
ABSTRACT

Chip Multiprocessors (CMPs) allow different applications to
concurrently execute on a single chip. When applications with
differing demands for memory compete for a shared cache, the
conventional LRU replacement policy can significantly degrade
cache performance when the aggregate working set size is greater
than the shared cache. In such cases, shared cache performance can
be significantly improved by preserving the entire working set of
applications that can co-exist in the cache and preserving some
portion of the working set of the remaining applications.

This paper investigates the use of adaptive insertion policies to
manage shared caches. We show that directly extending the recently
proposed dynamic insertion policy (DIP) is inadequate for shared
caches since DIP is unaware of the characteristics of individual
applications. We propose Thread-Aware Dynamic Insertion Policy
(TADIP) that can take into account the memory requirements of each
of the concurrently executing applications. Our evaluation with
multi-programmed workloads for 2-core, 4-core, 8-core, and 16-core
CMPs show that a TADIP-managed shared cache improves overall
throughput by as much as 94%, 64%, 26%, and 16% respectively (on
average 14%, 18%, 15%, and 17%) over the baseline LRU policy.
The performance benefit of TADIP is 2.6x compared to DIP and 1.3x
compared to the recently proposed Utility-based Cache Partitioning
(UCP) scheme. We also show that a TADIP-managed shared cache
provides performance benefits similar to doubling the size of an
LRU-managed cache. Furthermore, TADIP requires a total storage
overhead of less than two bytes per core, does not require changes to
the existing cache structure, and performs similar to LRU for LRU
friendly workloads.

Categories and Subject Descriptors B.3.2 [Design Styles]: Cache memories,
C.1.4 [Parallel architectures]

General Terms Design, Performance.

Keywords Shared Cache, Cache Partitioning, Set Dueling, Replacement

1. INTRODUCTION

High-performance processors typically contain multiple cores on
a single chip which allows them to execute multiple applications
(or threads) concurrently. As multi-core processors become
pervasive, a key design issue facing processor architects is
organizing and managing the on-chip last-level cache (LLC).
Since shared caches enable more flexible and dynamic allocation
of cache resources, recent processors such as Intel's Core Duo [1],
IBM's Power 5 [6] and Sun's Niagara [8] have opted for a shared
last-level cache (LLC). As the number of cores on chip increases,
the contention caused by applications sharing the LLC increases
as well. Thus, performance of such systems is heavily influenced
by how efficiently the shared cache is managed. The commonly
used LRU replacement policy implicitly allocates cache resources
to competing applications based on the rate of demand. As a
result, it often allocates cache resources to applications that do not
benefit from the cache[18][13]. Shared cache performance can be
significantly improved from a cache management scheme that
allocates cache resources to applications based on benefit rather
than rate of demand.

This study focuses on dynamic management of a shared
cache among competing applications. There are four goals we
seek from such a management scheme: High performance,
robustness, scalability and low design overhead. It should have
high-performance for a given metric of performance. Since future
processors are expected to have a large number of cores, the
variety of competing applications in a workload mix is expected
to be high. So the proposed cache management policy must not
degrade performance (significantly) of workload mixes where the
baseline LRU policy works well. Furthermore, since the number
of concurrently executing applications is expected to increase
with the number of cores, the proposed mechanism must be
scalable to a large number of cores. And, finally, from an
implementation point of view, the mechanism must have low
overhead and avoid extra storage structures so that the area,
power, verification, testing and design overheads are minimized.
This paper seeks to design such a high-performance, robust,
scalable, and negligible hardware overhead mechanism to
manage shared caches.

A recent study [12] showed that dynamically changing the
insertion policy can provide high-performance cache
management for private caches at negligible hardware and design
overhead. The proposed Dynamic Insertion Policy (DIP) [12]
consists of two component policies: the Bimodal Insertion Policy
(BIP) and the traditional LRU policy. BIP is a thrashing-resistant

§ Moinuddin Qureshi contributed to this work prior to joining IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10...$5.00.

