions in processor energy-delay product as high as 84%
(a six-fold improvement) for individual applications, and
63% overall. Energy-delay � (the product of energy and
the square of the delay) reductions are as high as 75% (a
four-fold improvement), and 50% overall. Chip-wide volt-
age/frequency scaling can do no better than break even on
this metric. We examine oracle-driven core switching, to
understand the limits of this approach, as well as realistic
runtime heuristics for core switching.

The rest of the paper is organized as follows. Section 2
discusses the single-ISA heterogeneous multi-core architec-
ture that we study. Section 3 describes the methodology
used to study performance and power. Section 4 discusses
the results of our evaluation while Section 5 discusses re-
lated work. Section 6 summarizes the work and discusses
ongoing and future research.

2 Architecture

This section gives an overview of a potential heteroge-
neous multi-core architecture and core-switching approach.

The architecture consists of a chip-level multiprocessor
with multiple, diverse processor cores. These cores all ex-
ecute the same instruction set, but include significantly dif-
ferent resources and achieve different performance and en-
ergy efficiency on the same application. During an appli-
cation’s execution, the operating system software tries to
match the application to the different cores, attempting to
meet a defined objective function. For example, it may be
trying to meet a particular performance requirement or goal,
but doing so with maximum energy efficiency.

2.1 Discussion of Core Switching

There are many reasons why the best core for execution
may vary over time. The demands of executing code vary
widely between applications; thus, the best core for one ap-
plication will often not be the best for the next, given a par-
ticular objective function (assumed to be some combination
of energy and performance). In addition, the demands of
a single application can also vary across phases of the pro-
gram.

Even the objective function can change over time, as the
processor changes power conditions (e.g., plugged vs. un-
plugged, full battery vs. low battery, thermal emergencies),
as applications switch (e.g., low priority vs. high priority
job), or even within an application (e.g., a real-time appli-
cation is behind or ahead of schedule).

The experiments in this paper explore only a subset of
these possible changing conditions. Specifically, it exam-
ines adaptation to phase changes in single applications.
However, by simulating multiple applications and several
objective functions, it also indirectly examines the potential
to adapt to changing applications and objective functions.
We believe a real system would see far greater opportuni-
ties to switch cores to adapt to changing execution and en-
vironmental conditions than the narrow set of experiments
exhibited here.

This work examines a diverse set of execution cores. In a
processor where the objective function is static (and perhaps
the workload is well known), some of our results indicate
that a smaller set of cores (often two) will suffice to achieve
very significant gains. However, if the objective function
varies over time or workload, a larger set of cores has even
greater benefit.

2.2 Choice of cores.

To provide an effective platform for a wide variety of
application execution characteristics and/or system priority
functions, the cores on the heterogeneous multi-core pro-
cessor should cover both a wide and evenly spaced range of
the complexity/performance design space.

In this study, we consider a design that takes a se-
ries of previously implemented processor cores with slight
changes to their interface – this choice reflects one of the
key advantages of the CMP architecture, namely the effec-
tive amortization of design and verification effort. We in-
clude four Alpha cores – EV4 (Alpha 21064), EV5 (Alpha
21164), EV6 (Alpha 21264) and a single-threaded version
of the EV8 (Alpha 21464), referred to as EV8-. These cores
demonstrate strict gradation in terms of complexity and are
capable of sharing a single executable. We assume the four
cores have private L1 data and instruction caches and share
a common L2 cache, phase-lock loop circuitry, and pins.
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Figure 1. Relative sizes of the cores used in
the study

We chose the cores of these off-the-shelf processors due
to the availability of real power and area data for these pro-
cessors, except for the EV8 where we use projected num-
bers [10, 12, 23, 30]. All these processors have 64-bit archi-
tectures. Note that technology mapping across a few gener-
ations has been shown to be feasible [24].

Figure 1 shows the relative sizes of the cores used in
the study, assuming they are all implemented in a 0.10 mi-
cron technology (the methodology to obtain this figure is
described in the next section). It can be seen that the result-
ing core is only modestly (within 15%) larger than the EV8-
core by itself.

Minor differences in the ISA between processor gener-
ations are handled easily. Either programs are compiled to
the least common denominator (the EV4), or we use soft-
ware traps for the older cores. If extensive use is made of
the software traps, our mechanisms will naturally shy away
from those cores, due to the low performance.

For this research, to simplify the initial analysis of this
new execution paradigm, we assume only one application
runs at a time on only one core. This design point could
either represent an environment targeted at a single applica-
tion at a time, or modeling policies that might be employed
when a multithreaded multi-core configuration lacks thread
parallelism. Because we assume a maximum of one thread
running, the multithreaded features of EV8 are not needed.
Hence, these are subtracted from the model, as discussed in
Section 3. In addition, this assumption means that we do
not need more than one of any core type. Finally, since only
one core is active at a time, we implement cache coherence
by ensuring that dirty data is flushed from the current core’s
L1 data cache before execution is migrated to another core.

