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Abstract 

Improvements in main memory speeds have not kept pace 
with increasing processor clock frequency and improved ex- 
ploitation of instruction-level parallelism. Consequently, the 
gap between processor and main memory performance is ex- 
pected to grow, increasing the number of execution cycles 
spent waiting for memory accesses to complete. One solu- 
tion to this growing problem is to reduce the number of cache 
misses by increasing the effectiveness of the cache hierarchy. 
In this paper we present a technique for dynamic analysis of 
program data access behavior, which is then used to proac- 
tively guide the placement of data within the cache hierarchy 
in a location-sensitive manner. We introduce the concept of 
a macroblock, which allows us to feasibly characterize the 
memory locations accessed by a program, and a Memory 
Address Table, which performs the dynamic reference anal- 
ysis. Our technique is fully compatible with existing Instruc- 
tion Set Architectures. Results from detailed simulations of 
several integer programs show significant speedups. 

1 Introduction 

As improvements in processor performance outpace that of 
main memory performance [l], the cache miss penalty will 
dominate the cycle counts of many applications. The large 
improvements in processor performance are due both to bet- 
ter circuit design and fabrication technology, which reduce 
the cycle time, and to better Instruction-Level Parallelism 
(ILP) techniques, which increase the instructions executed 
per cycle. The growing disparity between processor and 
memory performance will make cache misses increasingly ex- 
pensive. Not only do the cache misses result in more proces- 
sor stall cycles, but in processors with dynamic scheduling, 
they can also disrupt the compiler-generated ILP schedule. 
Additionally, data caches are not always used efficiently. In 
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numeric programs there are several known compiler tech- 
niques for optimizing data cache performance. However, 
integer programs often have irregular access patterns that 
are more difficult for the compiler to optimize. Thii paper 
focuses on data cache performance optimization for integer 
programs. 

In order to increase data cache effectiveness for integer 
programs we have investigated methods of adaptive cache hi- 
erarchy management, where we proactively control the move- 
ment and placement of data in the hierarchy based on the 
data usage characteristics. In this paper we present a mi- 
croarchitecture scheme where the hardware determines data 
placement based on dynamic referencing behavior. This 
scheme is fully compatible with existing Instruction Set Ar- 
chitectures. 

Our scheme seeks to manage the cache in a manner that 
is sensitive to the usage patterns of the memory locations 
accessed. Since the number of memory locations is exces- 
sively large, we introduce the notion of a macroblock. A mac- 
roblock is a contiguous block of memory that is large enough 
so that the maintainance overhead is reasonable, but small 
enough so that the access pattern of the memory addresses 
within each macroblock is statistically uniform. A hardware 
mechanism called the Memory Address Table (MAT) is in- 
troduced to maintain and utilize the access patterns of the 
macroblocks to direct data placement in the cache hierarchy. 
We show that this extension to the cache microarchitecture 
significantly improves the overall performance of integer ap- 
plications. The improvements are due to increased cache hit 
rates and reduced cache handling latencies. 

The remainder of this paper is organized as follows: Sec- 
tion 2 discusses related work; Section 3 contains a case study 
of a particular benchmark es well as some main concepts 
used to motivate and develop this work; Section 4 discusses 
the hardware implementation; Section 5 presents simulation 
results and performs a cost analysis of the added hardware; 
and Section 6 concludes with future directions. 

2 Related Work 

Several methods exist to overlap memory accesses with other 
computation in the processor, attempting to hide the mem- 
ory latency. Write buffers can often successfuIly hide the 
latency of write misses by buffering the write data until the 



bus is idle. Non-blocking caches allow multiple outstanding 
load misses without stalling the processor, in order to overlap 
load miss latency with other computation that does not con- 
sume the result of an outstanding load miss [2]. Prefetching 
attempts to fetch data from main memory to the cache be- 
fore it is needed, which also overlaps the load miss latency 
with other computation. Both hardware [3][4][5][6][7] and 
software [8][9][10][11][12] prefetching methods for uniproces- 
sor machines have been proposed. However, many of these 
methods focus on prefetching regular array accesses within 
well-structured loops?, which are access patterns primarily 
found in numerical applications. There is also a great deal of 
prior work on prefetching in multiprocessors, but since their 
focus is even more on optimizing numerical applications, we 
will not review them here. 

While these schemes attempt to hide the latency of load 
misses, our work focuses on reducing the .effective memory 
latency seen by the processor through the reduction of both 
conflict and capacity misses, and their effects. Victim caches 
also attempt to reduce conflict miss effects in caches with 
low associativity [4]. While victim caches work well for some 
programs, as we will show in Section 5.2, they do not greatly 
improve programs that have large working sets. 

Methods for both static and dynamic cache bypassing have 
also been investigated. In their pioneer work [13], Tyson et 
al. proposed a method where loads are marked for cache by- 
pass either statically by the compiler, or dynamically at run- 
time. While we also investigate cache bypassing, our work 
differs in several key aspects. First, Tyson et al. use miss 
behavior of the load as the main decision metric, and reuse 
behavior as a secondary metric, for determining whether to 
bypass that load’s data. Our work focuses on the reuse be- 
havior, because data that tend to miss may still have high lo- 
cality that would result in reuse while in the cache. Secondly, 
they decide whether to bypass data based on the particular 
load referencing that data. As we will show in Section 3.1, a 
single load instruction may reference data with widely vary- 
ing access patterns. Therefore, we designed a mechanism to 
determine whether to bypass based on the data address. As 
a result, we see an increase in cache hit ratios, a decrease 
in the bus traflic and a decrease in total cycle counts, while 
they achieve a decrease in the bus traffic at the expense of 
a small drop in the cache hit ratios, which may result in 
performance degradation. 