Adaptive Insertion Policies for Managing Shared Caches
Aamer Jaleel† William Hasenplaugh† Moinuddin Qureshi§ Julien Sebot‡ Simon Steely Jr.† Joel Emer†

§IBM T. J. Watson Research Center
Yorktown Heights, NY

mkquresh@us.ibm.com

‡Intel Israel Design Center
Haifa, Israel

julien.sebot@intel.com

†Intel Corporation, VSSAD
Hudson, MA

{aamer.jaleel, william.c.hasenplaugh,
simon.c.steely.jr, joel.emer} @intel.com
208

policy that inserts majority of the incoming lines in the LRU
position and few in the MRU position. DIP dynamically chooses
between BIP and LRU using Set Dueling Monitors (SDMs). An
SDM estimates the misses for any given policy by dedicating a
few sets (32 sets) of the cache to always follow that policy. DIP
uses the winning policy of the two SDMs (LRU and BIP) for the
remaining sets of the cache.

In this paper, we analyze extensions of adaptive insertion for
managing shared caches. We show that directly extending DIP to
shared caches outperforms the baseline LRU policy but leaves
significant room for improvement. Since the direct extension of
DIP to shared caches does not differentiate between the behavior
of competing applications, DIP is incapable of distinguishing
between applications that benefit from the cache and those that do
not. We explain this with the following example where two SPEC
CPU2006 applications, h264ref and soplex, share a 2 MB LLC.
Figure 1 shows the miss rate curves (under the LRU replacement
policy) for both the competing applications when each of them is
run separately. The figure shows that h264ref continues to benefit
from additional cache space till approximately 2MB while soplex
has little benefit from the cache. When both applications compete
for the cache under the LRU policy, LRU can allocate a
significant fraction of the cache resources to soplex. Cache
performance can be improved if more cache space is given to
h264ref and minimal to soplex. This can be achieved by filtering
out soplex using BIP and retaining h264ref using the conventional
LRU policy. However, the direct extension of DIP for shared
caches uses a single policy for both applications.

To address this shortcoming, we propose the Thread-Aware
Dynamic Insertion Policy (TADIP). For a given reference stream,
adaptive insertion tries to dynamically choose between two
policies: LRU and BIP. Therefore, TADIP needs to make a binary
decision (say LRU=0 and BIP=1) for each application executing
on a CMP core. When there are N concurrently executing
applications1 competing for a shared cache, the search space of
TADIP is an N-bit binary string. TADIP tries to find the best
performing binary string out of the 2N possible strings. When N is

small we can use Set Dueling [12] to do a runtime comparison of
all possible binary strings and select the best performing one. For
example, when N=2 we can dedicate one SDM to each of the four
possible insertion policies (00, 01, 10, 11) and use the best
insertion policy out of the four for the remaining sets of the cache.
However, the number of SDMs increases exponentially with the
number of concurrently executing applications making this brute-
force approach impractical.

We propose two scalable approaches to avoid the exponential
increase in the number of SDMs. These approaches exploit the
fact that some of the bits in the best-performing insertion string
can be determined independently. For example, applications that
do not benefit from the cache can be filtered out by always using
BIP. As a result, the exponential search space can be reduced to a
linear search space by individually learning the best insertion
decision for each application. The first approach, TADIP-Isolated
(TADIP-I), learns the insertion policy for each application
independently assuming that all other applications are using the
LRU policy. The problem with this approach is that the insertion
decision of one application may be dependent on the insertion
decisions of other concurrently executing applications. The
second approach, TADIP-Feedback (TADIP-F) improves upon
TADIP-I by learning the insertion policy for each application
based on the currently best performing insertion policy for the
remaining applications.

