
Run-time Adaptive Cache Hierarchy Management
via Reference Analysis

Teresa L. Johnson Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois

Urbana-Champaign, IL 61801
{tjohnson,hwu)Qcrhc.uiuc.edu

Abstract

Improvements in main memory speeds have not kept pace
with increasing processor clock frequency and improved ex-
ploitation of instruction-level parallelism. Consequently, the
gap between processor and main memory performance is ex-
pected to grow, increasing the number of execution cycles
spent waiting for memory accesses to complete. One solu-
tion to this growing problem is to reduce the number of cache
misses by increasing the effectiveness of the cache hierarchy.
In this paper we present a technique for dynamic analysis of
program data access behavior, which is then used to proac-
tively guide the placement of data within the cache hierarchy
in a location-sensitive manner. We introduce the concept of
a macroblock, which allows us to feasibly characterize the
memory locations accessed by a program, and a Memory
Address Table, which performs the dynamic reference anal-
ysis. Our technique is fully compatible with existing Instruc-
tion Set Architectures. Results from detailed simulations of
several integer programs show significant speedups.

1 Introduction

As improvements in processor performance outpace that of
main memory performance [l], the cache miss penalty will
dominate the cycle counts of many applications. The large
improvements in processor performance are due both to bet-
ter circuit design and fabrication technology, which reduce
the cycle time, and to better Instruction-Level Parallelism
(ILP) techniques, which increase the instructions executed
per cycle. The growing disparity between processor and
memory performance will make cache misses increasingly ex-
pensive. Not only do the cache misses result in more proces-
sor stall cycles, but in processors with dynamic scheduling,
they can also disrupt the compiler-generated ILP schedule.
Additionally, data caches are not always used efficiently. In

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-89791-901-7/97/0006...$3.50

315

numeric programs there are several known compiler tech-
niques for optimizing data cache performance. However,
integer programs often have irregular access patterns that
are more difficult for the compiler to optimize. Thii paper
focuses on data cache performance optimization for integer
programs.

In order to increase data cache effectiveness for integer
programs we have investigated methods of adaptive cache hi-
erarchy management, where we proactively control the move-
ment and placement of data in the hierarchy based on the
data usage characteristics. In this paper we present a mi-
croarchitecture scheme where the hardware determines data
placement based on dynamic referencing behavior. This
scheme is fully compatible with existing Instruction Set Ar-
chitectures.

Our scheme seeks to manage the cache in a manner that
is sensitive to the usage patterns of the memory locations
accessed. Since the number of memory locations is exces-
sively large, we introduce the notion of a macroblock. A mac-
roblock is a contiguous block of memory that is large enough
so that the maintainance overhead is reasonable, but small
enough so that the access pattern of the memory addresses
within each macroblock is statistically uniform. A hardware
mechanism called the Memory Address Table (MAT) is in-
troduced to maintain and utilize the access patterns of the
macroblocks to direct data placement in the cache hierarchy.
We show that this extension to the cache microarchitecture
significantly improves the overall performance of integer ap-
plications. The improvements are due to increased cache hit
rates and reduced cache handling latencies.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work; Section 3 contains a case study
of a particular benchmark es well as some main concepts
used to motivate and develop this work; Section 4 discusses
the hardware implementation; Section 5 presents simulation
results and performs a cost analysis of the added hardware;
and Section 6 concludes with future directions.

2 Related Work

Several methods exist to overlap memory accesses with other
computation in the processor, attempting to hide the mem-
ory latency. Write buffers can often successfuIly hide the
latency of write misses by buffering the write data until the

bus is idle. Non-blocking caches allow multiple outstanding
load misses without stalling the processor, in order to overlap
load miss latency with other computation that does not con-
sume the result of an outstanding load miss [2]. Prefetching
attempts to fetch data from main memory to the cache be-
fore it is needed, which also overlaps the load miss latency
with other computation. Both hardware [3][4][5][6][7] and
software [8][9][10][11][12] prefetching methods for uniproces-
sor machines have been proposed. However, many of these
methods focus on prefetching regular array accesses within
well-structured loops?, which are access patterns primarily
found in numerical applications. There is also a great deal of
prior work on prefetching in multiprocessors, but since their
focus is even more on optimizing numerical applications, we
will not review them here.

While these schemes attempt to hide the latency of load
misses, our work focuses on reducing the .effective memory
latency seen by the processor through the reduction of both
conflict and capacity misses, and their effects. Victim caches
also attempt to reduce conflict miss effects in caches with
low associativity [4]. While victim caches work well for some
programs, as we will show in Section 5.2, they do not greatly
improve programs that have large working sets.

Methods for both static and dynamic cache bypassing have
also been investigated. In their pioneer work [13], Tyson et
al. proposed a method where loads are marked for cache by-
pass either statically by the compiler, or dynamically at run-
time. While we also investigate cache bypassing, our work
differs in several key aspects. First, Tyson et al. use miss
behavior of the load as the main decision metric, and reuse
behavior as a secondary metric, for determining whether to
bypass that load’s data. Our work focuses on the reuse be-
havior, because data that tend to miss may still have high lo-
cality that would result in reuse while in the cache. Secondly,
they decide whether to bypass data based on the particular
load referencing that data. As we will show in Section 3.1, a
single load instruction may reference data with widely vary-
ing access patterns. Therefore, we designed a mechanism to
determine whether to bypass based on the data address. As
a result, we see an increase in cache hit ratios, a decrease
in the bus traflic and a decrease in total cycle counts, while
they achieve a decrease in the bus traffic at the expense of
a small drop in the cache hit ratios, which may result in
performance degradation.

Another study [14] presented a hardware bypassing mech-
anism based on reuse behavior of cached locations, and was
proven effective for numeric programs. Their mechanism
only performs bypassing of the first-level data cache, whereas
we study bypassing of both cache levels. It is important to
improve second-level cache performance, since system bus
latencies are large. Also, their scheme marks a cache block
for bypass permanently until the corresponding block is re-
placed from the second-level cache, at which time all reuse
information is lost. We overcome this limitation by keeping
track of reuse behavior in a separate structure, and by al-
lowing bypass decisions to vary based on dynamic accessing
behavior.

Some of our techniques, in particular the bypass buffer

‘By regular we mean arrays indexed by the loop iteration vari-
able, or some other induction variable.

presented in Section 4.2, could be used in synergy with both
of these schemes to obtain improved performance.