Another study [14] presented a hardware bypassing mech- 
anism based on reuse behavior of cached locations, and was 
proven effective for numeric programs. Their mechanism 
only performs bypassing of the first-level data cache, whereas 
we study bypassing of both cache levels. It is important to 
improve second-level cache performance, since system bus 
latencies are large. Also, their scheme marks a cache block 
for bypass permanently until the corresponding block is re- 
placed from the second-level cache, at which time all reuse 
information is lost. We overcome this limitation by keeping 
track of reuse behavior in a separate structure, and by al- 
lowing bypass decisions to vary based on dynamic accessing 
behavior. 

Some of our techniques, in particular the bypass buffer 

‘By regular we mean arrays indexed by the loop iteration vari- 
able, or some other induction variable. 

presented in Section 4.2, could be used in synergy with both 
of these schemes to obtain improved performance. 

3 Concepts 

3.1 Case Study 
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To understand some of the inefficiencies of current cache hi- 
erarchies it is helpful to first examine the accessing behavior 
of a particular application in detail. Figure 1 shows the main 
loop body of the 026.compress program from the SPLi’C~2 
benchmark suite [15]. Over 90% of compress’ execution tima 
is in this loop body. Many of the memory accesses in com- 

press are to its hash tables, htal, and codetab (the lines con- 
taining the hash table load accesses are numbered’), Due 
to the large hash table sizes (htab and codetab are roughly 
270K and 135K bytes, respectively) and the fact that the 
hash table accesses have little temporal or spatial locality, 
there is very little reuse in a first-level data cache. 

Table 1 shows the hash table loads’ dynamic execution 
counts, miss ratios and reuse ratios obtained via memory 
access profiling. A simple cache simulation was performed 
to determine whether each of the accesses was a first-level 
cache hit or miss in a direct-mapped 16K cache with 32- 
byte lines3. Also, the profiler kept track of reuse ratios”. 
The table shows that, indeed, the hash table load ~CCCSSCY 
have high miss ratios and little reuse of the accessed data, 

In order to obtain a clearer picture of how the hash tables 
are accessed throughout the dynamic execution of the pro- 
gram, we profiled the accesses as explained above and plotted 
the address distribution for a given execution phase. The 
profiling results for a lOOOOO-cycle sample of compress are 
shown in Figure 2. The memory access distribution for htd 

is shown in Figure 2a, where htab starts at address 171680 
(all addresses are offsets from a base address of 1073741824, 
or 1G). As the htab distribution shows, much of htab is rcla- 
tively sparsely accessed, except for two bands that are heav- 
ily accessed. These bands are located roughly from addresses 
200000 to 220000 r+nd 257000 to 300000. Looking at sovoral 
other execution phases of compress shows that this pattorn 
remains the same throughout the execution, 

Analogous to Figure 2a, Figure 2b shows the access die- 
tribution for codetab. The access patterns of the two figures 
look similar since codetab is accessed with the same index as 
htab. 

The memory access distributions of Figure 2 illustrate the 

2The other load accesses to htab in this loop can be oliminatcd 
through load elimination optimizations 

3This profiler is a simplified version of the detailed simulator 
used to generate the results presented in Section 5,2. Unlike the 
simulator, the profiler assumes a single-issue, in-ardor machino 
and zero-cycle load latencies to simplify handling back-to-back 
accesses to the same cache block. More details on the simulntor 
are given in Section 5.1.3. 

4The reuse ratio is calculated in the following way, If !o&d 
A accesses a cache block (whether a hit or miss), on a following 
hit by load B to that cache block the reuse counter for load A 
is incremented once. If another access by load C is a hlt to the 
same cache block, the counter for load B is incremented, and SO 
on. The total number of reuses counted for a load, divided by its 
dynamic execution count, is that load’s reuse ratio. Thoroforo, 
some of the hits will have reuse, as will some of the misses. 
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vhile ( (c = g&char()) != EOF ) C 
in-count++; 
fcode = (long) (((long) c C< maxbits) + ent); 
i = ((c << hshift) - ent); 

1. if ( htabof (i) == fcode > I 
2. ent = codetabof (9; 

continue; 
3 else if ( (1ong)htabof (i) < 0 > goto nomatch; 
disp = hsize-reg - i; 
if ( i == 0 ) disp = 1; 

probe: 
if ( (i -= disp) C 0 ) i += hsize-reg; 

3. if ( htabof (i) == fcode ) 1 
4. ent = codetabof (i); 

continue; 
3 
if ( (1ong)htabof (i) > 0 1 goto probe; 

nomatch: 
output ( (code-int) ent 1; 
out~count++; 
ent = c; 
if ( free-ent < maxmarcode ) C 

codetabof (i) = free-ent++; 
/* code -> hashtable */ 

htabof (i) = fcode; 
3 
else if ( (count-int)in,count >= checkpoint 

%% block-compress 1 
cl-block 0; 

3 

Figure 1: Compress Main Loop Code 

Dynamic 
Hash Execution Miss R‘Xse 

Line Table count Ratio Ratio 

1 htab 999999 78.9% 29.2% 

2 codetab ) 566776 70.8% 30.0% 
3 htab 1 1803911 91.4% 15.6% 

4 codetab 1 182336 89.1% 11.5% 

Table 1: Profiling Statistics for Hash Table Load Accesses 
(direct-mapped, 16K-byte data cache with 32-byte lines, 
single-issue processor). Two-way and four-way cache pro- 
flies exhibit similar behavior. 

inherent problem with schemes that determine how to handle 
data based on the particular load instruction that requested 
the access [13]. In compress there are only two load instruc- 
tions in the main loop body that access htab. However, from 
the distributions we see that these loads can access data with 
dramatically different usage patterns, even during small time 
intervals. Schemes that decide where to place the data in the 
cache hierarchy baaed on the load instruction accessing that 
data, whether in a static or dynamic manner, must face the 
challenge of giving each dynamic instance of a load instruc- 
tion different treatment. Otherwise, information is lost and 
some data will be mishandled. 

