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ABSTRACT
Chip multiprocessors (CMPs) are now commonplace, and the num-
ber of cores on a CMP is likely to grow steadily. However, in order
to harness the additional compute resources of a CMP, applications
must expose their thread-level parallelism to the hardware. One
common approach to doing this is to decompose a program into
parallel “tasks” and allow an underlying software layer to schedule
these tasks to different threads. Software task scheduling can pro-
vide good parallel performance as long as tasks are large compared
to the software overheads.

We examine a set of applications from an important emerging
domain: Recognition, Mining, and Synthesis (RMS). Many RMS
applications are compute-intensive and have abundant thread-level
parallelism, and are therefore good targets for running on a CMP.
However, a significant number have small tasks for which software
task schedulers achieve only limited parallel speedups.

We propose Carbon, a hardware technique to accelerate dynamic
task scheduling on scalable CMPs. Carbon has relatively simple
hardware, most of which can be placed far from the cores. We
compare Carbon to some highly tuned software task schedulers for
a set of RMS benchmarks with small tasks. Carbon delivers signif-
icant performance improvements over the best software scheduler:
on average for 64 cores, 68% faster on a set of loop-parallel bench-
marks, and 109% faster on a set of task-parallel benchmarks.

Categories and Subject Descriptors: C.1.4 [Parallel Architec-
tures]

General Terms: Design, Performance, Measurement

Keywords: CMP, loop and task parallelism, architectural support

1. INTRODUCTION
Now commonplace, chip multiprocessors (CMPs) provide appli-

cations with an opportunity to achieve much higher performance
than uniprocessor systems of the recent past. Furthermore, the
number of cores (processors) on CMPs is likely to continue grow-
ing, increasing the performance potential of CMPs. The most straight-
forward way for an application to tap this performance potential is
to expose its thread-level parallelism to the underlying hardware.
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Perhaps the most common approach to threading an application
is to decompose each parallel section into a set of tasks. At run-
time, the application, or an underlying library or run-time environ-
ment, distributes (schedules) the tasks to the software threads. To
achieve maximum performance, especially in systems with many
cores, it is desirable to create many more tasks than cores and to
dynamically schedule the tasks. This allows for much better load
balancing across the cores.

There exists a large body of work on dynamic task scheduling in
software [1, 4, 5, 6, 8, 12, 14, 16, 22, 24, 26, 29, 34, 35]. For pre-
viously studied applications, overheads of software dynamic task
schedulers are small compared to the size of the tasks, and there-
fore, enable sufficient scalability.

We examine a set of benchmarks from an important emerging ap-
plication domain, Recognition, Mining, and Synthesis (RMS) [10,
32]. Many RMS applications have very high compute demands,
and can therefore benefit from a large amount of acceleration. Fur-
ther, they often have abundant thread-level parallelism. Thus, they
are excellent targets for running on large-scale CMPs.

However, we also find that a significant number of these RMS
benchmarks are dominated by parallel sections with small tasks.
For these, the overheads of software dynamic task scheduling are
large enough to limit parallel speedups.

In addition to emerging applications, the advent of CMPs with
an increasing number of cores for mainstream computing dramati-
cally changes how parallel programs will be written and used in a
number of ways. First, CMPs reduce communication latency and
increase bandwidth between cores, thus allowing parallelization of
software modules that were not previously profitably parallelized.
Second, unlike scientific applications, it is much more important
for mainstream parallel programs to get good performance on a va-
riety of platforms and configurations. These applications need to
achieve performance benefits in a multiprogrammed environment
where the number of cores can vary not only across runs but also
during a single execution. These changes motivate the need to sup-
port fine-grained parallelism efficiently.

We therefore propose Carbon, a hardware technique to acceler-
ate dynamic task scheduling on scalable CMPs. Carbon consists of
two components: (1) a set of hardware queues that cache tasks and
implement task scheduling policies, and (2) per-core task prefetch-
ers that hide the latency of accessing these hardware queues. This
hardware is relatively simple and scalable.

We compare Carbon to some highly tuned software task sched-
ulers, and also to an idealized hardware implementation of a dy-
namic task scheduler (i.e., operations are instantaneous). On a set
of RMS benchmarks with small tasks, Carbon provides large per-
formance benefits over the software schedulers, and gives perfor-
mance very similar to the idealized implementation.
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Our contributions are as follows:
1. We make the case for efficient support for fine-grained paral-

lelism on CMPs (Section 3).
2. We propose Carbon, which provides architectural support for

fine-grained parallelism (Section 4). Our proposed solution has
low hardware complexity and is fairly insensitive to access la-
tency to the hardware queues.

3. We demonstrate that the proposed architectural support has sig-
nificant performance benefits (Section 6).
• Carbon delivers much better performance than optimized

software implementations: 68% and 109% faster on aver-
age for 64 cores on a set of loop-parallel and task-parallel
RMS benchmarks, respectively. In addition, the proposed
hardware support makes it easy to consistently get good
performance. This differs from software implementations
where the best heuristic depends on the algorithm, data set,
and the number of cores and, therefore, requires program-
mers to try various knobs provided to them.

• The proposed hardware delivers performance close to an
idealized task queue which incurs no communication la-
tency (newly enqueued tasks become instantaneously avail-
able to all cores on the chip). This demonstrates that the
proposed hardware is very efficient.

2. BACKGROUND
This paper uses the fork-join parallelism model that is commonly

used on shared-memory machines. In this model, the program
starts serially and alternates between serial and parallel sections.
We will use the term task to denote an independent unit of work
that can be executed in parallel with other tasks. In a serial section,
only one thread is executing the code. Upon entering a parallel sec-
tion, a group of threads are started1 that execute the tasks in that
section in parallel.