This particular choice of architectures also gives a clear
ordering in both power dissipation and expected perfor-
mance. This allows the best coverage of the design space
for a given number of cores and simplifies the design of
core-switching algorithms.

2.3 Switching applications between cores.

Typical programs go through phases with different exe-
cution characteristics [35, 39]. Therefore, the best core dur-
ing one phase may not be best for the next phase. This ob-
servation motivates the ability to dynamically switch cores
in mid execution to take full advantage of our heterogeneous
architecture.

There is a cost to switching cores, so we must restrict the
granularity of switching. One method for doing this would
switch only at operating system timeslice intervals, when
execution is in the operating system, with user state already
saved to memory. If the OS decides a switch is in order, it
powers up the new core, triggers a cache flush to save all
dirty cache data to the shared L2, and signals the new core
to start at a predefined OS entry point. The new core would
then power down the old core and return from the timer in-
terrupt handler. The user state saved by the old core would
be loaded from memory into the new core at that time, as
a normal consequence of returning from the operating sys-
tem. Alternatively, we could switch to different cores at the
granularity of the entire application, possibly chosen stati-
cally. In this study, we consider both these options.

In this work, we assume that unused cores are com-
pletely powered down, rather than left idle. Thus, unused
cores suffer no static leakage or dynamic switching power.
This does, however, introduce a latency for powering a new
core up. We estimate that a given processor core can be
powered up in approximately one thousand cycles of the
2.1GHz clock. This assumption is based on the observa-
tion that when we power down a processor core we do not
power down the phase-lock loop that generates the clock for
the core. Rather, in our multi-core architecture, the same
phase-lock loop generates the clocks for all cores. Conse-
quently, the power-up time of a core is determined by the
time required for the power buses to charge and stabilize.
In addition, to avoid injecting excessive noise on the power
bus bars of the multi-core processor, we assume a staged
power up would be used.

In addition, our experiments confirm that switching
cores at operating-system timer intervals ensures that the
switching overhead has almost no impact on performance,
even with the most pessimistic assumptions about power-up
time, software overhead, and cache cold start effects. How-
ever, these overheads are still modeled in our experiments
in Section 4.4.

3 Methodology

This section discusses the various methodological chal-
lenges of this research, including modeling the power, the
real estate, and the performance of the heterogeneous multi-
core architecture.



Processor EV4 EV5 EV6 EV8-

Issue-width 2 4 6 (OOO) 8 (OOO)
I-Cache 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way
D-Cache 8KB, DM 8KB, DM 64KB, 2-way 64KB, 4-way

Branch Pred. 2KB,1-bit 2K-gshare hybrid 2-level hybrid 2-level (2X EV6 size)
Number of MSHRs 2 4 8 16

Table 1. Configuration of the cores

3.1 Modeling of CPU Cores

The cores we simulate are roughly modeled after cores
of EV4 (Alpha 21064), EV5 (Alpha 21164), EV6 (Alpha
21264) and EV8-. EV8- is a hypothetical single-threaded
version of EV8 (Alpha 21464). The data on the resources
for EV8 was based on predictions made by Joel Emer [12]
and Artur Klauser [23], conversations with people from the
Alpha design team, and other reported data [10, 30]. The
data on the resources of the other cores are based on pub-
lished literature on these processors [2, 3, 4].

The multi-core processor is assumed to be implemented
in a 0.10 micron technology. The cores have private first-
level caches, and share an on-chip 3.5 MB 7-way set-
associative L2 cache. At 0.10 micron, this cache will oc-
cupy an area just under half the die size of the Pentium 4.
All the cores are assumed to run at 2.1GHz. This is the
frequency at which an EV6 core would run if its 600MHz,
0.35 micron implementation was scaled to a 0.10 micron
technology. In the Alpha design, the amount of work per
pipe stage was relatively constant across processor genera-
tions [7, 11, 12, 15]; therefore, it is reasonable to assume
they can all be clocked at the same rate when implemented
in the same technology (if not as designed, processors with
similar characteristics certainly could). The input voltage
for all the cores is assumed to be 1.2V.

Note that while we took care to model real architectures
that have been available in the past, we could consider these
as just sample design points in the continuum of proces-
sor designs that could be integrated into a heterogeneous
multiple-core architecture. These existing designs already
display the diversity of performance and power consump-
tion desired. However, a custom or partially custom design
would have much greater flexibility in ensuring that the per-
formance and power space is covered in the most appropri-
ate manner, but sacrificing the design time and verification
advantages of the approach we follow in this work.