Figure 3 shows how we would like to handle accesses to 
data with different usage frequencies. In Figure 3a accesses 
to differently accessed regions of memory will map into the 
same cache lines, causing conflict or capacity misses. As- 
sume that an access to a block in an infrequently accessed 
region of the memory misses in cache and that the conflicting 
block that would be replaced from the cache under a normal 
cache management policy is from a heavily accessed region. 
Instead of replacing the heavily accessed block, which has a 

much greater chance of being reused in the near future, we 
would like the missing block to bypass the cache. In this case 
the missing block would not be placed in the cache, as illus- 
trated in Figure 3b. Bypassing infrequently accessed data 
when it conflicts with much more frequently accessed data 
will result in less cache pollution, and therefore increased 
reuse of more frequently accessed data, resulting in an over- 
all increase in the hit ratio. To perform thii selective cache 
bypassing, we need some method of tracking the access be- 
havior of different memory regions. 

3.2 Macroblocks 

Ideally, we would like to keep track of the usage fiequen- 
ties of all cache block size data in memory. While this 
would give us the most accurate information, it would re- 
sult in an unmanageably large amount of information. In- 
stead, we combine groups of adjacent cache block size data 
into larger blocks called macrobloc&. The size of the mac- 
roblocks should be large enough so that the total number 
of macroblocks residing in the accessed portion of memory 
is not excessively large, but small enough so that the ac- 
cessing frequency of the cache blocks contained within each 
macroblock is relatively uniform. If we can keep track of 
each macroblock’s accessing frequency through some hard- 
ware mechanism, then we can determine on a macroblock 
basis whether or not to cache the contained data. 

In order to determine the best size of a macroblock in 
practice, we studied the uniformity of cache block access 
frequencies within the macroblocks for several macroblock 
sizes. The number of accesses to each cache block in mem- 
ory was first profiled. Then, for each macroblock size, the 
mean and standard deviation of the number of accesses to 
the cache blocks contained within each macroblock in mem- 
ory were computed. For a high intra-macroblock accessing 
uniformity most of the macroblocks should have relatively 
small standard deviations. 

Figure 4 shows the results for macroblock sizes of 256, lK, 
4K and 16K-bytes for compress. The y-axis is a loglo scale 
of the standard deviation divided by the mean (in order to 
normalize the results), and the x-axis is the percentage of 
macroblocks with a standard deviation divided by mean less 
than or equal to the plotted value. The curve for 256-byte 
macroblocks has the lowest standard deviations, however 
using 256-byte macroblocks may result in too many total 
macroblocks to feasibly track. Using lK-byte macroblocks, 
which would include four times as many cache blocks per 
macroblock, may be much more feasible and still result in 
most macroblocks having high uniformity. For this size, 
about 60% of the macroblocks lie within 20% of the mean, 
with almost 90% within 50% of the mean. The 4K-byte 
curve is only slightly higher, but the 16K-byte curve does not 
look quite as good. The curves for other benchmarks have 
similar characteristics, and will not be presented here due 
to space constraints. A large number of simulations confirm 
that lK-byte macroblocks provide the best cost-performance 
tradeoff. Therefore, we chose lK-byte macroblocks for all 
experiments presented in this paper. 
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(a) htab (b) codetab 

Figure 2: Memory Access Distributions for htab and codetab 
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(a) Conflicts Between Data with Different Usage Patterns 

Figure 3: Conflict Misses in Compress. 
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Figure 4: Macroblock Access Uniformity 

I Main Memory 

(b) Bypassing Less Frequently Accessed Addresses 

4 Hardware 

4.1 Memory Address Table 

In order to keep track of the macroblocks at run time WC uso 
a table in hardware called a MernonJ Address Tulle, or MAT. 

The MAT ideally contains an entry for each macroblock, 
Each entry in the table contains a saturating counter, whcra 
the counter value represents the frequency of accesses to the 
corresponding macroblock. 

On a memory access, a lookup in the MAT of the corre- 
sponding macroblock entry is performed in parallel with the 
data cache access. If no entry is found, a new entry is allo- 
cated and initialized, as will be discussed later. If an entry 
is found, the counter is incremented. Also, the counter valuo 
(c&l) must be saved in a register for possible use in the next 
step. An example of this operation is shown in Figuro Sa, 
where data in macroblock A is accessed. 

If the data cache access resulted in a hit, the access pro- 
ceeds as normal, and the counter value is ignored. If the ac- 
cess resulted in a cache miss, the cache controller must look 
up the MAT counter corresponding to the cache block that 
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(a) Accessing ctrl 

Figure 5: MAT Operation. 

(b) Accessing ctr2 

would be replaced to determine which data is more heavily 
accessed, and therefore more likely to be reused in cache, as 
shown in Figure 5b where data in macroblock B would be 
replaced. This counter value (c&2) is then decremented and 
compared to the counter value corresponding to the missing 
access. The actual comparison performed is: 

&l-l < f * b-2 (1) 

where f is some i&&ion. If the above inequality is satisfied 
the fetched data will bypass the cache. Otherwise, it replaces 
the existing cached data as normal. 

As mentioned above, the counter corresponding to the cur- 
rently cached block (ctr2) is decremented. This is to ensure 
that the counter values will eventually decrease, so that af- 
ter a transition to another phase of the program execution, 
new data can replace data that is now unused. The rationale 
for decrementing counters on missing accesses to conflicting 
data is that the data currently residing in the cache must 
justify remaining cached when there is heavy contention for 
that cache location. Therefore, the heavier the contention 
for a particular cache location, the more the cached data 
must be reused to maintain a counter large enough to sat- 
isfy Equation 1. 