2.1 Dynamic Load Balancing
Good parallel scaling requires the load to be balanced among the

participating threads. Load imbalance in a parallel section is a func-
tion of the variability of the size of the tasks as well as the number
of tasks. The lower the variability, the fewer tasks are needed to ob-
tain good load balance. However, as the number of tasks increases,
parallelization overhead increases. Therefore, selecting the right
task granularity involves a trade-off between parallelization over-
head and load imbalance.

Task queuing is a well-known technique that is primarily de-
signed to address the load imbalance problem. To use task queues,
a programmer decomposes a parallel section into tasks. The run-
time system is responsible for scheduling tasks on a set of persistent
threads so as to minimize the load imbalance.

Task scheduling impacts other aspects of the program execution;
therefore, using the right scheduling policy is important to scalabil-
ity and yields other benefits including:
• Improve cache locality: Intelligent ordering and scheduling of

tasks can significantly improve cache performance [4, 27, 30].
• Minimize lock contention: Contention on locks can be re-

duced (and the lock accesses can be made local) by scheduling
tasks that access the same shared data on the same thread.

• Control the amount of parallelism: In tree-structured con-
currency (where tasks form a tree and each task/node has de-
pendencies on its parent or children), the amount of parallelism

1In practice, spawning and exiting kernel threads is expensive. Im-
plementations typically just suspend and reuse threads between par-
allel sections as an optimization.

can be controlled by changing the task execution order. Typi-
cally, a LIFO, or depth-first, order has better cache locality (and
smaller working set) while a FIFO, or breadth-first, order ex-
poses more parallelism.

• Simplify multithreading: A simple task queuing API can hide
threading details and can allow the programmer to focus on the
algorithmic aspects of the parallel program.

2.2 Types of Parallelism
In this paper, we focus on two types of parallelism—loop-level

and task-level—that are commonly supported by parallel languages.
Loop-level parallelism refers to situations where the iterations of a
loop can be executed in parallel. Task-level parallelism refers to
a more dynamic form of parallelism where a parallel task can be
spawned at any point.

Loop-Level Parallelism:. Loop-level parallelism is easy to ex-
pose because this often requires little more than identifying the
loops whose iterations can be executed in parallel. Numerous par-
allel languages including OpenMP [29], HPF [17], and NESL [3]
support loop-level parallelism.

Strictly speaking, task-level parallelism is a superset of loop-
level parallelism. However, we consider these separately for two
reasons. First, loop-level parallelism accounts for a large fraction
of kernels in parallel programs. Second, loop-level parallel sections
can be supported more efficiently because they are more structured
than general task-level parallel sections. A set of consecutive tasks
in a parallel loop can be expressed compactly as a range of the it-
eration indices. In addition, a loop enqueues a set of tasks at once
which allows for some optimizations.

Task-Level Parallelism:. Task-level parallelism [4, 14, 22, 34] al-
lows a broader class of algorithms to be expressed as parallel com-
putation. For instance, a tree-structured computation where the par-
ent node depends on the result of the children nodes (or vice versa)
is easily expressed with task-level parallelism. In general, any de-
pendency graph where each node represents a task and the direct
edges represent dependencies between tasks can be expressed.

2.3 Software Task Queuing Implementations
Static scheduling is sometimes effective in scheduling tasks when

there is little variability in the task size. In static scheduling [24],
tasks of an application are usually mapped to processors at the start
of the parallel region. However, static scheduling has significant
limitations, especially on mainstream CMPs (Section 3).

A centralized queue is the simplest way of implementing dy-
namic load balancing. In this case, all threads enqueue and dequeue
from a single shared queue. While this is sometimes acceptable, a
single queue can quickly become a bottleneck as the number of
threads scales up.

Figure 1 shows two commonly used techniques to implement
efficient task queues in software, namely distributed task stealing
and hierarchical task queuing.

Distributed Task Stealing:. This technique [1, 5, 6, 8, 16, 26,
35] is the most popular way of implementing task queues. In this
scheme, each thread has its own queue on which it primarily oper-
ates. When a thread enqueues a task, it places it in its own queue.
When it finishes executing a task and needs a new task to execute, it
first looks at its own queue. Both enqueue and dequeue operations
by a thread on its own queue are always performed at the same end
(which we will call the head of the queue). When a thread needs a
task and there are no tasks available in its own queue, it steals a task
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(a) Distributed Task Stealing (b) Hierarchical Task Queuing

Figure 1: Standard task queue implementations

from one of the other queues. Task stealing is always performed at
the tail of a queue. Note that each of the queues is shared and needs
to be protected by locks.

The distributed task stealing scheme has two good properties.
First, randomized distributed task stealing2 has been shown to be
provably efficient both in terms of execution time and space us-
age for a certain broad class of parallel applications (called fully
strict) [5]. Second, distributed task stealing exploits the significant
data sharing that often occurs between a task (child) and the task
that spawned it (parent) by frequently executing the child on the
same thread as the parent.

Hierarchical Task Queuing:. This approach is a refinement of a
centralized queue. To alleviate the serialization at the shared global
queue, each thread maintains a small private queue on which it pri-
marily operates. Note that a private queue is only ever accessed by
its owner thread and does not need a lock. When a private queue
fills up, some of its tasks are moved to the global queue. When a
private queue is empty, it gets some tasks from the global queue.

Typically, distributed task stealing results in better performance
than hierarchical task queuing due to its better caching behavior.
However, when the available parallelism is limited, hierarchical
task queues can sometimes perform better.

3. A CASE FOR FINE-GRAINED
PARALLELISM

Previous work on dynamic load balancing [1, 4, 5, 6, 8, 12, 14,
16, 22, 24, 26, 29, 34, 35] targeted coarse-grained parallelism. By
this, we mean parallel sections with either large tasks, a large num-
ber of tasks, or both. They primarily targeted scientific applications
for which this assumption is valid [2, 36]. For these applications,
an optimized software implementation (Section 2.3) delivers good
load balancing with acceptable performance overheads.