3 Concepts

3.1 Case Study

316

To understand some of the inefficiencies of current cache hi-
erarchies it is helpful to first examine the accessing behavior
of a particular application in detail. Figure 1 shows the main
loop body of the 026.compress program from the SPLi’C~2
benchmark suite [15]. Over 90% of compress’ execution tima
is in this loop body. Many of the memory accesses in com-

press are to its hash tables, htal, and codetab (the lines con-
taining the hash table load accesses are numbered’), Due
to the large hash table sizes (htab and codetab are roughly
270K and 135K bytes, respectively) and the fact that the
hash table accesses have little temporal or spatial locality,
there is very little reuse in a first-level data cache.

Table 1 shows the hash table loads’ dynamic execution
counts, miss ratios and reuse ratios obtained via memory
access profiling. A simple cache simulation was performed
to determine whether each of the accesses was a first-level
cache hit or miss in a direct-mapped 16K cache with 32-
byte lines3. Also, the profiler kept track of reuse ratios”.
The table shows that, indeed, the hash table load ~CCCSSCY
have high miss ratios and little reuse of the accessed data,

In order to obtain a clearer picture of how the hash tables
are accessed throughout the dynamic execution of the pro-
gram, we profiled the accesses as explained above and plotted
the address distribution for a given execution phase. The
profiling results for a lOOOOO-cycle sample of compress are
shown in Figure 2. The memory access distribution for htd

is shown in Figure 2a, where htab starts at address 171680
(all addresses are offsets from a base address of 1073741824,
or 1G). As the htab distribution shows, much of htab is rcla-
tively sparsely accessed, except for two bands that are heav-
ily accessed. These bands are located roughly from addresses
200000 to 220000 r+nd 257000 to 300000. Looking at sovoral
other execution phases of compress shows that this pattorn
remains the same throughout the execution,

Analogous to Figure 2a, Figure 2b shows the access die-
tribution for codetab. The access patterns of the two figures
look similar since codetab is accessed with the same index as
htab.

The memory access distributions of Figure 2 illustrate the

2The other load accesses to htab in this loop can be oliminatcd
through load elimination optimizations

3This profiler is a simplified version of the detailed simulator
used to generate the results presented in Section 5,2. Unlike the
simulator, the profiler assumes a single-issue, in-ardor machino
and zero-cycle load latencies to simplify handling back-to-back
accesses to the same cache block. More details on the simulntor
are given in Section 5.1.3.

4The reuse ratio is calculated in the following way, If !o&d
A accesses a cache block (whether a hit or miss), on a following
hit by load B to that cache block the reuse counter for load A
is incremented once. If another access by load C is a hlt to the
same cache block, the counter for load B is incremented, and SO
on. The total number of reuses counted for a load, divided by its
dynamic execution count, is that load’s reuse ratio. Thoroforo,
some of the hits will have reuse, as will some of the misses.

- -.-

vhile ((c = g&char()) != EOF) C
in-count++;
fcode = (long) (((long) c C< maxbits) + ent);
i = ((c << hshift) - ent);

1. if (htabof (i) == fcode > I
2. ent = codetabof (9;

continue;
3 else if ((1ong)htabof (i) < 0 > goto nomatch;
disp = hsize-reg - i;
if (i == 0) disp = 1;

probe:
if ((i -= disp) C 0) i += hsize-reg;

3. if (htabof (i) == fcode) 1
4. ent = codetabof (i);

continue;
3
if ((1ong)htabof (i) > 0 1 goto probe;

nomatch:
output ((code-int) ent 1;
out~count++;
ent = c;
if (free-ent < maxmarcode) C

codetabof (i) = free-ent++;
/* code -> hashtable */

htabof (i) = fcode;
3
else if ((count-int)in,count >= checkpoint

%% block-compress 1
cl-block 0;

3

Figure 1: Compress Main Loop Code

Dynamic
Hash Execution Miss R‘Xse

Line Table count Ratio Ratio

1 htab 999999 78.9% 29.2%

2 codetab) 566776 70.8% 30.0%
3 htab 1 1803911 91.4% 15.6%

4 codetab 1 182336 89.1% 11.5%

Table 1: Profiling Statistics for Hash Table Load Accesses
(direct-mapped, 16K-byte data cache with 32-byte lines,
single-issue processor). Two-way and four-way cache pro-
flies exhibit similar behavior.

inherent problem with schemes that determine how to handle
data based on the particular load instruction that requested
the access [13]. In compress there are only two load instruc-
tions in the main loop body that access htab. However, from
the distributions we see that these loads can access data with
dramatically different usage patterns, even during small time
intervals. Schemes that decide where to place the data in the
cache hierarchy baaed on the load instruction accessing that
data, whether in a static or dynamic manner, must face the
challenge of giving each dynamic instance of a load instruc-
tion different treatment. Otherwise, information is lost and
some data will be mishandled.

Figure 3 shows how we would like to handle accesses to
data with different usage frequencies. In Figure 3a accesses
to differently accessed regions of memory will map into the
same cache lines, causing conflict or capacity misses. As-
sume that an access to a block in an infrequently accessed
region of the memory misses in cache and that the conflicting
block that would be replaced from the cache under a normal
cache management policy is from a heavily accessed region.
Instead of replacing the heavily accessed block, which has a

much greater chance of being reused in the near future, we
would like the missing block to bypass the cache. In this case
the missing block would not be placed in the cache, as illus-
trated in Figure 3b. Bypassing infrequently accessed data
when it conflicts with much more frequently accessed data
will result in less cache pollution, and therefore increased
reuse of more frequently accessed data, resulting in an over-
all increase in the hit ratio. To perform thii selective cache
bypassing, we need some method of tracking the access be-
havior of different memory regions.

3.2 Macroblocks

Ideally, we would like to keep track of the usage fiequen-
ties of all cache block size data in memory. While this
would give us the most accurate information, it would re-
sult in an unmanageably large amount of information. In-
stead, we combine groups of adjacent cache block size data
into larger blocks called macrobloc&. The size of the mac-
roblocks should be large enough so that the total number
of macroblocks residing in the accessed portion of memory
is not excessively large, but small enough so that the ac-
cessing frequency of the cache blocks contained within each
macroblock is relatively uniform. If we can keep track of
each macroblock’s accessing frequency through some hard-
ware mechanism, then we can determine on a macroblock
basis whether or not to cache the contained data.