Table 1 summarizes the configurations that were mod-
eled for various cores. All architectures are modeled as ac-
curately as possible, given the parameters in Table 1, on
a highly detailed instruction-level simulator. However, we
did not faithfully model every detail of each architecture;
we were most concerned with modeling the approximate
spaces each core covers in our complexity/performance
continuum.

Specific instances of deviations from exact design pa-
rameters include the following. Associativity of the EV8-
caches is double the associativity of equally-sized EV6
caches. EV8- uses a tournament predictor double the size
of the EV6 branch predictor. All the caches are assumed
to be non-blocking, but the number of MSHRs is assumed
to double with successive cores to adjust to increasing issue
width. All the out-of-order cores are assumed to have big
enough re-order buffers and large enough load/store queues
to ensure no conflicts for these structures.

The various miss penalties and L2 cache access laten-
cies for the simulated cores were determined using CACTI.
CACTI [37] provides an integrated model of cache access
time, cycle time, area, aspect ratio, and power. To calculate
the penalties, we used CACTI to get access times and then
added one cycle each for L1-miss detection, going to L2,
and coming from L2. For calculating the L2 access time,
we assume that the L2 data and tag access are serialized so
that the data memories don’t have to be cycled on a miss and
only the required set is cycled on a hit. Memory latency was
set to be 150ns.

3.2 Modeling Power

Modeling power for this type of study is a challenge. We
need to consider cores designed over the time span of more
than a decade. Power depends not only on the configuration
of a processor, but also on the circuit design style and pro-
cess parameters. Also, actual power dissipation varies with
activity, though the degree of variability again depends on
the technology parameters as well as the gating style used.

No existing architecture-level power modeling frame-
work accounts for all of these factors. Current power mod-
els like Wattch [8] are primarily meant for activity-based
architectural level power analysis and optimizations within
a single processor generation, not as a tool to compare the
absolute power consumption of widely varied architectures.
We integrated Wattch into our architectural simulator and
simulated the configuration of various cores implemented
in their original technologies to get an estimate of the max-
imum power consumption of these cores as well as the typ-
ical power consumption running various applications. We
found that Wattch did not, in general, reproduce published
peak and typical power for the variety of processor config-
urations we are using.



Therefore we use a hybrid power model that uses esti-
mates from Wattch, along with additional scaling and off-
set factors to calibrate for technology factors. This model
not only accounts for activity-based dissipation, but also
accounts for the design style and process parameter differ-
ences by relying on measured datapoints from the manufac-
turers.

To solve for the calibration factors, this methodology re-
quires peak and typical power values for the actual proces-
sors and the corresponding values reported by Wattch. This
allows us to establish scaling factors that use the output of
Wattch to estimate the actual power dissipation within the
expected range for each core. To obtain the values for the
processor cores, we derive the values from the literature;
Section 3.2.1 discusses our derivation of peak power, and
Section 3.2.2 discusses our derivation of typical power. For
the corresponding Wattch values, we estimate peak power
for each core given peak activity assumptions for all the
hardware structures, and use the simulator to derive typical
power consumed for SPEC2000 benchmarks.

This methodology then both reproduces published re-
sults and scales reasonably accurately with activity. While
this is not a perfect power model, it will be far more accu-
rate than using Wattch alone, or relying simply on reported
average power.

3.2.1 Estimating Peak Power

This section details the methodology for estimating peak
power dissipation of the cores. Table 2 shows our power
and area estimates for the cores. We start with the peak
power data of the processors obtained from data sheets and
conference publications [2, 3, 4, 10, 23]. To derive the peak
power dissipation in the core of a processor from the pub-
lished numbers, the power consumed in the L2 caches and at
the output pins of the processor must be subtracted from the
published value. Power consumption in the L2 caches under
peak load was determined using CACTI, starting by finding
the energy consumed per access and dividing by the effec-
tive access time. Details on bitouts, the extent of pipelining
during accesses, etc. were obtained from data sheets (ex-
cept for EV8-). For the EV8 L2, we assume 32 byte (288
bits including ECC) transfers on reads and writes to the L1
cache. We also assume the L2 cache is doubly pumped.

The power dissipation at the output pins is calculated us-
ing the formula: �����	��

����������� .

The values of V (bus voltage), f (effective bus frequency)
and C (load capacitance) were obtained from data sheets.
Effective bus frequency was calculated by dividing the peak
bandwidth of the data bus by the maximum number of data
output pins which are active per cycle. The address bus was
assumed to operate at the same effective frequency. For pro-
cessors like the EV4, the effective frequency of the bus con-

necting to the off-chip cache is different from the effective
frequency of the system bus, so power must be calculated
separately for those buses. We assume the probability that
a bus line changes state is 0.5. For calculating the power
at the output pins of EV8, we used the projected values for
V and f. We assumed that half of the pins are input pins.
Also, we assume that pin capacitance scales as the square
root of the technology scaling factor. Due to reduced re-
sources, we assumed that the EV8- core consumes 80% of
the calculated EV8 core-power. This reduction is primarily
due to smaller issue queues and register files. The power
data was then scaled to the 0.10 micron process. For scal-
ing, we assumed that power dissipation varies directly with
frequency, quadratically with input voltage, and is propor-
tional to feature-size.