The widespread trend towards an increasing number of cores be-
coming available on mainstream computers—both at homes and
at server farms—motivates efficient support for fine-grained paral-
lelism. Parallel applications for the mainstream are fundamentally
different from parallel scientific applications that ran on supercom-
puters and clusters in a number of aspects. These include:

2A variant of distributed task stealing where the queue from which
a task is stolen is chosen at random.
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Figure 2: Theoretical Scalability: Shows the speedup that could
be achieved if the parallel program could be statically parti-
tioned into a given number of tasks of equal size.

Architecture:. CMPs dramatically reduce communication latency
and increase bandwidth between cores. This allows parallelization
of modules that could not previously be profitably parallelized.

Workloads:. To understand emerging applications for the multi-
core architecture, we have parallelized and analyzed emerging ap-
plications (referred to as RMS [10, 32]) from a wide range of ar-
eas including physical simulation for computer games [28] as well
as for movies [11], raytracing, computer vision, financial analyt-
ics [20], and image processing. These applications exhibit diverse
characteristics. On one hand, a number of modules in these appli-
cations have coarse-grained parallelism and are insensitive to task
queuing overheads. On the other hand, a significant number of
modules have to be parallelized at a fine granularity to achieve rea-
sonable performance scaling.

Recall that Amdahl’s law dictates that the parallel scaling of an
application is bounded by the serial portion. For instance, if 99% of
an application is parallelized, the remaining 1% that is executed se-
rially will limit the maximum scaling to around 39X on 64 threads.
This means that even small modules need to be parallelized to en-
sure good overall application scaling.

Performance Robustness:. Parallel scientific computing applica-
tions are often optimized for a specific supercomputer to achieve
best possible performance. However, for mainstream parallel pro-
grams, it is much more important for the application to get good
performance on a variety of platforms and configurations. This has
a number of implications that require exposing parallelism at a finer
granularity. These include:

• The number of cores varies from platform to platform. Further,
mainstream parallel applications run in a multiprogrammed en-
vironment where the number of cores can vary not only across
runs but also during a single execution. To achieve performance
improvements from each additional core requires finer granu-
larity tasks. Figure 2 illustrates this with a simple example.
Consider a parallel program that can be broken down into equal
sized tasks. If the program is split into 64 tasks, it can theoret-
ically achieve perfect scaling (32X) on 32 cores because each
core can execute 2 tasks. However, if it executes on 33 cores,
it achieves no improvement in performance over 32 cores be-
cause the performance is dictated by the thread that takes the
longest. In this case, most of the threads still have to execute 2
tasks each. In fact, this program would not run any faster un-
til 64 cores are made available to it. As the figure shows, the
situation can be improved by increasing the number of tasks.
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• CMPs are often asymmetric because many are composed from
cores supporting simultaneous multithreading. Two threads
sharing a core run at a different rate than two threads running
on two different cores. In addition, CMPs may be designed
with asymmetric cores [13, 15]. To ensure better load balanc-
ing in the presence of hardware asymmetry, it is best to expose
parallelism at a fine grain.

Ease of Parallelization:. The use of modularity will continue to
be very important for mainstream applications. Further, parallelized
libraries are an effective way of delivering some of the benefits of
parallelization to serial applications that use them [21]. This re-
quires the module/library writer to expose the parallelism within
each module. The result will be finer granularity tasks.

We should clarify that our claim is not that all (or even a majority)
of modules in applications need to exploit fine-grained parallelism.
However, for all the reasons listed above, a significant number of
modules will benefit from exploiting fine-grained parallelism. The
goal of this work is to provide efficient hardware support for fine-
grained parallelism.

4. ARCHITECTURAL SUPPORT FOR FINE-
GRAINED PARALLELISM

The overheads involved in software implementations of task queues
restrict how fine-grained the tasks can be made and still achieve
performance benefits with a larger number of cores. Therefore, we
propose Carbon, a hardware design for scalable CMPs that accel-
erates task queues. Carbon provides low overhead distributed task
queues, as described in Section 2.3, and is tolerant to increasing
on-die latencies. Carbon achieves this by implementing key func-
tionality of distributed task queues in hardware. In particular, we
store tasks in hardware queues, implement task scheduling in hard-
ware, and prefetch tasks from the task storage to the cores so that
each thread can start a new task as soon as it finishes its current one.
We use distributed task stealing as a basis for our design rather than
hierarchical queues because distributed task stealing often results in
significantly better cache performance (Section 6.2).

A software library provides a wrapper for Carbon so that pro-
grammers can work with an intuitive task queue API. Multiple li-
brary implementations are possible. In fact, we expect that there
will be different implementations, for example, for applications
dominated by loop-level parallelism versus task-level parallelism.

4.1 Task Structure
From the task queue hardware perspective, a task is simply a tu-

ple. In the current implementation, it is a tuple of four 64-bit values.
Carbon does not interpret the contents of the tuple. This provides
flexibility to the software as well as the ability to optimize special
cases. The software library wrapper that uses Carbon determines
the meaning of each entry in a tuple. Typically, the entries will be
function pointers, jump labels, pointers to shared data, pointers to
task-specific data, and iteration bounds, but could be anything.

There is one instance in which Carbon assigns meaning to two
fields of the tuples to provide efficient support for parallel loops
(see TQ ENQUEUE LOOP in Section 4.2).

4.2 ISA Extension
For Carbon, after the task queue is initialized, the various threads

in the program perform task enqueues (i.e., add a task to the pool
of tasks stored in the task queues so that it can be executed in the
future) and dequeues (i.e., remove a task from the pool of tasks
stored in the task queues for execution).

The hardware task queues have only limited capacity. In order
to support a virtually unbounded number of tasks for a given pro-
cess, and to support a virtually unbounded number of processes,
we treat the hardware queues as a cache. Therefore, we provide
mechanisms to move tasks out of the hardware task queues into the
memory subsystem and back. Carbon triggers user-level exceptions
when the number of tasks goes above or below certain thresholds,
which allows a software handler (in the wrapper library) to move
tasks between the hardware task queues and memory.