In order to determine the best size of a macroblock in
practice, we studied the uniformity of cache block access
frequencies within the macroblocks for several macroblock
sizes. The number of accesses to each cache block in mem-
ory was first profiled. Then, for each macroblock size, the
mean and standard deviation of the number of accesses to
the cache blocks contained within each macroblock in mem-
ory were computed. For a high intra-macroblock accessing
uniformity most of the macroblocks should have relatively
small standard deviations.

Figure 4 shows the results for macroblock sizes of 256, lK,
4K and 16K-bytes for compress. The y-axis is a loglo scale
of the standard deviation divided by the mean (in order to
normalize the results), and the x-axis is the percentage of
macroblocks with a standard deviation divided by mean less
than or equal to the plotted value. The curve for 256-byte
macroblocks has the lowest standard deviations, however
using 256-byte macroblocks may result in too many total
macroblocks to feasibly track. Using lK-byte macroblocks,
which would include four times as many cache blocks per
macroblock, may be much more feasible and still result in
most macroblocks having high uniformity. For this size,
about 60% of the macroblocks lie within 20% of the mean,
with almost 90% within 50% of the mean. The 4K-byte
curve is only slightly higher, but the 16K-byte curve does not
look quite as good. The curves for other benchmarks have
similar characteristics, and will not be presented here due
to space constraints. A large number of simulations confirm
that lK-byte macroblocks provide the best cost-performance
tradeoff. Therefore, we chose lK-byte macroblocks for all
experiments presented in this paper.

317

y?-; - SjkS'a.2 x. _ ---- . ---

(a) htab (b) codetab

Figure 2: Memory Access Distributions for htab and codetab

I Main Memory

lnlrequenuy
Accessed

Fraquenlly
Accessed

I
.^ ^“- -xII ,.,-

I
(a) Conflicts Between Data with Different Usage Patterns

Figure 3: Conflict Misses in Compress.

I

..,.....-...” ..,,....-...... “” ““....“.......” ..,-... ..I.._...“”I ,.......e... zj

.*,.....,. ..,.......-., ‘... *....,.... ..,....* r”,.~r.“rr.r-.r”.“l.--.-“,-“,--.---.-,
%I

... .

IV

. ..^ . “.,.......- . ..-1 a....-..... . .,...............Y. ++,S38~~ylemasrob,ock-~

.... W...X........Y~....- . ..a ^.“L .-.-. I--I.Y.Y.U-.Y.UILII-~”

“i

Figure 4: Macroblock Access Uniformity

I Main Memory

(b) Bypassing Less Frequently Accessed Addresses

4 Hardware

4.1 Memory Address Table

In order to keep track of the macroblocks at run time WC uso
a table in hardware called a MernonJ Address Tulle, or MAT.

The MAT ideally contains an entry for each macroblock,
Each entry in the table contains a saturating counter, whcra
the counter value represents the frequency of accesses to the
corresponding macroblock.

On a memory access, a lookup in the MAT of the corre-
sponding macroblock entry is performed in parallel with the
data cache access. If no entry is found, a new entry is allo-
cated and initialized, as will be discussed later. If an entry
is found, the counter is incremented. Also, the counter valuo
(c&l) must be saved in a register for possible use in the next
step. An example of this operation is shown in Figuro Sa,
where data in macroblock A is accessed.

If the data cache access resulted in a hit, the access pro-
ceeds as normal, and the counter value is ignored. If the ac-
cess resulted in a cache miss, the cache controller must look
up the MAT counter corresponding to the cache block that

318

(a) Accessing ctrl

Figure 5: MAT Operation.

(b) Accessing ctr2

would be replaced to determine which data is more heavily
accessed, and therefore more likely to be reused in cache, as
shown in Figure 5b where data in macroblock B would be
replaced. This counter value (c&2) is then decremented and
compared to the counter value corresponding to the missing
access. The actual comparison performed is:

&l-l < f * b-2 (1)

where f is some i&&ion. If the above inequality is satisfied
the fetched data will bypass the cache. Otherwise, it replaces
the existing cached data as normal.

As mentioned above, the counter corresponding to the cur-
rently cached block (ctr2) is decremented. This is to ensure
that the counter values will eventually decrease, so that af-
ter a transition to another phase of the program execution,
new data can replace data that is now unused. The rationale
for decrementing counters on missing accesses to conflicting
data is that the data currently residing in the cache must
justify remaining cached when there is heavy contention for
that cache location. Therefore, the heavier the contention
for a particular cache location, the more the cached data
must be reused to maintain a counter large enough to sat-
isfy Equation 1.

Bather than compare ctrl and ctr2 exactly, in Equation 1
we compare ctrl to some fraction f of ctr2. Choosing f
less than 1.0 will conservatively prevent bypassing when the
counter values are almost the same.

Also, we do not want to bypass when the MAT contains
no entry for one of the macroblocks, so that the cache will
then default to its normal replacement behavior when there
is insufficient information. In the case where there is no
counter for the address being accessed this can be achieved
by setting all bits to 1 in the register which holds ctrl for
the comparison. When there is no counter found for the data
residing in cache (ctr2), we compare to 0. Both of these are
simply a matter of multiplexing in either the counter value
read from the MAT or the appropriate constant, using the
valid bit es a selector.

When a new entry is allocated, the counter value must be
initialized to some value. One possibility is to initialize it to
0. This will result in more aggressive bypassing, since it will
take longer for the new counter to “catch up” to the older
cached data’s counter. Another possibility is to initialize to
the conflicting data’s counter value, as shown in Figure 6a.
The new counter will start at an equal position, resulting in
more selective bypassing. Simulations verified that initial-
ization to 0 is optimal for an Ll data cache MAT, since the
Ll-L2 latency is small. The small latency means that the
shorter bypass fetch size can be just as important as reduc-
ing the number of fetches, and that there will be less penalty
when the decision to bypass was incorrect. Simulations also
verified that initialization of ctrf with ctr2 is optimal for an
L2 data cache MAT, since the system bus latency is long.
In this case reducing the length of data transferred is not
critical, and although bypassing is still beneficial, it is much
more important to make very careful bypassing decisions.