The second column in Table 2 summarizes the power
consumed by the cores at 0.10 micron technology. As can
be seen from the table, the EV8- core consumes almost 20
times the peak power and more than 80 times the real estate
of the EV4 core.

CACTI was also used to derive the energy per access of
the shared L2 cache, for use in our simulations. We also es-
timated power dissipation at the output pins of the L2 cache
due to L2 misses. For this, we assume 400 output pins.
We assume a load capacitance of 50pF and a bus voltage of
2.5V. Again, an activity factor of 0.5 for bit-line transitions
is assumed. We also ran some experiments with a detailed
model of off-chip memory access power, but found that the
level of off-chip activity is highly constant across cores, and
did not impact our results.

3.2.2 Estimating Typical Power

Values for typical power are more difficult to obtain, so we
rely on a variety of techniques and sources to arrive at these
values.

Typical power for the EV6 and EV8- assume similar
peak to typical ratios as published data for Intel processors
of the same generation (the 0.13 micron Pentium 4 [5] for
EV8-, and the 0.35 micron late-release Pentium Pro [18, 22]
for the EV6).

EV4 and EV5 typical power is extrapolated from these
results and available thermal data [2, 3] assuming a approx-
imately linear increase in power variation over time, due to
wider issue processors and increased application of clock
gating.

These typical values are then scaled in similar ways to
the peak values (but using measured typical activity) to de-
rive the power for the cores alone. Table 2 gives the derived
typical power for each of our cores. Also shown, for each
core, is the range in power demand for the actual applica-
tions we run, expressed as a percentage of typical power.



Core Peak-power Core-area Typical-power Range
(Watts) ( ����� ) (Watts) (%)

EV4 4.97 2.87 3.73 92-107
EV5 9.83 5.06 6.88 89-109
EV6 17.80 24.5 10.68 86-113
EV8- 92.88 236 46.44 82-128

Table 2. Power and area statistics of the cores
Program Description
ammp Computational Chemistry
applu Parabolic/Elliptic Partial Differential Equations
apsi Meteorology:Pollutant Distribution
art Image Recognition/Neural Networks
bzip2 Compression
crafty Game Playing:Chess
eon Computer Visualization
equake Seismic Wave Propagation Simulation
fma3d Finite-element Crash Simulation
gzip Compression
mcf Combinatorial Optimization
twolf Place and Route Simulator
vortex Object-oriented Database
wupwise Physics/Quantum Chromodynamics

Table 3. Benchmarks simulated.

3.2.3 Power Model Sensitivity

While our methodology includes several assumptions based
on common rules-of-thumb used in typical processor de-
sign, we performed several sensitivity experiments with
widely different assumptions about the range of power dis-
sipation in the core. Our results show very little difference
in the qualitative results in this research. For any reasonable
assumptions about the range, the power differences between
cores still dominates the power difference between applica-
tions on the same core. Furthermore, as noted previously,
the cores can be considered as just sample design points in
the continuum of processor designs that could be integrated
into a heterogeneous multiple-core architecture.

3.3 Estimating Chip Area

Table 2 also summarizes the area occupied by the cores
at 0.10 micron (also shown in Figure 1). The area of the
cores (except EV8-) is derived from published photos of the
dies after subtracting the area occupied by I/O pads, inter-
connection wires, the bus-interface unit, L2 cache, and con-
trol logic. Area of the L2 cache of the multi-core processor
is estimated using CACTI.

The die size of EV8 was predicted to be 400 ����� [33].
To determine the core size of EV8-, we subtract out the es-
timated area of the L2 cache (using CACTI). We also ac-
count for reduction in the size of register files, instruction
queues, reorder buffer, and renaming tables to account for
the single-threaded EV8-. For this, we use detailed mod-
els of the register bit equivalents (rbe) [31] for register files,
reorder buffer and renaming tables at the original and re-

duced sizes. The sizes of the original and reduced instruc-
tion queue sizes were estimated from examination of MIPS
R10000 and HP PA-8000 data [9, 25], assuming that the
area grows more than linear with respect to the number of
entries (  "!#� $% "&('*)+$�,�-/. 0 ). The area data is then scaled for
the 0.10 micron process.

3.4 Modeling Performance

In this paper, we simulate the execution of 14 bench-
marks from the SPEC2000 benchmark suite, including 7
from SPECint and 7 from SPECfp. These are listed in Ta-
ble 3.