We extend the ISA to use Carbon with the following instructions
and exceptions:
• TQ INIT: This instruction specifies the number of threads in

the process and initializes Carbon for all the threads.
• TQ END: This instruction signals that no new tasks will be

enqueued by the process. Any threads in the process that are
blocked on a TQ DEQUEUE (see below) instruction are un-
blocked without returning a task. This is typically invoked at
the end of the program.

• TQ ENQUEUE: This instruction adds a task to the pool of
tasks stored in the task queues.

• TQ ENQUEUE LOOP: This instruction is intended to greatly
accelerate the enqueue process for parallel sections with loop-
level parallelism. This is the sole instruction where Carbon
assigns any meaning to fields of the tuples. Consider a parallel
loop where the loop index starts at zero and goes to N and
where we want the granularity of a task to be S iterations.3

In this case, the TQ ENQUEUE LOOP instruction is invoked
with the tuple: < v1, v2, N, S >. This results in a set of �N

S
�

tasks being enqueued, each of the form: < v1, v2, b, e > where
b is the starting iteration and e is the ending iteration for that
task. As before, Carbon assigns no meaning to v1 and v2 (it is
up to the software library to assign their meanings).

• TQ DEQUEUE: This instruction tries to remove a task from
the pool of tasks stored in the task queues. If a task is avail-
able, the task is removed from the pool and returned by this
instruction. If no tasks are available, the instruction blocks un-
til one becomes available and then returns it. There are two
situations in which this instruction completes without finding a
task. First, a different thread has executed TQ END signaling
that no new tasks are going to be enqueued in the process. Sec-
ond, all threads in the process are blocked on TQ DEQUEUE.
In this case, the main thread (the one that invoked TQ INIT)
will execute its TQ DEQUEUE instruction without returning a
task. This effectively works like a barrier at the end of a parallel
section. The main thread can then continue executing instruc-
tions. Typically, it will continue executing the serial section
following the parallel section just completed. When it reaches
the next parallel section, it can enqueue new tasks.

• TQ Overflow exception: This exception is generated if a thread
tries to enqueue a task when there is no space left in the hard-
ware queues. The exception handler can then remove some of
the tasks (e.g., a third of them) and store them in some data
structure in memory. This allows the process to enqueue a
group of new tasks before triggering another overflow excep-
tion. After an overflow, an overflow bit is set for that process to
indicate that there are tasks in memory.

• TQ Underflow exception: If the overflow bit is set (indicating
that there are some tasks that were overflown into software)
and the number of tasks falls below a certain, programmable
threshold, this exception is generated. This allows the software
to move some of the tasks out of a software data structure back

3Loops that do not conform to this can typically be mapped into
this form.
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Figure 3: Example CMP with Carbon hardware support for task queues. The shaded portions are additional hardware for Carbon.

into the hardware queues. By doing so before the task queue
is completely empty, this prevents the threads from waiting for
tasks while the task queues are being refilled.

• TQ SETLIMIT: This instruction specifies the threshold for trig-
gering an underflow exception. If the threshold is 0, it clears
the overflow bit, preventing the TQ Underflow exception from
being triggered.

4.3 Design
In this work we consider a CMP where the cores and last-level

cache are connected by an on-die network. Carbon has two compo-
nents: a centralized global task unit and a per-core local task unit.
Figure 3 shows a CMP with Carbon.

4.3.1 Global Task Unit (GTU)
Carbon’s global task unit holds enqueued tasks in a set of hard-

ware queues. Carbon implements logically distributed task queues;
thus, it has a hardware queue per hardware thread (hardware con-
text) in the system. The queues support insertion and deletion for
tasks at either end (but not in the middle). Thus, while we refer to
these structures as queues, they are actually double-ended queues.
By disallowing random access to the queues we keep the hardware
complexity of the queue implementation low.

Recall that a tuple enqueued by TQ ENQUEUE LOOP expands
into multiple tuples. The amount of buffer space used in the GTU
can be greatly reduced by doing this expansion lazily.

The global task unit also implements the task scheduling policies
described in Section 2.3. Since the queues are physically located
close to each other, the communication latency between the queues
is minimized. This allows for fast task stealing and also fast deter-
mination of when all tasks are complete. Communication between
the global task unit and the cores uses the same on-die interconnect
as the cache subsystem. The downside of physically centralized
hardware queues is that as the number of cores scales up, the la-
tency for a core to communicate with the global task unit increases.
We address this with task prefetchers, discussed below.

4.3.2 Local Task Unit (LTU)
Each core has a small local task unit to interface between the

core and the global task unit. Although not necessary, the local
task unit also contains hardware to hide the latency of dequeuing
a task from the global task unit (up to 50 cycles in the system we
study). If a thread waits to send a dequeue request to the global
task unit until it is done with its current task, it will stall waiting
for the next task. If tasks are small enough, these stalls may be a
significant fraction of execution time. Therefore, the local task unit
includes a task prefetcher and a small prefetch buffer.

Task dequeues. On a dequeue, if there is a task in the prefetch
buffer, that task is returned to the thread and a prefetch for the next
available task is sent to the global task unit. We find that for our
system and benchmarks, prefetching and buffering a single task is
sufficient to hide the dequeue latency. We study sensitivity to the
global task unit access latency in Section 6.

When the global task unit receives a prefetch request, it returns
a task to the requester, removing it from the hardware queues. That
is, a task in a prefetch buffer is not visible to the global task unit
and so cannot be stolen by other threads. When there are very few
tasks in the system, this can lead to load imbalance if one thread has
a task sitting in its prefetch buffer and another thread has nothing
to do; therefore, when the global task unit holds fewer tasks than
there are threads, it rejects prefetches.