Bather than compare ctrl and ctr2 exactly, in Equation 1 
we compare ctrl to some fraction f of ctr2. Choosing f 
less than 1.0 will conservatively prevent bypassing when the 
counter values are almost the same. 

Also, we do not want to bypass when the MAT contains 
no entry for one of the macroblocks, so that the cache will 
then default to its normal replacement behavior when there 
is insufficient information. In the case where there is no 
counter for the address being accessed this can be achieved 
by setting all bits to 1 in the register which holds ctrl for 
the comparison. When there is no counter found for the data 
residing in cache (ctr2), we compare to 0. Both of these are 
simply a matter of multiplexing in either the counter value 
read from the MAT or the appropriate constant, using the 
valid bit es a selector. 

When a new entry is allocated, the counter value must be 
initialized to some value. One possibility is to initialize it to 
0. This will result in more aggressive bypassing, since it will 
take longer for the new counter to “catch up” to the older 
cached data’s counter. Another possibility is to initialize to 
the conflicting data’s counter value, as shown in Figure 6a. 
The new counter will start at an equal position, resulting in 
more selective bypassing. Simulations verified that initial- 
ization to 0 is optimal for an Ll data cache MAT, since the 
Ll-L2 latency is small. The small latency means that the 
shorter bypass fetch size can be just as important as reduc- 
ing the number of fetches, and that there will be less penalty 
when the decision to bypass was incorrect. Simulations also 
verified that initialization of ctrf with ctr2 is optimal for an 
L2 data cache MAT, since the system bus latency is long. 
In this case reducing the length of data transferred is not 
critical, and although bypassing is still beneficial, it is much 
more important to make very careful bypassing decisions. 

The second MAT access and the comparison are needed 
only during a cache miss to determine the data size re- 
quested, since only the element size5 needs to be fetched 
on a bypass. It is unlikely that both MAT accesses can be 
performed in one cycle, so thii information will be available 
the cycle after the miss is detected. However, the size can be 
sent to the next level of the cache hierarchy the cycle after 
the address is sent, as the access to the L2 cache or main 
memory will take at least one cycle before the data can be 
returned. In some current processors the system bus request 
takes two cycles, with the address sent the f&t cycle and the 
data request size the second [16], which matches the MAT 
timing. 

4.2 Temporal Locality in Bypassed Data 

Another issue is that there can be some temporal locality 
even when the total accessing frequency is relatively low. In 

51n this paper the element size refers to the maximum element 
size allowed by the ISA, which in our system is 8 bytes. 



this case the MAT scheme will bypass some data which may 
have otherwise had a few hits before being displaced from 
the cache. More than one additional miss will be incurred 
by not caching that data, whereas only one miss is removed 
by not displacing the much more frequently accessed data. 

To optimize performance in this situation, we place by- 
passing data in a small set-associative buffer, as shown in 
Figure 6b. This bypass buffer will be accessed in the same 
manner as a victim cache. As a result, the bypassed data is 
held close to the processor for a short time, allowing much 
of the tempora1 locality of the infrequently accessed data to 
be exploited. 

4.3 Spatial Locality in Bypassed Data 

Spatial locality may also exist in the bypassed data. It is only 
necessary to fetch the element size on a bypass, which can 
be effective in reducing the bus transfer time. However, sim- 
ulations show that when simulating the MAT scheme with 
a small bypass fetch size, around 15% of the Ll data cache 
misses in several benchmarks are a result of the lost spa- 
tial reuse opportunities when fetching only the element on 
a bypass. These misses are accesses to another element in 
the same cache block as some element in the bypass buffer. 
Fetching the entire cache block on a bypass would eliminate 
these misses. 

However, fetching the entire cache block for benchmarks 
with little spatial locality in bypassed data will unnecessar- 
ily increase bus traffic. Therefore, it is beneficial to im- 
plement some means of dynamically choosing the optimal 
bypass fetch size. The choice of bypass fetch size should de- 
pend on the spatial locality detected, and can be determined 
at the macroblock granularity. 

This optimization could be implemented using subblock 
support in the bypass buffer. However, subblocks can result 
in underutilized lines, when only the element size is fetched. 
Instead, we use a bypass buffer with small lines, equal to 
the element size, and optionally fill in consecutive blocks 
when the larger bypass fetch size is chosen. This approach 
is similar to that used in some prefetching strategies [17]. 

To facilitate spatial locality detection, a new counter, sctr, 
will be added to each macroblock entry. In addition, an ST 

(spatial reuse) b t i and an f; (fetch initiator) bit are added 
to each bypass buffer tag. When a new entry is allocated in 
the bypass buffer, its ST bit is reset to 0. On a miss in the 
bypass buffer, if the upper bits of another tag indicate that 
data from the same full Ll data cache block resides in the 
bypass buffer, then the missing data’s ST bit is set and the 
corresponding macroblock’s sctr is incremented. However, 
in a set-associative bypass buffer we may need to access ad- 
ditional sets, or a separate structure which tracks this infor- 
mation, If the entire cache block was fetched into the bypass 
buffer, the ST bit is set on a hit access to any element other 
than the element which caused the block to be loaded. This 
is implemented by setting the fi bit to 1 during the cache 
refill for the bypass buffer block which contains the missing 
element, otherwise resetting it to 0. Then the ST bit is set 
to 1 on a hit to a block with a fi bit of 0. When the bypass 
buffer block is replaced, the corresponding macroblock’s sctr 
is decremented if the ST bit is not set for any of the blocks 

in the same full Ll data cache block. 

On a cache bypass, the full cache block is fetched if the 
sctr is saturated, otherwise the element size is fetched. Sim- 
ulations showed that a l-bit sctr is optimal. 