We evaluate the proposed policies on 2-core, 4-core, 8-core
and 16-core systems each sharing a last-level cache of 2MB,
4MB, 8MB, and 16MB respectively. Our results show that a
TADIP-managed shared cache improves the average throughput
over an LRU-managed shared cache by 14%, 18%, 15%, and
17% for the 2-core, 4-core, 8-core, and 16-core systems
respectively. We show that this performance improvement is 2.6x
compared to that of DIP and is similar to the performance
obtained by doubling the size of the baseline LRU-managed
cache. Furthermore, TADIP also outperforms the previously
proposed dynamic cache partitioning scheme UCP [13] by 1.3x
while avoiding the associated hardware overhead (2KB per core),
changes to the existing cache structure, and complexity of UCP.
TADIP requires less than two bytes of storage per core, is similar
to LRU for LRU friendly workloads, and is scalable to a large
number of cores (16 in our evaluation).

2. MOTIVATION

Modern CMPs typically use shared last-level caches to
accommodate applications with differing memory requirements.
Application performance on such CMPs is governed by how well
the shared cache is managed. When multiple applications
compete for a shared cache, more cache resources should be
allocated to applications that benefit from the cache and fewer to
those that do not [18][13]. However, the commonly used LRU
policy for managing shared caches is unable to determine
whether or not an application benefits from the cache. Instead, the

Figure 1: The Shared Cache Problem. The figure shows the cache
sensitivity (under LRU) of two SPEC CPU2006 workloads. When
both these workloads execute concurrently and share a 2MB cache,
soplex, a streaming application, interferes with h264ref. Cache
performance can be improved by reducing the interference.

0.02 0.03
0.06 0.12

0.25 0.50 1.00 2.00 4.00 8.00

Cache Size (MB)

0.031

0.062

0.12

0.25

0.5

1

2

4

8

16

32

M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

h264ref

soplex

1. Without loss of generality, we assume one hardware thread per core. Therefore, the
maximum number of concurrently executing applications in the system is equal to the
total number of cores
209

LRU policy treats all application misses uniformly and allocates
cache resources based on their rate of demand. As a result,
applications that have no benefit from cache receive cache
resources that could otherwise have been used by applications
that benefit from the cache. This suggests the need for a cache
management scheme that judiciously allocates cache resources to
applications based on benefit rather than rate of demand.

Figure 2 illustrates cache miss rate as a function of cache size
for the different types of applications that can share a cache.
Assuming that these applications run on a CMP with a 4MB
shared cache, we can divide the applications into four categories:
• “Cache Friendly” Applications: These applications benefit

from cache and continue to do so with additional cache space.
When these applications share the cache with similar
applications, the LRU policy works well.

• “Cache Fitting” Applications: These applications require the
bulk of the shared cache to perform well. When executing
concurrently with other applications, these applications can
cause thrashing under the LRU policy when the cache size
given to them is less than their working set size. When such
applications execute concurrently with cache friendly
applications, it is better to reduce the cache resources allocated
to them when they are thrashing.

• “Cache Thrashing” Applications: These applications have a
working set size that is greater than the size of the available
shared cache. These applications cause cache thrashing under
the baseline LRU policy but may provide better cache
performance using some other replacement policy. Under the
baseline LRU policy these applications have no benefit from
the cache. When such applications execute concurrently with
“cache friendly” or “cache fitting” applications, it is better to
reduce the cache resources allocated to them since they have
no benefit from the available cache.

• “Streaming” Applications: These applications have extremely
large working set sizes and poor cache reuse. They cause
thrashing under any replacement policy. When such
applications execute concurrently with any other application, it
is better to minimize cache resources allocated to them since
they do not benefit from the cache.

A recurring theme for improving shared cache performance is to
reduce cache contention by reducing cache resources allocated to
applications that have little benefit from the cache. Doing so

allows concurrently executing applications that benefit from the
cache to have better performance. Another recurring theme is that
concurrently executing applications can cause cache thrashing. A
recent study [12] showed that cache thrashing can be significantly
reduced by retaining some fraction of the working set in the
cache. This was achieved by modifying the cache insertion
policy, i.e. the recency position where the incoming line is placed.
They proposed the Bimodal Insertion Policy (BIP) which inserts
most incoming lines in the LRU position and very few in the
MRU position. BIP provides high performance for thrashing
workloads while responding to changes in the working set of the
application. A runtime mechanism, DIP [12], chose between
LRU and BIP depending on the workload.