Task enqueues. Since Carbon uses a LIFO ordering of tasks for
a given thread, when a thread enqueues a task, it is placed in the
thread’s task prefetch buffer. If the buffer is already full, the oldest
task in the buffer is sent to the global task unit.

If a thread executes a TQ ENQUEUE LOOP, it does not buffer
it, but instead sends it directly to the global task unit.

4.4 Software Issues
The contents of the hardware queues in the global task unit and

the prefetch buffer in the local task unit are additional state kept
for each process. This raises the questions of how Carbon handles
context switching and a multi-programming environment.

Carbon handles context switches as follows. An application pro-
vides a pointer to a memory region in its application space where
the tasks can be “swapped out” when the process is context-switched
out. On a context switch, the OS then moves all the tasks to the
specified region. The underflow mechanism moves the tasks back
into the hardware queues when the process is context-switched in.
Since the prefetch buffer we propose is only a single entry, it is
treated as a small set of special-purpose registers (one for each en-
try in the tuple).

Carbon supports multiprogramming by maintaining separate pools
of tasks for each process. Since there is a hardware queue per hard-
ware thread context, individual hardware queues belong to a spe-
cific process (the one running on the corresponding hardware con-
text). This ensures that each hardware queue only has tasks from
one process, and requires only a process id per hardware queue.
The task assignment logic also uses the process id to only poll the
queues belonging to the process when task stealing and determin-
ing if all tasks are complete.
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Processor Parameters
# Processors 1–64
Processor width 2

Memory Hierarchy Parameters
Private (L1) cache 32KB, 4-way, 64B line
Shared L2 cache 16MB, 16 banks, 8-way
Interconnection network Bi-directional ring

Contentionless Memory Latencies
L1 hit 3 cycles
L2 hit 18–58 cycles
Main memory access 298–338 cycles

Table 1: Simulated system parameters.

4.5 Alternative Designs
For loop-level parallelism, we also experimented with an alterna-

tive design similar to the Virtual Vector Architecture (ViVA) pro-
posal [25, 33]. In this design, a virtual vector unit automatically
decomposes vectorizable loops into chunks and distributes them to
a group of processors. This unit decides an appropriate chunk size
based on the number of iterations, loop body, and the latency to
distribute chunks to the different processors. Experimental results
show that the performance of this design and Carbon is compa-
rable. However, unlike Carbon, ViVA does not address task-level
parallelism.

Another design point that we implemented included a compo-
nent similar to LTU on each core. However, it did not include a
GTU. This design performed buffering and prefetching similar to
Carbon but used a bigger local buffer. This scheme maintained
the global pool of tasks in memory (similar to software distributed
task stealing) which is accessed by the hardware whenever the lo-
cal buffer overflows or underflows. However, Carbon yielded much
better performance compared to this design.

5. EVALUATION FRAMEWORK

5.1 System Modeled
We use a cycle-accurate, execution-driven CMP simulator for

our experiments. This simulator has been validated against real
systems and has been extensively used by our lab. Table 1 summa-
rizes our base system configuration.

We model a CMP where each core is in-order and has a private
L1 data cache, and all processors share an L2 cache. Each L1 cache
has a hardware stride prefetcher. The prefetcher adapts how far
ahead it prefetches—if it detects that it is not fully covering mem-
ory access latency, it issues prefetches farther out. The processors
are connected with a bi-directional ring, and the L2 cache is broken
into multiple banks and distributed around the ring. Inclusion is
enforced between the L1s and L2. Coherence between the L1s is
maintained via a directory-based MSI protocol. Each L2 cache line
also holds the directory information for that line. The ring has 41
stops, each of which can have two components connected to it (i.e.,
processor core, L2 cache bank, or global task unit).

For experiments with Carbon, we add hardware as described in
Section 4.3 to the system. We charge eight cycles for an access
(e.g., enqueue or dequeue) to the global task unit. This is in ad-
dition to the latency from the cores to the global task unit over
the on-chip network. The global task unit can initiate handling for
one access per cycle. In our design, all accesses to the global task
unit (whether accessing a thread’s own queue or stealing task from
another queue) are fully pipelined and take the same number of cy-
cles. An alternative would be to make accesses to a thread’s own

queue faster and pay extra overhead for work stealing. However,
the lower design complexity together with the relative insensitivity
to this latency (Section 6.2) motivated our choice.

We introduce new instructions to allow software to interact with
the task queue hardware, as described in Section 4.2. Each of these
instructions has a latency of five cycles. This includes the time to
access the local task unit. Any interaction with the global task unit
incurs additional latency as explained above.

5.2 Task Queue Implementations
We compare the performance of Carbon with a number of other

implementations to evaluate its benefits. As explained in Section 2.2,
we consider loop-level and task-level parallelism separately.

All task queue implementations spawn worker kernel threads
during initialization since spawning threads is expensive. The num-
ber of threads is the same as the number of cores in our experi-
ments. In serial sections, all the worker threads wait in an idle loop
for parallel tasks to become available.

Loop-Level Parallelism:. Loop-level implementations are differ-
ent from task-level implementations in a number of ways that makes
them significantly more efficient. First, they use jumps and labels
to transfer control between the tasks and the idle loop. Second, they
exploit the fact that a list of tasks from consecutive iterations can
be expressed as a range (i.e., a pair of numbers) rather than main-
taining explicit queues. They also allow dequeues to be performed
more efficiently using atomic-decrement instructions instead of us-
ing locks. Finally, since all tasks are enqueued at once at the start
of the loop, these implementations do not need to handle the case
where new tasks become available dynamically. This allows the
end of the parallel section to be implemented using an efficient tree
barrier.

We evaluate the loop-level benchmarks using three implementa-
tions.
• S/W is an optimized version of the software implementation

that uses distributed task stealing (Section 2.3) and the opti-
mizations described above.