The cost of the MAT hardware will be analyzed in Scc- 
tion 5.3, following the presentation of experimental results, 

5 Experimental Evaluation 

5.1 Experimental Environment 

In this section, the environment used for experimental cd 
uation of our technique is presented. The applications for 
this study consist of several integer benchmark programs, 
that will be discussed below in Section 5.1.1. The expcri- 
mental environment also includes compiler support, emula- 
tion to verify transformation correctness, and the simulation 
techniques used to generate experimental results. 

5.1.1 Benchmarks 

Ten benchmarks were simulated under each of the configu- 
rations from Section 5.1.5. The first, 926.compress, is from 
the SPECS? benchmark suite, and was discussed in detail 
in Section 3.1. 072.5~ and 085.~~1, also from the SPBC92 
benchmark suite, are simulated. 099.90, 147.vorteq 139.li 
and f&$.perZ, from the SPEC95 benchmark suite, are simu- 
lated using the training inputs. The next two benchmarks 
consist of modules from the IMPACT compiler [18] that wo 

felt were representative of many real-world integer applica- 
tions. Pcode, the front end of IMPACT, is run performing 
dependence analysis with the internal representation of the 
combine.c file from GNU CC as input. lmdesL?,customizcr, a 
machine description optimizer, is run optimizing the Supcr- 
SPARC machine description for efficient use by the IMPACT 
compiler. These optimizations operate over linked list and 
complex data structures, and utilize hash tables for efficient 
access to the information. The last benchmark is the jatia 
interpreter. It is run interpreting the compress benchmark 
which was hand-translated to java code, with the SPli’U92 
compress input. The experimental environment for $IJ~ i5 
slightly different from that of the other benchmarks, and will 
be discussed in Section 5.1.4. 

5.1.2 Compiler and Architecture 

In order to provide a realistic evaluation of our technique, 
we first optimized the code using the IMPACTcompiler [18), 
Classical optimizations were applied, then optimization5 
were performed which increase instruction level parallelism 
such as loop unrolling and superblock formation [Xl], Tl10 
code was scheduled, register allocated and optimized for an 
eight-issue, scoreboarded, superscalar processor with rcgistor 
renaming. The Instruction Set Architecture is an extension 
of the HP PA-RISC instruction set to support compile-timo 
speculation. Up to four memory accesses can be cxccutcd 
per cycle. The register file contains 64 integer registers and 
64 double-precision floating-point registers. 
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Figure 6: MAT Operation Details. 

Function 1 Latency 1 Function 1 Latency 1 

lnt ALU 1 1 FP ALU 2 

memory load 2 1 FP multiply 2 

memory store 1 1 FP divide (single prec.) 8 

branch 1 + 1 slot ( FP divide (double prec.) 15 

Table 2: Instruction latencies for simulation experiments. 

5.1.3 Simulation Parameters and Techniques 

To verify the correctness of the code transformations, em- 
ulation of the target processor architecture was performed 
for all input programs on a Hewlett-Packard PA-RISC 7100 
workstation. 

The emulator drives the simulator that models on a cycle- 
by-cycle basis the processor and the memory hierarchy (in- 
cluding all related busses) to determine application execu- 
tion time, cache performance and bus utilization. The in- 
struction latencies used are those of a Hewlett-Packard PA- 
RISC 7f 00 microprocessor, as given in Table 2. 

The memory hierarchy includes separate Ll instruction 
and data caches. The Ll instruction cache is a direct- 
mapped, 32K-byte split-block cache with a 64-byte block 
size. The Ll data cache is a direct-mapped6, 16K-byte non- 
blocking cache with a 32-byte block size. The data cache is a 
multiported, write-back, no write-allocate cache that satis- 
fies up to four load or store requests per cycle from the pro- 
cessor and has streaming support. Up to 50 load misses can 
be outstanding simultaneously on the bus connecting the Ll 
and L2 data caches. An S-entry write buffer combines write 
requests to the same cache block. The instruction cache and 
data cache share a common, split-transaction Ll-L2 bus, 
with a 4 cycle latency and 8 bytes/cycle data bandwidth. 
The memory hierarchy also includes a direct-mapped, 256K- 
byte non-blocking L2 data cache with a 64byte block size. 
This cache is also write-back and no write allocate. Up to 
50 load misses can be outstanding simultaneously from the 
L2 data cache on the system bus, which is split-transaction 

61nitially both data caches are direct-mapped, but in a later 
section we examine the affects of set-associative data caches. 

with a 50 cycle latency to memory and 8 bytes/cycle data 
bandwidth. 

A direct-mapped branch target buffer with 1024 entries 
is used to perform dynamic branch prediction using a a-bit 
counter. Hardware speculation is supported, and the branch 
misprediction penalty is approximately two cycles. 

Since simulating the entire applications at thii level of de- 

I 

/ 

I 
I I 

tail would be impractical, uniform sampling is used to reduce 
simulation time [20], however emulation is still performed 
between samples. The simulated samples are 200,000 in- 
structions in length and are spaced evenly every 20,000,OOO 
instructions, yielding a 1% sampling ratio. For smaller appli- 
cations, the time between samples is reduced to maintain at 
least 50 samples (10,000,000 instructions). From experience 
with the emulation-driven simulator, we have determined 
that sampling with at least 50 samples introduces typically 
less than 1% error in generated performance statistics. 

I 

; 

The current versions of HPUX sometimes allocate the 
stack frame differently in memory across runs of the same 
program, which can cause the cache performance to vary. 
This effect is most noticeable when running the same exe- 
cutable on different machines. To obtain the typical perfor- 
mance benefit of our techniques, we emulated each cotigura- 
tion for every benchmark on three diierent HP workstations 
and recorded the median speedup. However, the speedups 
generally varied less than one percent. 