The second MAT access and the comparison are needed
only during a cache miss to determine the data size re-
quested, since only the element size5 needs to be fetched
on a bypass. It is unlikely that both MAT accesses can be
performed in one cycle, so thii information will be available
the cycle after the miss is detected. However, the size can be
sent to the next level of the cache hierarchy the cycle after
the address is sent, as the access to the L2 cache or main
memory will take at least one cycle before the data can be
returned. In some current processors the system bus request
takes two cycles, with the address sent the f&t cycle and the
data request size the second [16], which matches the MAT
timing.

4.2 Temporal Locality in Bypassed Data

Another issue is that there can be some temporal locality
even when the total accessing frequency is relatively low. In

51n this paper the element size refers to the maximum element
size allowed by the ISA, which in our system is 8 bytes.

this case the MAT scheme will bypass some data which may
have otherwise had a few hits before being displaced from
the cache. More than one additional miss will be incurred
by not caching that data, whereas only one miss is removed
by not displacing the much more frequently accessed data.

To optimize performance in this situation, we place by-
passing data in a small set-associative buffer, as shown in
Figure 6b. This bypass buffer will be accessed in the same
manner as a victim cache. As a result, the bypassed data is
held close to the processor for a short time, allowing much
of the tempora1 locality of the infrequently accessed data to
be exploited.

4.3 Spatial Locality in Bypassed Data

Spatial locality may also exist in the bypassed data. It is only
necessary to fetch the element size on a bypass, which can
be effective in reducing the bus transfer time. However, sim-
ulations show that when simulating the MAT scheme with
a small bypass fetch size, around 15% of the Ll data cache
misses in several benchmarks are a result of the lost spa-
tial reuse opportunities when fetching only the element on
a bypass. These misses are accesses to another element in
the same cache block as some element in the bypass buffer.
Fetching the entire cache block on a bypass would eliminate
these misses.

However, fetching the entire cache block for benchmarks
with little spatial locality in bypassed data will unnecessar-
ily increase bus traffic. Therefore, it is beneficial to im-
plement some means of dynamically choosing the optimal
bypass fetch size. The choice of bypass fetch size should de-
pend on the spatial locality detected, and can be determined
at the macroblock granularity.

This optimization could be implemented using subblock
support in the bypass buffer. However, subblocks can result
in underutilized lines, when only the element size is fetched.
Instead, we use a bypass buffer with small lines, equal to
the element size, and optionally fill in consecutive blocks
when the larger bypass fetch size is chosen. This approach
is similar to that used in some prefetching strategies [17].

To facilitate spatial locality detection, a new counter, sctr,
will be added to each macroblock entry. In addition, an ST

(spatial reuse) b t i and an f; (fetch initiator) bit are added
to each bypass buffer tag. When a new entry is allocated in
the bypass buffer, its ST bit is reset to 0. On a miss in the
bypass buffer, if the upper bits of another tag indicate that
data from the same full Ll data cache block resides in the
bypass buffer, then the missing data’s ST bit is set and the
corresponding macroblock’s sctr is incremented. However,
in a set-associative bypass buffer we may need to access ad-
ditional sets, or a separate structure which tracks this infor-
mation, If the entire cache block was fetched into the bypass
buffer, the ST bit is set on a hit access to any element other
than the element which caused the block to be loaded. This
is implemented by setting the fi bit to 1 during the cache
refill for the bypass buffer block which contains the missing
element, otherwise resetting it to 0. Then the ST bit is set
to 1 on a hit to a block with a fi bit of 0. When the bypass
buffer block is replaced, the corresponding macroblock’s sctr
is decremented if the ST bit is not set for any of the blocks

in the same full Ll data cache block.

On a cache bypass, the full cache block is fetched if the
sctr is saturated, otherwise the element size is fetched. Sim-
ulations showed that a l-bit sctr is optimal.

The cost of the MAT hardware will be analyzed in Scc-
tion 5.3, following the presentation of experimental results,

5 Experimental Evaluation

5.1 Experimental Environment

In this section, the environment used for experimental cd
uation of our technique is presented. The applications for
this study consist of several integer benchmark programs,
that will be discussed below in Section 5.1.1. The expcri-
mental environment also includes compiler support, emula-
tion to verify transformation correctness, and the simulation
techniques used to generate experimental results.

5.1.1 Benchmarks

Ten benchmarks were simulated under each of the configu-
rations from Section 5.1.5. The first, 926.compress, is from
the SPECS? benchmark suite, and was discussed in detail
in Section 3.1. 072.5~ and 085.~~1, also from the SPBC92
benchmark suite, are simulated. 099.90, 147.vorteq 139.li
and f&$.perZ, from the SPEC95 benchmark suite, are simu-
lated using the training inputs. The next two benchmarks
consist of modules from the IMPACT compiler [18] that wo

felt were representative of many real-world integer applica-
tions. Pcode, the front end of IMPACT, is run performing
dependence analysis with the internal representation of the
combine.c file from GNU CC as input. lmdesL?,customizcr, a
machine description optimizer, is run optimizing the Supcr-
SPARC machine description for efficient use by the IMPACT
compiler. These optimizations operate over linked list and
complex data structures, and utilize hash tables for efficient
access to the information. The last benchmark is the jatia
interpreter. It is run interpreting the compress benchmark
which was hand-translated to java code, with the SPli’U92
compress input. The experimental environment for $IJ~ i5
slightly different from that of the other benchmarks, and will
be discussed in Section 5.1.4.

5.1.2 Compiler and Architecture

In order to provide a realistic evaluation of our technique,
we first optimized the code using the IMPACTcompiler [18),
Classical optimizations were applied, then optimization5
were performed which increase instruction level parallelism
such as loop unrolling and superblock formation [Xl], Tl10
code was scheduled, register allocated and optimized for an
eight-issue, scoreboarded, superscalar processor with rcgistor
renaming. The Instruction Set Architecture is an extension
of the HP PA-RISC instruction set to support compile-timo
speculation. Up to four memory accesses can be cxccutcd
per cycle. The register file contains 64 integer registers and
64 double-precision floating-point registers.

I Main Memory

Frequently
Accessed

Data Cache

MAT

A

B

e l-
‘1

(a) Counter Initialization to ctr2 Value

Frequently
ACi%S%d

1
, .A..