• Carbon uses our proposed architecture support from Section 4.
We use a very thin interface between the application and the
task queue hardware for this implementation.

• Ideal is an idealized version of Carbon. It uses the same in-
structions as Carbon to interact with the global task unit, and
we charge the same latency for them. However, these instruc-
tions immediately affect the global task unit and do not require
sending a message over the interconnect. This means that tasks
that are enqueued are immediately visible to all threads. Also,
Ideal does not use a local task unit since there is no latency to
hide.

For these loop-level parallelism experiments, we assume that the
L2 cache is warmed up, since this is the common case when these
operations are used.

Task-Level Parallelism:. These implementations have to handle
the more general case where a task can be enqueued at any point
in the parallel section. Unlike the loop-level implementations, a
task is represented here as a function pointer together with a set of
arguments. This makes a task more general but incurs function call
overheads for each task.

We evaluate the task-level benchmarks using four implementa-
tions. We found that there was no single software implementa-
tion that consistently performed best. Therefore, we include results
from two different software implementations.
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Benchmark & Description Datasets # of Tasks Avg. Task Size†

Loop-Level Parallelism

Gauss-Seidel (GS) 128x128, 2 iterations 512 1704
Red-Black Gauss-Seidel on a 2D Grid 512x512, 2 iterations 2048 6695
Dense Matrix-Matrix Multiply (MMM) 64x64 256 806
Both matrices are dense 256x256 4096 3067
Dense Matrix Vector Multiply (MVM) 128x128 128 1195
Both matrix and vector are dense 512x512 512 4679
Sparse Matrix Vector Multiply (SMVM) c18: 2169 rows, 2169 columns, 8657 non-zeros 543 329
Matrix is sparse, Vector is dense gismondi: 18262 rows, 23266 columns, 136K non-zeros 4566 588
Scaled Vector Addition (SVA) 4K elements 128 599
Computes V3 = a × V1 + b × V2 16K elements 512 598

Task-Level Parallelism

Game physics solver (GPS) model1 : 800 bodies, 14859 constraints, 20 iterations 63436 3285
Constraint solver for physical simulation in games model4 : 4907 bodies, 96327 constraints, 20 iterations 402754 4118
Binomial Tree (BT) Tree of depth 512 595 8477
1D Binomial Tree used for option pricing Tree of depth 2048 9453 8765
Canny edge detection (CED) camera4 : 640x480 image of a room 41835 739
Detecting edges in images costumes : 640x480 image of people 127699 335
Cholesky Factorization (CF) world: 28653 columns, 1.33M non-zeros 189082 13876
Cholesky factorization on a sparse matrix watson: 209614 columns, 3.78M non-zeros 641330 5364
Forward Solve (FS) mod: 28761 columns, 1.45M non-zeros 19558 4730
Forward Triangular solve on a sparse matrix pds: 15648 columns, 1.18M non-zeros 13855 5045
Backward Solve (BS) ken: 78862 columns, 2.18M non-zeros 70956 2231
Backward Triangular solve on a sparse matrix world: 28653 columns, 1.33M non-zeros 19372 3005

Table 2: Benchmarks. †The average task size (in cycles) is from a one-thread execution with Carbon.

• S/W Distributed Stealing is a software implementation of dis-
tributed task queues (Section 2.3) that has been heavily opti-
mized for small tasks.

• S/W Hierarchical is an optimized software implementation of
hierarchical task queues (Section 2.3).

• Carbon uses our proposed architecture support from Section 4.
The application interfaces with the hardware using a library
that supports the same API as the software implementations.

• Ideal is an idealized version of Carbon analogous to that de-
scribed earlier for loop-level parallelism.

All implementations described here have been developed and op-
timized over two years. This included detailed analysis of execu-
tion traces and, when profitable, using assembly instructions di-
rectly. In addition, the software implementations employ a number
of heuristics (for instance, the number of tasks that are moved be-
tween queues) that can have a big impact on performance [18, 19,
23] and benefited from careful tuning. The performance of these
implementations was validated by benchmarking them against Cilk [4],
TBB [22], and OpenMP [29]. These implementations have been
used to parallelize over a dozen workloads each with thousands of
lines of code.

5.3 Benchmarks
We evaluate our proposed hardware on benchmarks from a key

emerging application domain: Recognition, Mining, and Synthe-
sis [10, 32]. All benchmarks were parallelized within our lab. We
give the benchmarks and the datasets used in Table 2.

Loop-level parallelism:. We use primitive matrix operations and
Gauss-Seidel for our loop-level parallelism experiments since these
are both very common in RMS applications and very useful for a
wide range of problem sizes. Their wide applicability allows an op-
timized and parallelized library to deliver benefits of parallelization
to serial programs (Section 3). Delivering good parallel speedups
to smaller problem sizes increases the viability of this approach.

Most of these benchmarks are standard operations and require
little explanation. The sparse matrices are encoded in compressed
row format. GS iteratively solves a boundary value problem with

finite differencing using red-black Gauss-Seidel [31]. The matrix
elements are assigned red and black colors (like a checker board).
Each iteration requires two passes: the first updates values for the
red elements while the second updates the values for the black ele-
ments. Each update accesses values on its 4 neighbors.

These benchmarks are straightforward to parallelize; each paral-
lel loop simply specifies a range of indices and the granularity of
tasks. For instance, in SMVM, each task processes 4 rows of the
matrix.

We evaluated each benchmark with two problem sizes to show
the sensitivity of performance to problem sizes.

Task-level parallelism:. We use modules from full RMS appli-
cations for our task-level parallelism experiments. They represent
a set of common modules across the RMS domain. Some of the
benchmarks are based on publicly available code, and the remain-
ing ones are based on well-known algorithms.