5.1.4 Java 

The juva benchmark was simulated on a Pentium system 
running Linux, for which we do not yet support virtual ma- 
chine emulation. Therefore, java was optimized for a Pen- 
tium machine [16], and x86 machine code was generated and 
run to ensure correctness, as well as to drive the simulator. 
The machine model simulated is that of the Pentium, rather 
than the virtual machine described in Section 5.1.2, except 
for the memory system which is identical to that explained 
in Section 5.1.3. 
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5.1.5 Experimental Configurations 

The first set of configurations use the MAT scheme presented 
in Section 4.1. In this scheme, two independent MATS are 
used, an Ll MAT and an L2 MAT. Each MAT operates 
independently of the other, so the L2 MAT only reflects the 
accesses that missed in the Ll cache and therefore accessed 
the L2 cache. Both MATS use the same value off and lK- 
byte macroblocks. After a large number of simulations7 f = 
1.0 was shown to have the best performance across all the 
benchmarks, and will be used throughout the rest of this 
paper. The bypass buffer allows aggressive bypassing from 
f = 1.0 to occur without much effect from any incorrect 
bypassing decisions made by the higher fvalue. 

The Cway set-associative buffers used to hold the by- 
passed data at the Ll and L2 caches contain 32 and 256 
entries, respectively, in the first configuration. We fetch the 
Ll block size on an L2 bypass because the Ll access may not 
have been a bypass. The next several experimental configu- 
rations explore the effects of varying the bypass fetch sizes. 
Unless noted otherwise, the bypass buffer line sizes will be 
the maximum bypass fetch size used. 

We first present results for an infinite-entry MAT, then 
study the effects of limiting the number of MAT entries. 

5.2 Results 

Figure 7a shows the speedup of each benchmark for the 
MAT scheme, which places the bypassing data in a small 
buffer, using an infinite MAT with 1K macroblocks and f = 
1. The leftmost speedup bar for each benchmark, labeled 
(8,32) to denote an S-byte Ll bypass fetch size and a 32-byte 
L2 bypass fetch size, fetches the minimum data necessary 
on a bypass. Most benchmarks achieve good performance 
improvement, with compress and Pcode improving the most, 
yielding 12% improvement each. 

The next three configurations shown in Figure 7a consist 
of the various combinations of fetching either the minimum 
size or the cache block size on a bypass. Several observa- 
tions can be made from this figure. First, all benchmarks 
perform better using an L2 bypass fetch size of 64, or the 
entire L2 cache block, compared to the minimum fetch size 
of 32. This is due to the long system bus latency (50 cycles), 
which means that the time necessary to transfer the 32 or 
64 bytes is small in comparison to the latency of accessing 
main memory. Therefore, it is better to fetch more data, 
and reduce the likelihood of needing another fetch for the 
other data in the cache block. 

Comparing Ll bypass fetch sizes of 8 and 32, the trend 
is not as clear. Some benchmarks (02&compress, 072.sc, 
Pcode) perform better when fetching only the element on an 
Ll bypass, due to an overall lack of spatial locality in these 
benchmarks. Other benchmarks, such as 13,&perl, perform 
much better when fetching the full 32-byte Ll cache block 
on a bypass. Because the Ll-L2 latency is much shorter, the 
data transfer time is very close to the L2 access latency, and 
it is not as clear which aspect to optimize. Therefore, the 
spatial reuse optimization discussed in Section 4.3 was sim- 
ulated, with results shown by the rightmost speedup bar for 

7Due to space constraints these results will not be shown here. 

each benchmark in Figure 7a. In this case the number of cn- 
tries in the Ll bypass buffer was increased to 128. Howover, 
due to the smaller line size of 8 bytes, the size of the by- 
pass buffer is the same as the 32-entry buffer with a bypass 
fetch size of 32 bytes. The benchmarks achieve speedups 
better than, or very close to, the best speedup achieved by 
the other configurations. 

Figure 7b shows the utilization of the system bus (con- 
necting the L2 cache with the main memory) for tho MAT 
scheme with an infinite number of entries. Only the 64-byte 
L2 bypass fetch size configurations are shown. The rcduc- 
tion in system bus traffic is due to the improvements in bit 
ratio. 

The Ll data cache read hit ratios for the same configu- 
rations are shown in Figure 7c. Surprisingly, the hit ratios 
for compress improve the least, while compress ncllievcd tllo 
largest speedup. From the memory access distributions of 
Figure 2 we see that the heavily accessed portions of htab 
and codetab alone total much more than 16K bytes, so al- 
though the MAT allows us to keep only heavily acccsscd 
data cached, different blocks from the heavily accessed rc- 

gions will still replace each other frequently. 
Non-blocking caches can result in different amounts of of- 

fective memory latency seen by the processor, depending 
on how many miss requests are outstanding when an nc- 

cess occurs. Therefore, the hit ratios may not be indicative 
of the overall performance. A more meaningful matric is 
the average miss penalty, or the average number of cycles 
the processor is stalled on the data cache per load access, 
Figure 7d shows that the average miss penalties correspond 
better than the hit ratios with the speedup results shown in 
Figure 7a. 

Figure 8 suggests that the MAT is correctly deciding which 
data to bypass for compress. Figure 8a shows the mamory 
access distribution for both htab and codetab, for the same 
execution phase shown in Figure 2. Figure 8b has the same 
y-axis, and lines up with Figure 8a. The x-axis of Figure 8b 
is the ratio of times that a missing access was instructed 
by the MAT to bypass the cache. Figure 8 shows that tho 
very heavily accessed portions of the hash table bypass very 
rarely. The sparsely accessed portion of codetab, roughly 
between address offsets 100000 and 170000, bypasses almost 
100% of the time. 