I

ctrl c fictr2

(b) Accessing MAT Operation with a Buffer

Figure 6: MAT Operation Details.

Function 1 Latency 1 Function 1 Latency 1

lnt ALU 1 1 FP ALU 2

memory load 2 1 FP multiply 2

memory store 1 1 FP divide (single prec.) 8

branch 1 + 1 slot (FP divide (double prec.) 15

Table 2: Instruction latencies for simulation experiments.

5.1.3 Simulation Parameters and Techniques

To verify the correctness of the code transformations, em-
ulation of the target processor architecture was performed
for all input programs on a Hewlett-Packard PA-RISC 7100
workstation.

The emulator drives the simulator that models on a cycle-
by-cycle basis the processor and the memory hierarchy (in-
cluding all related busses) to determine application execu-
tion time, cache performance and bus utilization. The in-
struction latencies used are those of a Hewlett-Packard PA-
RISC 7f 00 microprocessor, as given in Table 2.

The memory hierarchy includes separate Ll instruction
and data caches. The Ll instruction cache is a direct-
mapped, 32K-byte split-block cache with a 64-byte block
size. The Ll data cache is a direct-mapped6, 16K-byte non-
blocking cache with a 32-byte block size. The data cache is a
multiported, write-back, no write-allocate cache that satis-
fies up to four load or store requests per cycle from the pro-
cessor and has streaming support. Up to 50 load misses can
be outstanding simultaneously on the bus connecting the Ll
and L2 data caches. An S-entry write buffer combines write
requests to the same cache block. The instruction cache and
data cache share a common, split-transaction Ll-L2 bus,
with a 4 cycle latency and 8 bytes/cycle data bandwidth.
The memory hierarchy also includes a direct-mapped, 256K-
byte non-blocking L2 data cache with a 64byte block size.
This cache is also write-back and no write allocate. Up to
50 load misses can be outstanding simultaneously from the
L2 data cache on the system bus, which is split-transaction

61nitially both data caches are direct-mapped, but in a later
section we examine the affects of set-associative data caches.

with a 50 cycle latency to memory and 8 bytes/cycle data
bandwidth.

A direct-mapped branch target buffer with 1024 entries
is used to perform dynamic branch prediction using a a-bit
counter. Hardware speculation is supported, and the branch
misprediction penalty is approximately two cycles.

Since simulating the entire applications at thii level of de-

I

/

I
I I

tail would be impractical, uniform sampling is used to reduce
simulation time [20], however emulation is still performed
between samples. The simulated samples are 200,000 in-
structions in length and are spaced evenly every 20,000,OOO
instructions, yielding a 1% sampling ratio. For smaller appli-
cations, the time between samples is reduced to maintain at
least 50 samples (10,000,000 instructions). From experience
with the emulation-driven simulator, we have determined
that sampling with at least 50 samples introduces typically
less than 1% error in generated performance statistics.

I

;

The current versions of HPUX sometimes allocate the
stack frame differently in memory across runs of the same
program, which can cause the cache performance to vary.
This effect is most noticeable when running the same exe-
cutable on different machines. To obtain the typical perfor-
mance benefit of our techniques, we emulated each cotigura-
tion for every benchmark on three diierent HP workstations
and recorded the median speedup. However, the speedups
generally varied less than one percent.

5.1.4 Java

The juva benchmark was simulated on a Pentium system
running Linux, for which we do not yet support virtual ma-
chine emulation. Therefore, java was optimized for a Pen-
tium machine [16], and x86 machine code was generated and
run to ensure correctness, as well as to drive the simulator.
The machine model simulated is that of the Pentium, rather
than the virtual machine described in Section 5.1.2, except
for the memory system which is identical to that explained
in Section 5.1.3.

321

-_ II-- - -. - .

5.1.5 Experimental Configurations

The first set of configurations use the MAT scheme presented
in Section 4.1. In this scheme, two independent MATS are
used, an Ll MAT and an L2 MAT. Each MAT operates
independently of the other, so the L2 MAT only reflects the
accesses that missed in the Ll cache and therefore accessed
the L2 cache. Both MATS use the same value off and lK-
byte macroblocks. After a large number of simulations7 f =
1.0 was shown to have the best performance across all the
benchmarks, and will be used throughout the rest of this
paper. The bypass buffer allows aggressive bypassing from
f = 1.0 to occur without much effect from any incorrect
bypassing decisions made by the higher fvalue.

The Cway set-associative buffers used to hold the by-
passed data at the Ll and L2 caches contain 32 and 256
entries, respectively, in the first configuration. We fetch the
Ll block size on an L2 bypass because the Ll access may not
have been a bypass. The next several experimental configu-
rations explore the effects of varying the bypass fetch sizes.
Unless noted otherwise, the bypass buffer line sizes will be
the maximum bypass fetch size used.

We first present results for an infinite-entry MAT, then
study the effects of limiting the number of MAT entries.

5.2 Results

Figure 7a shows the speedup of each benchmark for the
MAT scheme, which places the bypassing data in a small
buffer, using an infinite MAT with 1K macroblocks and f =
1. The leftmost speedup bar for each benchmark, labeled
(8,32) to denote an S-byte Ll bypass fetch size and a 32-byte
L2 bypass fetch size, fetches the minimum data necessary
on a bypass. Most benchmarks achieve good performance
improvement, with compress and Pcode improving the most,
yielding 12% improvement each.

The next three configurations shown in Figure 7a consist
of the various combinations of fetching either the minimum
size or the cache block size on a bypass. Several observa-
tions can be made from this figure. First, all benchmarks
perform better using an L2 bypass fetch size of 64, or the
entire L2 cache block, compared to the minimum fetch size
of 32. This is due to the long system bus latency (50 cycles),
which means that the time necessary to transfer the 32 or
64 bytes is small in comparison to the latency of accessing
main memory. Therefore, it is better to fetch more data,
and reduce the likelihood of needing another fetch for the
other data in the cache block.