These benchmarks are: (1) GPS iteratively solves a set of force
equations in a game physics constraint solver [28]. The equations
are represented as a set of constraints, each of which involves two
objects. Solving a constraint on an object must be atomic. There-
fore, a task is to solve a single constraint, and the task dependences
form a graph. The benchmark is iterative, so for maximum per-
formance, the task graph has cycles rather than having a barrier
between iterations. (2) BT uses a 1D binomial tree to price a single
option [20]. The task dependences form a tree, where work starts
at the leaves. (3) CED computes an edge mask for an image us-
ing the Canny edge detection algorithm [7]. The most expensive
parallel region in this benchmark grows the edge mask from some
seeded locations in a breadth-first manner. A task is to check if a
single pixel should be classified as edge and if its neighbors should
also be checked; therefore, the task dependences form a graph. (4)
CF performs Cholesky factorization on a sparse matrix [21]. It in-
volves bottom-up traversal of a tree where each node is a task and
the edges represent dependences between tasks. (5) BS performs a
backward triangular solve on a sparse matrix [21]. The matrix is
pre-partitioned into groups of independent columns. A task is to
perform the computation on the elements in a group of columns.
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The task dependences form a tree, where work starts from the root.
(6) FS performs a forward triangular solve on a sparse matrix [21],
similar to BS. For this benchmark, the work starts from the leaves
of the task dependence tree.

6. EVALUATION

6.1 Performance benefits of Carbon
Figures 4 & 5 show the relative performance of the different im-

plementations for the loop-level and the task-level benchmarks, re-
spectively, when running with 1, 2, 4, 8, 16, 32, and 64 cores.

Carbon vs. optimized software.. Carbon delivers significantly
better performance than the software implementations (S/W, S/W
Distributed Stealing and S/W Hierarchical). For the loop-level
benchmarks in Figure 4, Carbon executes between 66% and 207%
faster than the software version on 64 threads for the smaller prob-
lem sizes. Even for the larger problem sizes, the performance ben-
efit is substantial (20% for SMVM and 73% for SVA). For the task-
level benchmarks in Figure 5, Carbon executes up to 435% faster
(for GPS on model1) and 109% faster on average compared to the
best software version.4 In GPS on model1, the parallelism available
is limited, especially for larger numbers of cores. In the software
implementations, the cores contend with each other to grab the few
available tasks, which adversely impacts performance.

Carbon vs. Ideal.. Carbon delivers performance similar to Ideal
in most cases (Carbon is 3% lower on average). For loop-level
benchmarks, Carbon executes around 12% and 7% slower than
Ideal for the smaller datasets of SMVM and SVADD, respectively.
This is due to the small size of the parallel sections. For task-level
benchmarks, Carbon is slower in two instances: by 10% for FS on
pds and 17% for GPS on model1. In these instances, the amount
of parallelism available is very limited. Consequently, the tasks
that are buffered in local tasks units (we currently buffer at most
one in each unit) are unavailable to idle cores. This hurts perfor-
mance. Note that in a few instances (e.g., BT for 2048), Carbon
performs marginally better than Ideal. This is because of second-
order effects such as caching and prefetching due to changes in the
execution order of tasks.

Comparing software implementations.. Finally, comparing the
two optimized software implementations for the task-level bench-
marks in Figure 5 demonstrates two points. First, neither S/W Dis-
tributed Stealing nor S/W Hierarchical consistently performs better
than the other. The best heuristic varies not only with the bench-
mark but also with the dataset and the number of cores. To allow a
programmer to get the best performance, the software implementa-
tions have to provide a number of knobs (which control the heuris-
tics) to the programmer. This makes performance tuning cumber-
some. Second, the performance of software implementations can
sometimes drop dramatically as the number of cores is increased
(e.g. GPS for model1), as explained above.

6.2 Sensitivity Analysis

Benefit of using distributed queues.. Carbon uses distributed queues
(one per hardware context) to store the tasks. An alternative would
be to use a single LIFO queue for this purpose.

4For each benchmark/dataset combination, we use the execution
time of the better performing software implementation.

Figure 6 (a) shows the slowdown from using a single LIFO queue
instead of distributed queues. This experiment was performed with
the idealized queues to avoid second-order effects due to imple-
mentation choices of Carbon. For each benchmark, the A and B
bars correspond to the first and second datasets in Table 2, respec-
tively. Overall, the slowdown from using a single queue is quite
significant (35% on average). For the task-level benchmarks, the
primary advantage of distributed queues is that the parent and child
tasks, which usually share data, are often executed on the same
core. This results in a much better L1 hit ratio. For the loop-level
benchmarks, each queue is assigned contiguous iterations when us-
ing distributed queues. On the other hand, using a single queue
results in a round-robin distribution of loop iterations to the cores.
This results in less temporal locality when consecutive iterations
share data (GS and MMM). In addition, the prefetcher efficiency is
worse with a single queue for all loop-level benchmarks. This is
because the stride is broken when the next task does not start its
iterations right after where the previous task ended.

Sensitivity to the latency to the GTU.. Carbon uses LTUs to hide
the latency to the GTU by buffering and prefetching tasks. Here,
we measure the effectiveness of the latency tolerance mechanism of
Carbon. The more latency tolerant Carbon is, the more flexibility a
chip designer has.

Figure 6 (b) shows the slowdown that would occur if we dra-
matically increased the latency to access the GTU. In our current
design, the GTU takes 8 cycles to process each request. We in-
creased this latency to 280 cycles (i.e., main memory access time)
and measured the performance impact.

For the task-level benchmarks, the performance degradation is
minimal for all benchmarks except CED. While the average task
sizes in our benchmarks are fairly small (Table 2), CED has a lot
of very small tasks (around 50 cycles). The current implementa-
tion of Carbon buffers only one task in the local task unit. This is
insufficient to hide the 280 cycle latency. However, this is easily
addressed by increasing the buffer size. The slowdown dropped
from 19% to 6% with buffer size 2, to 3% with buffer size 3, and to
0.5% with buffer size 6.