Benchmarks are simulated using SMTSIM, a cycle-
accurate, execution-driven simulator that simulates an out-
of-order, simultaneous multithreading processor [38], used
in non-multithreading mode for this research. SMTSIM ex-
ecutes unmodified, statically linked Alpha binaries. The
simulator was modified to simulate a multi-core processor
comprising four heterogeneous cores sharing an on-chip L2
cache and the memory subsystem.

In all simulations in this research we assume a single
thread of execution running on one core at a time. Switch-
ing execution between cores involves flushing the pipeline
of the “active” core and writing back all its dirty L1 cache
lines to the L2 cache. The next instruction is then fetched
into the pipeline of the new core. The execution time and
energy of this overhead, as well as the startup effects on the
new core, are accounted for in our simulations of the dy-
namic switching heuristics in Section 4.4.

The simpoint tool [36] is used to determine the number
of committed instructions which need to be fast-forwarded
so as to capture the representative program behavior during
simulation. After fast-forwarding, we simulate 1 billion in-
structions. All benchmarks are simulated using ref inputs.

4 Discussion and Results

This section examines the effectiveness of single-ISA
heterogeneous multi-core designs in reducing the power
dissipation of processors. Section 4.1 examines the relative
energy efficiency across cores, and how it varies by appli-
cation and phase. Later sections use this variance, demon-
strating both oracle and realistic core switching heuristics
to maximize particular objective functions.

4.1 Variation in Core Performance and Power

As discussed in Section 2, this work assumes that the
performance ratios between our processor cores is not con-
stant, but varies across benchmarks, as well as over time on
a single benchmark. This section verifies that premise.



Figure 2(a) shows the performance measured in million
instructions committed per second (IPS) of one represen-
tative benchmark, applu. In the figure, a separate curve is
shown for each of the five cores, with each data point rep-
resenting the IPS over the preceding 1 million committed
instructions.

With applu, there are very clear and distinct phases of
performance on each core, and the relative performance of
the cores varies significantly between these phases. Nearly
all programs show clear phased behavior, although the fre-
quency and variety of phases varies significantly.

If relative performance of the cores varies over time,
it follows that energy efficiency will also vary. Figure 3
shows one metric of energy efficiency (defined in this case
as 1�2�354%687�9�:(: ) of the various cores for the same bench-
mark. 1�2�354%687�9;:(: is merely the inverse of Energy-Delay
product. As can be seen, the relative value of the energy-
delay product among cores, and even the ordering of the
cores, varies from phase to phase.

4.2 Oracle Heuristics for Dynamic Core Selection

This section examines the limits of power and efficiency
improvements possible with a heterogeneous multi-core
architecture. The ideal core-selection algorithm depends
heavily on the particular goals of the architecture or ap-
plication. This section demonstrates oracle algorithms that
maximize two sample objective functions. The first opti-
mizes for energy efficiency with a tight performance thresh-
old. The second optimizes for energy-delay product with a
looser performance constraint.

These algorithms assume perfect knowledge of the per-
formance and power characteristics at the granularity of in-
tervals of one million instructions (corresponding roughly
to an OS time-slice interval). It should be noted that
choosing the core that minimizes energy or the energy-
delay product over each interval subject to performance
constraints does not give an optimal solution for the global
energy or energy-delay product; however, the algorithms do
produce good results.

4.2.1 Oracle based on energy metric

The first oracle that we study seeks to minimize the energy
per committed instruction (and thus, the energy used by the
entire program). For each interval, the oracle chooses the
core that has the lowest energy consumption, given the con-
straint that performance has always to be maintained within
10% of the EV8- core for each interval. This constraint as-
sumes that we are willing to give up performance to save
energy but only up to a point. Figure 2(b) shows the core
selected in each interval for applu.

For applu, we observe that the oracle chooses to switch
to EV6 in several phases even though EV8- performs bet-

C
or

e-
sw

itc
hi

ng
 fo

r 
en

er
gy EV8-

EV6

EV5

EV4

(b)

C
or

e-
sw

itc
hi

ng
 fo

r 
E

D EV8-

EV6

EV5

EV4

(c)

0


0.4


0.8


1.2


1.6


2


1
 201
 401
 601
 801


Committed instructions (in 
      millions)

(a)

IP
S 

(in
 m

ill

io

ns
)


EV8-


EV6


EV5

EV4


Figure 2. (a) Performance of applu on the four
cores (b) Oracle switching for energy (c) Ora-
cle switching for energy-delay product.

ter. This is because EV6 is the less power-consuming core
and still performs within the threshold. The oracle even
switches to EV4 and EV5 in a small number of phases. Ta-
ble 4 shows the results for all benchmarks. In this, and all
following results, performance degradation and energy sav-
ings are always given relative to EV8- performance. As can
be seen, this heuristic achieves an average energy reduction
of 38% (see column 8) with less than 4% average perfor-
mance degradation (column 9). Five benchmarks (ammp,
fma3d, mcf, twolf, crafty) achieve no gain because switch-
ing was denied by the performance constraint. Excluding
these benchmarks, the heuristic achieves an average energy
reduction of 60% with about 5% performance degradation.