5.2.1 Set-associative Data Caches 

Increasing the set-associativity of the data caches can rcduco 
the number of conflict misses, which may in turn rcduco the 
advantage offered by the MAT, To investigate these affects, 
the data cache configuration discussed in Section ti.la3 WAS 

slightly modified to have a a-way set-associative Ll data 
cache and a Cway set-associative L2 data cache. 

Figure 9 shows the new speedup for two MAT configurn- 
tions. The fist configuration is the same shown in the prc- 
vious section, with a 64-byte L2 bypass fetch size and the 
dynamically varying Ll bypass fetch size. Because the higher 
associativity filters out some of the conflict misses that wcro 
bypassed in the case of direct-mapped caches, it may be 
beneficial to bypass less aggressively. One way in which to 
bypass less frequently is to have fewer bits in the MAT wccss 
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(a) Speedup 

(c) Ll Data Cachet Hit Ratio 

(b) System Bus Utilization 

(d) Average Miss Penalty per Load Access 

Figure 7: Performance data for the MAT Scheme (infnrite-entry MAT). The legend denotes (Ll bypass fetch size, L2 bypass 
fetch size), where an Ll bypass fetch size of S/32 denotes the dynamically varying scheme. 
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Figure 8: Compress Distribution and Bypassing Ratio Comparison (MAT Scheme, infinite-entry MAT). 
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Figure 9: Speedup for l-way and Cway set-associative Ll 
and L2 data caches, respectively, with the MAT Schemes us- 
ing dynamically-varying Ll bypass fetch sizes (infinite-entry 
MAT) and various numbers of bits per Ll MAT ctr. The 
legend denotes ({bits/L1 MAT ctr}x{bits/L:! MAT ctr); Ll 
bypass fetch size, L2 bypass fetch size), where an Ll bypass 
fetch size of 8132 denotes the dynamically varying scheme. 

counter. Because the counters will saturate faster, and at a 
lower value, it is less likely that one macroblock will have a 
much larger ctr value for very long. As a simple preliminary 
investigation we modified the previous configuration so the 
Ll MAT had a 5-bit (rather than S-bit) ctr. This configura- 
tion, denoted (5x8$/32,64) to reflect the 5-bit Ll MAT ctr 
and 8-bit L2 MAT ctr, is also shown in Figure 9. 

As noted in Section 3.1, compress has very large hash ta- 
bles, resulting in many capacity misses. For this reason, 
its speedup using a MAT decreases little when increasing 
the data cache associativity, seen by comparing Figure 9 to 
Figure 7a. Other benchmarks decrease in varying amounts. 
However, using a 5-bit Ll MAT ctr the MAT still achieves 
speedup for all benchmarks. With increasing memory la- 
tency these speedups are likely to increase. 

5.2.2 Finite-size MAT 

To study the effects of a finite-size MAT we chose to simulate 
the MAT scheme with both 512 and lK-entry direct-mapped 
MATS. These sizes were chosen because their hardware cost 
is reasonable, as will be discussed in Section 5.3, yet they 
were large enough to hold most of the macroblocks for each of 
the benchmarks. The bypassing choices should be more con- 
servative as the number of entries in the MAT is decreased, 
since we do not bypass unless both counters are found in the 
MAT, as discussed in Section 4.1. Table 3 shows the num- 
ber of macroblocks accessed by each benchmark for a lK- 
byte macroblock size, Figure 10 shows speedups achieved by 
the MAT scheme for direct-mapped data caches using dif- 
fering numbers of entries per MAT. Some benchmarks de- 
grade slightly when the entries per MAT are decreased. One 
anomaly is that several benchmarks have slight performance 
improvements from reducing the MAT entries. This is due 
to the more conservative bypassing choices avoiding some 
incorrect bypasses. In general, the performance effects of 

. 

. ..d.CCl 
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134.perI 

Table 3: Number of Macroblocks Accessed. 

Figure 10: Speedup for the MAT Scheme with infinite, 1024 
and 512-entries per MAT. All have 4-way set-associative 
bypass buffers and dynamically-varying Ll and 64-byte L2 
bypass fetch sizes. The Ll and L2 fully-associative victim 
caches have 64 and 512 entries, respectively. 

restricting the number of MAT entries is small. 
Also shown in Figure 10 are the speedups attained by 

the traditional victim caches. A 64-entry fully-associative 
Ll victim cache and a 512-entry fully-associative L2 vk- 

tim cache are used in this configuration. Although the vic- 

tim caches are large and have full associativity, they at- 
tain smaller speedups than those obtained by the MAT 
scheme with Cway set-associative bypass buffers, using sim- 
ilar amounts of hardware, as will be shown in Section 6.3, 
The fact that compress uses large hash tables, resulting in 
many capacity misses, is underlined by the extremely small 
speedup achieved by the victim caches (0.26%). Thus, the 
combination of a 64-entry Ll victim cache and a 612-entry 
L2 victim cache is still too small to hold a significant portion 
of the conflicting data. 

5.2.3 Growing Memory Latency Effects 

As discussed in Section 1, memory latencies are increasing, 
and this trend is expected to continue. Figure 11 ~110~s th 
speedups of the MAT scheme applied to direct-mapped data 
caches for three different latencies, the 50-cycle latency used 
in all previous configurations, as well as lOO-cycle and 200. 
cycle latencies. Most of the benchmarks see much highor 
performance improvements from the MAT scheme when the 
memory latencies increase, with speedups close to 2G% for 
072.~~ and 099.go for a 200-cycle memory latency. This is to 
be expected, as the number of cycles spent waiting for out- 



Figure 11: Speedup for the MAT Scheme with varying mem- 
ory latency. All have dynamically-varying Ll and 64-byte L2 
bypass fetch sizes. 
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Figure 12: MAT Design. 

standing cache misses will increase, and optimizations which 
decrease the number of cache misses will become increasingly 
important. 