For the loop-level benchmarks, the performance degradation is
larger, especially for small problem sizes. This is because the par-
allel sections are fairly small. The impact is mostly due to the la-
tencies of starting and ending a parallel section. The local task unit
can not help in reducing these overheads.

Note that the goal of this experiment was to measure the sensitiv-
ity by dramatically increasing the latency. Realistically, there is no
reason for the latency to be this large (280 cycles). Consequently,
the actual impact for reasonable latencies will be much smaller.

Performance due to LTU in Carbon.. Carbon has two hardware
components: LTU and GTU. Figure 7 shows the percentage in-
crease in execution time if the task buffering and prefetching fea-
ture of LTU is disabled. The results are shown for two Carbon con-
figurations: (1) the baseline Carbon design, and (2) Carbon with a
280 cycle latency to the GTU. This experiment measures the con-
tribution of LTU to the overall performance.

For the baseline Carbon design, the slowdown is up to 10.3% and
14.8% respectively for the loop-level and task-level benchmarks.
For the higher-latency configuration, the slowdown is up to 39.1%
and 25.8%, respectively.

These results demonstrate that, for the baseline design, task buffer-
ing and prefetching in LTU accounts for a smaller fraction of the
performance benefit than the GTU. However, it makes Carbon very
latency tolerant. Recall that while the buffering and prefetching
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Figure 4: Loop-Level Parallelism: In each graph, all performance numbers are normalized to the one core execution time of Ideal. The
performance scales better on the larger problem sizes (shown on the right column) than on the smaller problem sizes (on the left column)
except for MMM. For MMM, the larger problem size coupled with a large number of cores saturates the on-die interconnect and prevents
scaling on 64 cores.
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Figure 5: Task-Level Parallelism: In each graph, all performance numbers are normalized to the one core execution time of Ideal.

171



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

BABABABABABABABABABABA

S
lo

w
do

w
n 

(%
)

(a)  Potential performance loss from a central queue

GS MMM MVM SMVM SVA GPS BT CED CF FS BS

Loop-Level Benchmarks Task-Level Benchmarks

222

 0

 10

 20

 30

 40

 50

 60

BABABABABABABABABABABA

S
lo

w
do

w
n 

(%
)

(b)  Performance degradation with high latency (280 cycles) to global task unit

GS MMM MVM SMVM SVA GPS BT CED CF FS BS

Loop-Level Benchmarks Task-Level Benchmarks

Figure 6: Sensitivity Analysis for Carbon. For each benchmark, the A and B bars are for the first and second datasets in Table 2
respectively. Note that some bars do not show up because the value is zero at those data points.

features of LTU are optional, the portion of LTU that implements
the Carbon instructions and communication with the GTU is es-
sential to the design. The small added hardware complexity of the
buffering and prefetching in LTU makes them a useful addition to
Carbon.

7. RELATED WORK
Most of the previous work on task queues is related to software

implementation as already discussed. There is some previous work
on using hardware to accelerate thread and task scheduling.

Korch et al. [18, 19, 23] explored different task queue implemen-
tations using a number of software as well as hardware synchro-
nization primitives. Some of their applications are insensitive to
task queue overheads. The others see benefit from hardware accel-
eration, but the benefit is still modest with their proposed scheme.

Hankins et al. [15] proposed Multiple Instruction Stream Pro-
cessing (MISP) as a mechanism to quickly spawn and manipulate
user-level threads, shreds, on CMP hardware contexts. Shreds are
not visible to the OS and can be invoked and terminated quickly
by an application thread, allowing them to efficiently execute fine-
grained tasks. However, MISP leaves task scheduling to the soft-
ware. Unlike MISP, Carbon uses OS managed threads and amor-
tizes the overhead of thread creation and termination by having
each thread process tasks from multiple sections. Carbon mini-
mizes task queuing overhead by implementing task queue opera-
tions and scheduling in hardware.

Chen et al. [9] argued for a software-hardware model that al-
lows programmers or compilers to expose parallelism while the
hardware modulates the amount of parallelism exploited. They
proposed Network-Driven Processor (NDP), an architecture that
uses hardware to create, migrate, and schedule threads to mini-
mize thread creation and context switching overhead. NDP’s thread

scheduler is implemented in hardware to minimize scheduling de-
lays. The hardware can quickly clone multiple threads for loop-
level parallelism. In addition, NDP provides queue support in hard-
ware for fast inter-thread communication. Despite hardware sup-
port for threading, NDP’s thread overhead is still too large for small
tasks. NDP shows only modest speedups for applications with a
significant number of small tasks (e.g., quicksort and othello). Car-
bon, on the other hand, provides good scaling for parallel sections
with tasks as small as hundreds of instructions.

8. CONCLUSIONS
CMPs provide an opportunity to greatly accelerate applications.

However, in order to harness the quickly growing compute resources
of CMPs, applications must expose their thread-level parallelism to
the hardware. We explore one common approach to doing this for
large-scale multiprocessor systems: decomposing parallel sections
of programs into many tasks, and letting a task scheduler dynami-
cally assign tasks to threads.

Previous work has proposed software implementations of dy-
namic task schedulers, which we examine in the context of a key
emerging application domain, RMS. We find that a significant num-
ber of RMS applications achieve poor parallel speedups using soft-
ware dynamic task scheduling. This is because the overheads of the
scheduler are large compared to the tasks for some applications.

To enable good parallel scaling even for applications with very
small tasks, we propose Carbon, a hardware scheme to acceler-
ate dynamic task scheduling. Carbon consists of relatively simple
hardware and is tolerant to growing on-die latencies; therefore it is
a good solution for scalable CMPs.

We compare Carbon to optimized software task schedulers and
to an idealized hardware task scheduler. For the RMS benchmarks
we study, Carbon gives large performance benefits over the soft-
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ware schedulers, and comes very close to the idealized hardware
scheduler.
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