4.2.2 Oracle based on the energy-delay metric.

Our second oracle utilizes the energy-delay product metric.
The energy-delay product seeks to characterize the impor-
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tance of both energy and response time in a single metric,
under the assumption that they have equal importance. Our
oracle minimizes energy-delay product by always selecting
the core that maximizes <;=�>5?�@8A�B�C(C over an interval. We
again impose a performance threshold, but relax it due to
the fact that energy-delay product already accounts for per-
formance degradation. In this case, we require that each
interval maintains performance within 50% of EV8-.

Figure 2(c) shows the cores chosen for applu. Table 5
shows the results for all benchmarks. As can be seen, the
average reduction in energy-delay is about 63%; the aver-
age energy reductions are 73% and the average performance
degradation is 22%. All but one of the fourteen bench-
marks have fairly significant (47% to 78%) reductions in
energy-delay savings. The corresponding reductions in per-
formance ranges from 4% to 45%. As before, switching
activity and the usage of the cores varies. This time, EV8
never gets used. EV6 emerges as the dominant core. Given
our relaxed performance constraint, there is a greater usage
of the lower-power cores compared to the previous experi-
ment.

4.2.3 Comparison with chip-wide voltage/frequency
scaling

Both Tables 4 and 5 also show results for Energy-
Delay ? [40] improvements. Improvements are 35-50%
on average. This is instructive because chip-wide volt-
age/frequency scaling can do no better than break even on
this metric, demonstrating that this approach has the po-
tential to go well beyond the capabilities of that technique.

In other experiments specifically targeting the DFEG? metric
(again with the 50% performance threshold), we saw 53.3%
reduction in energy-delay ? with 14.8% degradation in per-
formance.

4.3 Static Core Selection

This section examines the necessity of dynamic switch-
ing between cores by measuring the effectiveness of an
oracle-based static assignment of benchmark to core (for
just one of our sample objective functions). This models a
system that accurately selects a single core to run for the
duration of execution, perhaps based on compiler analysis,
profiling, past history, or simple sampling.

Table 6 summarizes the results when a static oracle se-
lects the best core for energy. As in the earlier dynamic
results, a performance threshold (this time over the duration
of the benchmark) is applied. EV6 is the only core other
than EV8 which gets used. This is because of the stringent
performance constraint. Average energy savings is 32%.
Excluding the benchmarks which remain on EV8, average
energy savings is 74.3%. Average performance degrada-
tion is 2.6%. This low performance loss leads to particu-
larly high savings for both energy-delay and energy-delay ? .
Average energy savings is 31% and average energy-delay ?
savings is 30%.

Also shown is a corresponding dynamic technique. For
a fair comparison, we apply a global runtime performance
constraint rather than a per-interval constraint. That is, any
core can be chosen in an interval as long as the accumulated
runtime up to this point (including all core choices made
on earlier intervals) remains within 10% of the EV8- alone.
This gives a more fair comparison with the static technique.

4.4 Realistic Dynamic Switching Heuristics

This section examines the extent to which the energy
benefits in the earlier sections can be achieved with a real
system implementation that does not depend on oracular
future knowledge. We do, however, assume an ability to
track both the accumulated performance and energy over a
past interval. This functionality either already exists or is
easy to implement. This section is intended to be an ex-
istence proof of effective core selection algorithms, rather
than a complete evaluation of the switching design space.
We only demonstrate a few simple heuristics for selecting
the core to run on. The heuristics seek to minimize overall
energy-delay product during program execution.

Our previous oracle results were idealized not only with
respect to switching algorithms, but also ignored the cost
of switching (power-up time, flushing dirty pages to the
L2 cache and experiencing cold-start misses in the new
L1 cache and TLB) both in performance and power. The