Besides avoiding thrashing, BIP can also be used to reduce
the amount of cache resources allocated to an application. This is
because BIP significantly shortens the lifetime of the lines that
are inserted in the LRU position. For two concurrently executing
applications A and B, if application A always uses the LRU
policy and application B always uses BIP, then application A
naturally receives more cache resources because the cache lines
of A tend to live longer in the cache than the cache lines of B.
Such a strategy can be used to minimize cache contention caused
by “cache fitting”, “cache thrashing” or “streaming” applications.
Similarly, BIP can also be used to retain some portion of the
working set of applications whose working set size exceeds the
allocated cache space.

For the type of applications shown in Figure 2, adaptive
insertion can be used to manage shared caches in the following
manner. Since “cache friendly” applications benefit from the
cache, using the traditional LRU policy works well for these
applications. For “cache fitting” applications, LRU works well if
the application can have the required cache capacity. If the
required cache capacity is unavailable, thrashing can be avoided
by using BIP. For “cache thrashing” applications, BIP helps
reduce cache contention and provides an opportunity to receive
cache hits by preserving some fraction of the working set in the
cache. Finally, for “streaming” applications, BIP provides an easy
means of filtering out the contention caused by such streaming
applications. Thus, adaptive insertion can be used to obtain high
performance from shared caches provided that the per-application
insertion policy decisions are made judiciously. The next section
describes adaptive insertion policies for managing shared caches.

Cache Size (MB)

0

25

50

75

100

(a) Cache “Friendly” Workloads (b) Cache “Fitting” Workloads (c) Cache “Thrashing” Workloads (d) Streaming Workloads

Figure 2: Workload Diversity on CMPs. Assuming a 4MB shared cache, this figure shows the diversity (in terms of cache requirements) of
applications that can compete for the shared cache.

Cache Size (MB) Cache Size (MB) Cache Size (MB)
1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

M
is

s R
at

e

210

3. ADAPTIVE INSERTION MANAGED
SHARED CACHES

3.1. Thread-Unaware Adaptive Insertion

When the combined working set size of a workload mix exceeds
the shared cache size, the traditional LRU replacement policy can
cause cache thrashing. Cache performance can be improved by
preserving some portion of the working set in the cache using
BIP. We can simply extend the recently proposed Dynamic
Insertion Policy (DIP) to determine whether or not a workload
mix thrashes the cache. DIP dynamically chooses between BIP
and LRU using two Set Dueling Monitors (SDM). An SDM
estimates the misses for any given policy by permanently
dedicating a few sets2 of the cache to follow that policy. DIP uses
the winning policy of the two SDMs (LRU and BIP) for the
remaining sets (also known as follower sets) of the cache. Figure
3a illustrates DIP applied to a cache shared by four applications.
A saturating counter, PSEL, keeps track of which of the two
competing policies is doing well: misses in SDM-LRU
increments PSEL while misses in SDM-BIP decrements PSEL.
The PSEL value provides insight on whether or not the cache is
being thrashed. PSEL values close to zero indicates the workload
benefits from the LRU policy. On the other hand, PSEL values
close to its maximum saturating value indicates the workload
benefits from BIP. The follower sets use the most significant bit
(MSB) of the PSEL counter to apply the winning policy to all
applications sharing the cache. Since the decisions made by DIP
are unaware of different applications running in the system, we
call this Thread-Unaware Dynamic Insertion Policy. DIP requires
two SDMs and one PSEL counter.