5.3 Design Considerations 

The additional hardware cost incurred by the MAT scheme is 
small compared to doubling the cache sizes at each level, par- 
ticularly for the L2 cache. For the 16K-byte direct-mapped 
Ll cache used to generate the results of Section 5.2, 18 bits 
of tag are used per entry (assuming 32-bit addresses). Dou- 
bling this cache will result in 17-bit tags. Because the line 
size is 32 bytes, the total additional cost of the increased 
tag array will be 17 * 2r” - 18 * 2’, which is 1K bytess. In 
addition, an extra 16K of data is needed. 

For a direct-mapped MAT with 8-bit access counters and 
l-bit spatial counters, Table 4 gives the hardware cost of the 
data and tags for the MAT and macroblock sizes discussed 
in Section 5.2. Since all addresses within a macroblock map 
to the same MAT counter, a number of lower address bits 
are thrown away when accessing the MAT, as shown in Fig- 
ure 12. The size of the resulting MAT address, used to access 

sWe are ignoring the valid bit and other state, which is con- 
servative since the number of these bits per entry is the same or 
less in the MAT, and because the number of entries created when 
doubling the cache is larger than the number of entries in the 
MAT. 

MAT Data Cost Size of MAT 
Entries (bytes) Address (bits) 

Tag Size Tag Cost 
(bits) b+4 

512 576 22 13 832 
1K 1152 22 12 1536 

Table 4: Hardware Cost of 512 and 1K entry MATS. 

Block Data 
Bypass Fetch Size 

Tag 
cost 

Tag 

Entries 
Size 

Size (bytes) 
Cost 

(bytes) (W-) (bits) (W4 
32 8 a 256 26 104 

32 1 32 1024 96 
128 8/32 1 

24 1 
8 1 1024 ) 26 ( 416 

Table 5: Hardware Cost of Ll Bypass Buffer. 

Block Size Data Cost 
Entries (bytes) (bytes) 

Tag Size 
(bits) 

Tag Cost 

byte4 
64 ) 32 ( 2048 1 27 1 216 1 

Table 6: Hardware Cost of Ll Victim Cache. 

the MAT, is shown in column 3 of Table 4. 
The cost for the Ll buffer, which is a Cway set-associative 

cache with 8 or 32 byte lines, depending on the bypass fetch 
size chosen, is shown in Table 5. The total cost of the addi- 
tional tag and data arrays for the MAT scheme is much less 
than that of increasing the data cache size. If the varying 
bypass size scheme of Section 4.3 is used, then spatial local- 
ity detection support is necessary in the Ll bypass buffer, 
which will require a small amount of additional hardware. 
This is reflected by the S/32 entry in Table 5, where an ex- 
tra 2 bits of tag are needed per entry (l-bit spatial reuse bit 
and l-bit fetch initiator bit). 

Table 6 shows the costs for a 64entry Ll victim cache. 
Adding the costs from Tables 4 and 5 and comparing to Ta- 
ble 6 shows that the MAT configurations are only slightly 
more expensive in tag and data costs. However, the vic- 
tim caches are fully-associative, which may make the MAT 
scheme with Cway set-associative buffers less costly overall. 
For a similar cost of tags and data, the results presented 
in Figure 10 show that the MAT scheme always performs 
better than victim caching with higher associativity. 

Similar calculations will show that all L2 MAT configu- 
rations are much less expensive than the L2 victim cache 
configuration used to generate the results of Section 5.2. 

To reduce the hardware cost, we could potentially inte- 
grate the Ll MAT with the TLB and page tables. For a 
macroblock size larger than or equal to the page size, each 
TLB entry will need to hold only one &bit counter value. 
For a macroblock size less than the page size, each TLB 
entry needs to hold several counters, one for each of the 
macroblocks within the corresponding page. In this case 
a small amount of additional hardware is necessary to se 
lect between the counter values. However, further study is 
needed to determine the full effects of TLB integration. 

6 Conclusion 

In this paper, we presented a method to improve the effi- 
ciency of the caches in the memory hierarchy, by bypassing 
data that is expected to have little reuse in cache. This al- 
lows more frequently accessed data to remain cached longer, 
and therefore have a larger chance of reuse. The bypassing 
choices are made by a Memory Address Table (MAT), which 
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performs dynamic reference analysis in a location-sensitive 
manner. An MAT scheme was investigated, which places 
bypassing data in a small Cway set-associative buffer, al- 
lowing exploitation of small amounts of temporal locality 
which may exist in the bypassed data. We also introduced 
the concept of a macroblock, which allows the MAT to fea- 
sibly characterize the accessed memory locations. 

Variations in the amount of data fetched on a bypass were 
investigated, including a dynamically-varying bypass fetch 
size. Additionally, the effects of increasing the data cache 
associativities and reducing the number of MAT entries were 
examined. 

Cycle-by-cycle simulations of several benchmarks show 
that significant speedups can be achieved by thii technique. 
The speedups are due to the improved miss ratios and re- 
duced bus traffic, which also result in a reduction in the 
average miss penalty per load. The MAT scheme was shown 
to outperform large victim caches, even for a finite-size MAT 
of a similar hardware cost and less associativity. In addition, 
we showed that the speedups achieved by the MAT scheme 
increase as the memory latency increases. 

For future work we will examine more sophisticated MAT 
counter algorithms, beyond the simple reference count of 
this design, as w’ell as adaptive cache’ remaPping schemes. 
TLB integration is another area of future investigation, as 
mentioned earlier. In general, we believe that the schemes 
presented in thii paper can be extended into a more general 
framework for intelligent runtime management of the cache 
hierarchy. 
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