Benchmark Total % of instructions per core Energy ED HJILK Perf.
switches EV4 EV5 EV6 EV8- Savings(%) Savings(%) Savings(%) Loss (%)

ammp 0 0 0 0 100 0 0 0 0
applu 27 2.2 0.1 54.5 43.2 42.7 38.6 33.6 7.1
apsi 2 0 0 62.2 37.8 27.6 25.3 22.9 3.1
art 0 0 0 100 0 74.4 73.5 72.6 3.3
equake 20 0 0 97.9 2.1 72.4 71.3 70.1 3.9
fma3d 0 0 0 0 100 0 0 0 0
wupwise 16 0 0 99 1 72.6 69.9 66.2 10.0
bzip 13 0 0.1 84.0 15.9 40.1 38.7 37.2 2.3
crafty 0 0 0 0 100 0 0 0 0
eon 0 0 0 100 0 77.3 76.3 75.3 4.2
gzip 82 0 0 95.9 4.1 74.0 73.0 71.8 3.9
mcf 0 0 0 0 100 0 0 0 0
twolf 0 0 0 0 100 0 0 0 0
vortex 364 0 0 73.8 26.2 56.2 51.9 46.2 9.8
Average 1(median) 0.2% 0% 54.8% 45.0% 38.5% 37.0% 35.4% 3.4%

Table 4. Summary for dynamic oracle switching for energy

Benchmark Total % of instructions per core Energy-delay Energy Energy-delay K Perf.
switches EV4 EV5 EV6 EV8- Savings(%) Savings(%) Savings(%) Loss (%)

ammp 0 0 0 100 0 63.7 70.3 55.7 18.1
applu 12 32.3 0 67.7 0 69.8 77.1 59.9 24.4
apsi 0 0 0 100 0 60.1 69.1 48.7 22.4
art 619 65.4 0 34.5 0 78.0 84.0 69.6 27.4
equake 73 55.8 0 44.2 0 72.3 81.0 59.2 31.7
fma3d 0 0 0 100 0 63.2 73.6 48.9 28.1
wupwise 0 0 0 100 0 68.8 73.2 66.9 10.0
bzip 18 0 1.2 98.8 0 60.5 70.3 47.5 24.8
crafty 0 0 0 100 0 55.4 69.9 33.9 32.5
eon 0 0 0 100 0 76.2 77.3 75.3 4.2
gzip 0 0 0 100 0 74.6 75.7 73.5 4.2
mcf 0 0 0 100 0 46.9 62.8 37.2 24.3
twolf 0 0 0 100 0 26.4 59.7 -34.2 45.2
vortex 0 0 0 100 0 68.7 73.0 66.7 9.9
Average 0(median) 11.0% 0.1% 88.9% 0% 63.2% 72.6% 50.6% 22.0%

Table 5. Summary for dynamic oracle switching for energy-delay

Static Selection Dynamic Selection
Benchmark Core Energy Energy-delay Energy-delay M Perf Energy Perf.

savings (%) savings (%) savings (%) loss (%) savings(%) loss (%)
ammp EV8- None None None None 36.1 10.0
applu EV8- None None None None 49.9 10.0
apsi EV8- None None None None 42.9 10.0
art EV6 74.4 73.5 72.6 3.3 75.7 10.0
equake EV6 73.4 72.3 70.8 4.5 74.4 10.0
fma3d EV8- None None None None 28.1 10.0
wupwise EV6 73.2 70.5 66.9 10.0 49.5 10.0
bzip EV8- None None None None 47.7 10.0
crafty EV8- None None None None 17.6 10.0
eon EV6 77.3 76.3 75.3 4.2 77.3 9.8
gzip EV6 75.7 74.6 73.5 4.3 76.0 10.0
mcf EV8- None None None None 19.9 10.0
twolf EV8- None None None None 8.1 10.0
vortex EV6 73.0 70.3 66.7 9.9 52.0 10.0
Average - 31.9% 31.3% 30.4% 2.6% 46.8% 10.0

Table 6. Oracle heuristic for static core selection – energy metric. Rightmost two columns are for
dynamic selection



simulations in this section account for both, although our
switching intervals are long enough and switchings infre-
quent enough that the impact of both effects is under 1%.

In this section, we measure the effectiveness of several
heuristics for selecting a core. The common elements of
each of the heuristics are these: every 100 time intervals
(one time interval consists of 1 million instructions in these
experiments), one or more cores are sampled for five inter-
vals each (with the results during the first interval ignored
to avoid cold start effects). Based on measurements done
during sampling, the heuristic selects one core. For the case
when one other core is sampled, the switching overhead is
incurred once if the new core is selected, or twice if the old
core is chosen. The switching overhead is greater if more
cores are sampled. The dynamic heuristics studied here are:

N neighbor. One of the two neighboring cores in the
performance continuum is randomly selected for sam-
pling. A switch is made if that core has lower energy-
delay over the sample interval than the current core
over the last run interval.

N neighbor-global. Similar to neighbor, except that the
selected core is the one that would be expected to
produce the lowest accumulated energy-delay product
to this point in the application’s execution. In some
cases this is different than the core that minimizes the
energy-delay product for this interval.

N random. One other randomly-chosen core is sampled,
and a switch is made if that core has lower energy-
delay over the sample interval.

N all All other cores are sampled.