Comparing Ll bypass fetch sizes of 8 and 32, the trend
is not as clear. Some benchmarks (02&compress, 072.sc,
Pcode) perform better when fetching only the element on an
Ll bypass, due to an overall lack of spatial locality in these
benchmarks. Other benchmarks, such as 13,&perl, perform
much better when fetching the full 32-byte Ll cache block
on a bypass. Because the Ll-L2 latency is much shorter, the
data transfer time is very close to the L2 access latency, and
it is not as clear which aspect to optimize. Therefore, the
spatial reuse optimization discussed in Section 4.3 was sim-
ulated, with results shown by the rightmost speedup bar for

7Due to space constraints these results will not be shown here.

each benchmark in Figure 7a. In this case the number of cn-
tries in the Ll bypass buffer was increased to 128. Howover,
due to the smaller line size of 8 bytes, the size of the by-
pass buffer is the same as the 32-entry buffer with a bypass
fetch size of 32 bytes. The benchmarks achieve speedups
better than, or very close to, the best speedup achieved by
the other configurations.

Figure 7b shows the utilization of the system bus (con-
necting the L2 cache with the main memory) for tho MAT
scheme with an infinite number of entries. Only the 64-byte
L2 bypass fetch size configurations are shown. The rcduc-
tion in system bus traffic is due to the improvements in bit
ratio.

The Ll data cache read hit ratios for the same configu-
rations are shown in Figure 7c. Surprisingly, the hit ratios
for compress improve the least, while compress ncllievcd tllo
largest speedup. From the memory access distributions of
Figure 2 we see that the heavily accessed portions of htab
and codetab alone total much more than 16K bytes, so al-
though the MAT allows us to keep only heavily acccsscd
data cached, different blocks from the heavily accessed rc-

gions will still replace each other frequently.
Non-blocking caches can result in different amounts of of-

fective memory latency seen by the processor, depending
on how many miss requests are outstanding when an nc-

cess occurs. Therefore, the hit ratios may not be indicative
of the overall performance. A more meaningful matric is
the average miss penalty, or the average number of cycles
the processor is stalled on the data cache per load access,
Figure 7d shows that the average miss penalties correspond
better than the hit ratios with the speedup results shown in
Figure 7a.

Figure 8 suggests that the MAT is correctly deciding which
data to bypass for compress. Figure 8a shows the mamory
access distribution for both htab and codetab, for the same
execution phase shown in Figure 2. Figure 8b has the same
y-axis, and lines up with Figure 8a. The x-axis of Figure 8b
is the ratio of times that a missing access was instructed
by the MAT to bypass the cache. Figure 8 shows that tho
very heavily accessed portions of the hash table bypass very
rarely. The sparsely accessed portion of codetab, roughly
between address offsets 100000 and 170000, bypasses almost
100% of the time.

5.2.1 Set-associative Data Caches

Increasing the set-associativity of the data caches can rcduco
the number of conflict misses, which may in turn rcduco the
advantage offered by the MAT, To investigate these affects,
the data cache configuration discussed in Section ti.la3 WAS

slightly modified to have a a-way set-associative Ll data
cache and a Cway set-associative L2 data cache.

Figure 9 shows the new speedup for two MAT configurn-
tions. The fist configuration is the same shown in the prc-
vious section, with a 64-byte L2 bypass fetch size and the
dynamically varying Ll bypass fetch size. Because the higher
associativity filters out some of the conflict misses that wcro
bypassed in the case of direct-mapped caches, it may be
beneficial to bypass less aggressively. One way in which to
bypass less frequently is to have fewer bits in the MAT wccss

322

(a) Speedup

(c) Ll Data Cachet Hit Ratio

(b) System Bus Utilization

(d) Average Miss Penalty per Load Access

Figure 7: Performance data for the MAT Scheme (infnrite-entry MAT). The legend denotes (Ll bypass fetch size, L2 bypass
fetch size), where an Ll bypass fetch size of S/32 denotes the dynamically varying scheme.

B
4ffl.m

2.m 2.02 2Jl4 206 103 110

cycle x 106

(a) Memory Access Distribution

-
. t...

. i__.. j..

E 0 2so.m ,..
42 .ii f_... +.
zi

2oo.m . . .

0.00 0.20 0.40 O&l

Riltill

(b) Bypassing Ratio

Figure 8: Compress Distribution and Bypassing Ratio Comparison (MAT Scheme, infinite-entry MAT).

323

Figure 9: Speedup for l-way and Cway set-associative Ll
and L2 data caches, respectively, with the MAT Schemes us-
ing dynamically-varying Ll bypass fetch sizes (infinite-entry
MAT) and various numbers of bits per Ll MAT ctr. The
legend denotes ({bits/L1 MAT ctr}x{bits/L:! MAT ctr); Ll
bypass fetch size, L2 bypass fetch size), where an Ll bypass
fetch size of 8132 denotes the dynamically varying scheme.

counter. Because the counters will saturate faster, and at a
lower value, it is less likely that one macroblock will have a
much larger ctr value for very long. As a simple preliminary
investigation we modified the previous configuration so the
Ll MAT had a 5-bit (rather than S-bit) ctr. This configura-
tion, denoted (5x8$/32,64) to reflect the 5-bit Ll MAT ctr
and 8-bit L2 MAT ctr, is also shown in Figure 9.

As noted in Section 3.1, compress has very large hash ta-
bles, resulting in many capacity misses. For this reason,
its speedup using a MAT decreases little when increasing
the data cache associativity, seen by comparing Figure 9 to
Figure 7a. Other benchmarks decrease in varying amounts.
However, using a 5-bit Ll MAT ctr the MAT still achieves
speedup for all benchmarks. With increasing memory la-
tency these speedups are likely to increase.

5.2.2 Finite-size MAT

To study the effects of a finite-size MAT we chose to simulate
the MAT scheme with both 512 and lK-entry direct-mapped
MATS. These sizes were chosen because their hardware cost
is reasonable, as will be discussed in Section 5.3, yet they
were large enough to hold most of the macroblocks for each of
the benchmarks. The bypassing choices should be more con-
servative as the number of entries in the MAT is decreased,
since we do not bypass unless both counters are found in the
MAT, as discussed in Section 4.1. Table 3 shows the num-
ber of macroblocks accessed by each benchmark for a lK-
byte macroblock size, Figure 10 shows speedups achieved by
the MAT scheme for direct-mapped data caches using dif-
fering numbers of entries per MAT. Some benchmarks de-
grade slightly when the entries per MAT are decreased. One
anomaly is that several benchmarks have slight performance
improvements from reducing the MAT entries. This is due
to the more conservative bypassing choices avoiding some
incorrect bypasses. In general, the performance effects of

.