The results are shown in Figure 4. The results are all
normalized to EV8- values. This figure also includes ora-
cle results for dynamic switching based on the energy-delay
metric when core selection is not hampered with perfor-
mance constraints. Lower bars for energy and energy-delay,
and higher bars for performance are desirable.

Our heuristics achieve up to 93% of the energy-delay
gains achieved by the oracle-based switcher, despite mod-
eling the switching overhead, sampling overhead, and non-
oracle selection. The performance degradation on applying
our dynamic heuristics is, on average, less than the degrada-
tion found by the oracle-based scheme. Also, although not
shown in the figure, there is a greater variety in core-usage
between applications.

It should be noted that switching for this particular objec-
tive function is not heavy; thus, heuristics that find the best
core quickly, and minimize sampling overhead after that,
tend to work best. The best heuristic for a different objec-
tive function, or a dynamically varying objective function
may be different. These results do show, however, that for
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Figure 4. Results for realistic switching
heuristics - the last one is a constraint-less
dynamic oracle

a given objective function, very effective realtime and pre-
dictive core switching heuristics can be found.

4.5 Practical heterogeneous architectures

Although our use of existing cores limits design and ver-
ification overheads, these overheads do scale with the num-
ber of distinct cores supported.

Some or our results indicate that in specific instances,
two cores can introduce sufficient heterogeneity to pro-
duce significant gains. For example the (minimize energy,
maintain performance within 10%) objective function re-
lied heavily on the EV8- and the EV6 cores. The (energy-
delay, performance within 50%) objective function favored
the EV6 and EV4. However, if the objective function is al-
lowed to vary over time, or if the workload is more diverse
than what we model, wider heterogeneity than 2 cores will
be useful. Presumably, other objective functions than those
we model may also use more than 2 cores.



5 Related Work

There has been a large body of work on power-related
optimizations for processor design. These can be broadly
classified into two categories: (1) work that uses gating for
power management, and (2) work that uses voltage and fre-
quency scaling of the processor core to reduce power.

Gating-based power optimizations [6, 13, 14, 17, 20, 28,
29] provide the option to turn off (gate) portions of the pro-
cessor core that are not useful to a workload. However, for
all these techniques, gating benefits are limited by the gran-
ularity of structures that can be gated, the inability to change
the overall size and complexity of the processor. Also, these
designs are still susceptible to static leakage inefficiencies.

Chip-wide voltage and frequency scaling reduces the pa-
rameters of the entire core [16, 32]. While this reduces
power, the power reductions are uniform – across both the
portions of the core that are performance-critical for this
workload as well as the portions of the core that are not.
Furthermore, voltage and frequency scaling is fundamen-
tally limited by the process technology in which the proces-
sor is built. Heterogeneous multi-core designs address both
these deficiencies.

Fine-grained voltage/frequency scaling techniques using
multiple clock domains have been proposed recently [21,
34] which obviate some of the disadvantages of conven-
tional scaling-based techniques discussed elsewhere in this
paper. However, similar to gating-based approaches, the
benefits are likely to be limited by static leakage inefficien-
cies as well as the number of voltage domains that can be
supported on a chip.

Core switching to reduce power was introduced previ-
ously in [26] and [27]. Recently, it has also been used for
reducing power density [19] in a homogeneous multiple-
core architecture, through the use of frequent core switches
to idle processors.

Overall, having heterogeneous processor cores provides
potentially greater power savings compared to previous ap-
proaches and greater flexibility and scalability of architec-
ture design. Moreover, these previous approaches can still
be used in a multi-core processor to greater advantage.

6 Summary and Conclusions

This paper introduces and seeks to gain some insights
into the energy benefits available for a new architecture, that
of a heterogeneous set of cores on a single multi-core die,
sharing the same ISA. The particular opportunity examined
is a single application switching among cores to optimize
some function of energy and performance.

We show that a sample heterogeneous multi-core de-
sign with four complexity-graded cores has the potential to

increase energy efficiency (defined as energy-delay prod-
uct, in this case) by a factor of three, in one experi-
ment, without dramatic losses in performance. Energy ef-
ficiency improvements significantly outdistance chip-wide
voltage/frequency scaling. It is shown that most of these
gains are possible even by using as few as two cores.

This work demonstrates that there can be great advan-
tage to diversity within an on-chip multiprocessor, allowing
that architecture to adapt to the workload in ways that a uni-
form CMP cannot. A multi-core heterogeneous architecture
can support a range of execution characteristics not possi-
ble in an adaptable single-core processor, even one that em-
ploys aggressive gating. Such an architecture can adapt not
only to changing demands in a single application, but also
to changing demands between applications, changing prior-
ities or objective functions within a processor or between
applications, or even changing operating environments.

These results indicate that not only is there significant
potential for this style of architecture, but that reasonable
runtime heuristics for switching cores, using limited run-
time information, can achieve most of that potential.
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