. ..d.CCl

13OJi
134.perI

Table 3: Number of Macroblocks Accessed.

Figure 10: Speedup for the MAT Scheme with infinite, 1024
and 512-entries per MAT. All have 4-way set-associative
bypass buffers and dynamically-varying Ll and 64-byte L2
bypass fetch sizes. The Ll and L2 fully-associative victim
caches have 64 and 512 entries, respectively.

restricting the number of MAT entries is small.
Also shown in Figure 10 are the speedups attained by

the traditional victim caches. A 64-entry fully-associative
Ll victim cache and a 512-entry fully-associative L2 vk-

tim cache are used in this configuration. Although the vic-

tim caches are large and have full associativity, they at-
tain smaller speedups than those obtained by the MAT
scheme with Cway set-associative bypass buffers, using sim-
ilar amounts of hardware, as will be shown in Section 6.3,
The fact that compress uses large hash tables, resulting in
many capacity misses, is underlined by the extremely small
speedup achieved by the victim caches (0.26%). Thus, the
combination of a 64-entry Ll victim cache and a 612-entry
L2 victim cache is still too small to hold a significant portion
of the conflicting data.

5.2.3 Growing Memory Latency Effects

As discussed in Section 1, memory latencies are increasing,
and this trend is expected to continue. Figure 11 ~110~s th
speedups of the MAT scheme applied to direct-mapped data
caches for three different latencies, the 50-cycle latency used
in all previous configurations, as well as lOO-cycle and 200.
cycle latencies. Most of the benchmarks see much highor
performance improvements from the MAT scheme when the
memory latencies increase, with speedups close to 2G% for
072.~~ and 099.go for a 200-cycle memory latency. This is to
be expected, as the number of cycles spent waiting for out-

Figure 11: Speedup for the MAT Scheme with varying mem-
ory latency. All have dynamically-varying Ll and 64-byte L2
bypass fetch sizes.

Load
Address

31:o

t
31:x

(X = log(macroblock-size))

Figure 12: MAT Design.

standing cache misses will increase, and optimizations which
decrease the number of cache misses will become increasingly
important.

5.3 Design Considerations

The additional hardware cost incurred by the MAT scheme is
small compared to doubling the cache sizes at each level, par-
ticularly for the L2 cache. For the 16K-byte direct-mapped
Ll cache used to generate the results of Section 5.2, 18 bits
of tag are used per entry (assuming 32-bit addresses). Dou-
bling this cache will result in 17-bit tags. Because the line
size is 32 bytes, the total additional cost of the increased
tag array will be 17 * 2r” - 18 * 2’, which is 1K bytess. In
addition, an extra 16K of data is needed.

For a direct-mapped MAT with 8-bit access counters and
l-bit spatial counters, Table 4 gives the hardware cost of the
data and tags for the MAT and macroblock sizes discussed
in Section 5.2. Since all addresses within a macroblock map
to the same MAT counter, a number of lower address bits
are thrown away when accessing the MAT, as shown in Fig-
ure 12. The size of the resulting MAT address, used to access

sWe are ignoring the valid bit and other state, which is con-
servative since the number of these bits per entry is the same or
less in the MAT, and because the number of entries created when
doubling the cache is larger than the number of entries in the
MAT.

MAT Data Cost Size of MAT
Entries (bytes) Address (bits)

Tag Size Tag Cost
(bits) b+4

512 576 22 13 832
1K 1152 22 12 1536

Table 4: Hardware Cost of 512 and 1K entry MATS.

Block Data
Bypass Fetch Size

Tag
cost

Tag

Entries
Size

Size (bytes)
Cost

(bytes) (W-) (bits) (W4
32 8 a 256 26 104

32 1 32 1024 96
128 8/32 1

24 1
8 1 1024) 26 (416

Table 5: Hardware Cost of Ll Bypass Buffer.

Block Size Data Cost
Entries (bytes) (bytes)

Tag Size
(bits)

Tag Cost

byte4
64) 32 (2048 1 27 1 216 1

Table 6: Hardware Cost of Ll Victim Cache.

the MAT, is shown in column 3 of Table 4.
The cost for the Ll buffer, which is a Cway set-associative

cache with 8 or 32 byte lines, depending on the bypass fetch
size chosen, is shown in Table 5. The total cost of the addi-
tional tag and data arrays for the MAT scheme is much less
than that of increasing the data cache size. If the varying
bypass size scheme of Section 4.3 is used, then spatial local-
ity detection support is necessary in the Ll bypass buffer,
which will require a small amount of additional hardware.
This is reflected by the S/32 entry in Table 5, where an ex-
tra 2 bits of tag are needed per entry (l-bit spatial reuse bit
and l-bit fetch initiator bit).

Table 6 shows the costs for a 64entry Ll victim cache.
Adding the costs from Tables 4 and 5 and comparing to Ta-
ble 6 shows that the MAT configurations are only slightly
more expensive in tag and data costs. However, the vic-
tim caches are fully-associative, which may make the MAT
scheme with Cway set-associative buffers less costly overall.
For a similar cost of tags and data, the results presented
in Figure 10 show that the MAT scheme always performs
better than victim caching with higher associativity.

Similar calculations will show that all L2 MAT configu-
rations are much less expensive than the L2 victim cache
configuration used to generate the results of Section 5.2.

To reduce the hardware cost, we could potentially inte-
grate the Ll MAT with the TLB and page tables. For a
macroblock size larger than or equal to the page size, each
TLB entry will need to hold only one &bit counter value.
For a macroblock size less than the page size, each TLB
entry needs to hold several counters, one for each of the
macroblocks within the corresponding page. In this case
a small amount of additional hardware is necessary to se
lect between the counter values. However, further study is
needed to determine the full effects of TLB integration.

6 Conclusion

In this paper, we presented a method to improve the effi-
ciency of the caches in the memory hierarchy, by bypassing
data that is expected to have little reuse in cache. This al-
lows more frequently accessed data to remain cached longer,
and therefore have a larger chance of reuse. The bypassing
choices are made by a Memory Address Table (MAT), which

325

performs dynamic reference analysis in a location-sensitive
manner. An MAT scheme was investigated, which places
bypassing data in a small Cway set-associative buffer, al-
lowing exploitation of small amounts of temporal locality
which may exist in the bypassed data. We also introduced
the concept of a macroblock, which allows the MAT to fea-
sibly characterize the accessed memory locations.

Variations in the amount of data fetched on a bypass were
investigated, including a dynamically-varying bypass fetch
size. Additionally, the effects of increasing the data cache
associativities and reducing the number of MAT entries were
examined.

Cycle-by-cycle simulations of several benchmarks show
that significant speedups can be achieved by thii technique.
The speedups are due to the improved miss ratios and re-
duced bus traffic, which also result in a reduction in the
average miss penalty per load. The MAT scheme was shown
to outperform large victim caches, even for a finite-size MAT
of a similar hardware cost and less associativity. In addition,
we showed that the speedups achieved by the MAT scheme
increase as the memory latency increases.

For future work we will examine more sophisticated MAT
counter algorithms, beyond the simple reference count of
this design, as w’ell as adaptive cache’ remaPping schemes.
TLB integration is another area of future investigation, as
mentioned earlier. In general, we believe that the schemes
presented in thii paper can be extended into a more general
framework for intelligent runtime management of the cache
hierarchy.

Acknowledgements

The authors would like to thank all the members of the
IMPACT research group whose comments and suggestions
helped to improve the quality of this research, in particular
Dave August for proofreading various drafts of this paper.
The authors would also like to thank Santosh Abraham and
Bales Natarajan at HP Labs for helpful discussions concern-
ing the behavior of the compress benchmark. We would also
like to thank the anonymous referees for their constructive
comments.

This research has been supported by the National Science
Foundation (NSF) under grant CCR-9629948, Intel Corpo-
ration, Advanced Micro Devices Hewlett-Packard, SUN Mi-
crosystems, NCR, and the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-613
in cooperation with the IlIinois Computer laboratory for
Aerospace Systems and Software (ICLASS).

References

[l] K. Boland and A. Dollas, I‘Predicting and precluding prob-
lems with memory latency,” IEEE Micro, pp. 59-66, August
1994.

[2] G. S. Sohi and M. Franklin, “High-bandwidth data memory
systems for superscalar processors,” in Fourth International
Conference on Architectural Support for Progmmm ing Lan-
guages and Opemting Systems, pp. 53-62, April 1991.

[3] A. J. Smith, “Cache memories,” Computing Surueys, vol. 14,
no. 3, pp. 473-530, 1982.

[4] N. P. Jouppi, “Improving direct-mapped cache porformanco
by the addition of a small fully-associative cache and profotch
buffers,” in Proceedings of the 17th International Symposium
on Computer Architecture, pp. 364-373, June 1990.

[5] J.-L. Baer and T.-F. Chen, ‘IAn effective on-chip proload-
ing scheme to reduce data access penalty,” in Proceeding oj
Supercomputing ‘91, pp. 176-186, Nov. 1991.

[6] T.-F. Chen and J.-L. Baer, ‘%educing memory latency via

non-blocking and prefetching caches,” Tech. Rep. 92-06-03,
Department of Computer Science and Engineering, Univor-

sity of Washington, Seattle, WA, June 1992.

[7] S. Mehrotra and L. Harrison, (‘Quantifying tho porformanco
potential of a data prefetch mechanism for pointor-intonsivo
and numeric programs,” Tech. Rep. 1458, CSRD, Univ, of
Illinois,‘November 1995.

[8] A. K. Porterfield, Software Methods for Improvement of
Cache Performance on Supercomputer Applicalions, PhD
thesis, Department of Computer Science, Rico Unhoreity,
Houston, TX, 1989.

[9] A. C. Klaiber and H. M. Levy, “An architecture for softwaro-
controlled data prefetching,” in Pruc. 18th Ann. Int’l Sump*
Computer Architecture, (Toronto, Canada), pp. 43-63, May
1991.

[lo] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and ovalu-
ation of a compiler algorithm for prefotching,” in Proc. flijllr
Int’l Conf. on Architectural Support for Pwg. Lang. and Op-
emting Systems., pp. 62-73, Oct. 1992.

[ll] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. HwU,

lLData access microarchitectures for suporscalar processors
with compiler-assisted data prefetching? in Proceedings of

the 2.4th Annual International Symposium on Microarchi-
tecture, pp. 69-73, November 1991. -

[12] W. Y. Chen, S. A. Mahlke, W. W. Hwu, T. Kiyohara, and
P. P. Chang, “Tolerating data access latency with rogistor
preloading,” in Proceedings of the 6th International Confer-
ence on Supercomputing, July 1992.

[13] G. Tyson, M. Farrens, J. Matthews, and A. Ft. Pleszkun, “A
modified approach to data cache management,” in Procced-
ings of the 28th Annual International Symposium on Mi-
croarchitecture, pp. 93-103, December 1995.

[14] J. A. Rivers and E. S. Davidson, ‘(Reducing conflicts in
direct-mapped caches with a temporality-based design,” in
Proceedings of the 1996 International Conference on Paml-
lel Processing, pp. 151-162, August 1996.

[15] ‘SPEC newsletter,” 1991, SPEC, l%emont, CA.
[16] Intel, Pentium Pro Processor at 150 MHz, IGG MHZ, 180

MHz and 200 MHz. Intel Corporation, Santa Clara, CA,
1995.

[17] J. W. C. Fu and J. H. Patel, “Data prefctching in multi-
processor vector cache memories,” in Proc. 18th Ann. Inl’l
Symp. Computer Architecture, (Toronto, Canada), pp, 64”
63, June 1991.

[18] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Wartor,
and W. W. Hwu, “IMPACT: An architectural framework
for multiple-instrdction-issue processors,” in Proceedings O/

the 18th International Sumposium on Computer Arclritec-
ture, pp. 266-275, May 1991;

[19] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N# J,
Warter, R. A. Bringmann, R. G. Ouellotte, R. E, Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lnvory,
“The superblock: An effective structure for VLIW and stt-
perscalar compilation,” tech. rep., Center for Roliablo nnd
High-Performance Computing, University of Illinois, Urbana,
IL, February 1992.

[20] J. W. C. Fu and J. H. Patel, “How to slmulato 100 billlon
references cheaply,” Tech. Rep. CRHC-91-30, Cantor for Re-
liable and High-Performance Computing, University of Illi-
nois, Urbana, IL, 1991.