DIP seeks to answer the question: “Is the workload mix
thrashing the cache?” Since DIP does not differentiate between
the behaviors of different applications in a workload mix, DIP is
incapable of distinguishing between “cache friendly” and “cache
thrashing” applications. As a result, managing shared caches
using DIP applies a single policy for all applications that share the
cache. Shared cache performance can be improved significantly
by applying the LRU policy to “cache friendly” applications and
BIP to applications that cause cache thrashing. This motivates the
need for a thread-aware adaptive insertion policy.

3.2. Thread-Aware Adaptive Insertion

For a given reference stream, adaptive insertion tries to adapt
between two policies: LRU and BIP. A Thread-Aware Dynamic
Insertion Policy (TADIP) tries to make this binary decision
(LRU=0, BIP=1) for each application executing on a core of the
CMP. When there are N applications competing for the shared
cache, the search space of TADIP is an N-bit binary string with
2N possible decisions. The objective of TADIP is to converge on
an N-bit binary string that performs the best for a given workload
mix. The best performing binary string can be determined either
statically or dynamically.

3.2.1 Profiling

A static way of finding the best performing binary string is to use
profile information. This can be done by executing all 2N possible
combinations of the insertion policies on a target CMP and
selecting the combination that yields the best performance.
However, it may be impractical to run all 2N possible
combinations for each workload mix, especially when N is large.
For example, when N=16 there are 65536 combinations.
Therefore, it may be impractical to obtain representative profile2. Prior work has shown that 32 sets are sufficient to estimate cache performance

[13][12]. Throughout the paper an SDM consists of 32 sets.

<0,0,0,0>
<1,0,0,0>

<0,1,0,0>

<0,0,1,0>
<0,0,0,1>

<0,P1,P2,P3>

<1,P1,P2,P3>

<P0,P1,0,P3>

<0,0,0,0>

<1,1,1,1>

<P0,P1,1,P3>

<P0,P1,P2,0>

<P0,P1,P2,1>

<P0,0,P2,P3>

<P0,1,P2,P3>

PSEL3

-1

-1

-1

-1

+1

PSEL2
PSEL1

PSEL0

PSEL3

+1

-1

+1

-1

PSEL1

PSEL0

+1

-1

+1

-1

PSEL2

+1

-1

PSEL0
misses misses misses

<P0,P1,P2,P3>

<P0,P1,P2,P3>

<P0,P0,P0,P0>

Px = MSB(PSELx)(a) DIP (Thread Unaware) (b) TADIP-I (c) TADIP-F

Figure 3: Adaptive Insertion Managed Shared Caches. Three schemes for managing a cache shared four by 4 applications. (a) DIP (b)
TADIP-Isolation (c) TADIP-Feedback. Set Dueling Monitors (SDMs) estimate misses for a given policy and follower sets use the best performing
policy. Given a binary string <P0,P1,P2,P3>, the insertion policy for Application 0 is P0, Application 1 is P1, and so on. Bimodal insertion policy
(BIP) is used when Px is 1, otherwise the LRU policy is used. Px is the MSB of a policy selection (PSEL) counter. Both TADIP schemes require a
per-core PSEL counter. Note that the figures are not drawn to scale.

SDM{

follower
sets {
211

information about all the applications that execute concurrently.
The primary drawback of a profiling based approach is that the
information gathered varies across systems with different cache
sizes, is highly sensitive to the choice of input sets (which is only
available at run time), and varies across different workloads. As a
result, for the purpose of this paper, profiling is considered as an
impractical solution.

3.2.2 Brute Force

When N is small we can use Set Dueling to do a runtime
comparison of all possible binary strings and select the best. For
example, when N=2 we can dedicate one SDM to each of the four
possible insertion policies (00, 01, 10, 11) and use the best
insertion policy out of the four for the remaining sets of the cache.
However, the number of SDMs required increase exponentially
with the number of applications making a brute-force approach
impractical. For example, when N=16, 64K SDMs are required
which is a total of 2 million (64K SDMs * 32 sets per SDM)
cache sets—a cache of several gigabytes only for monitoring!
Even if all the SDMs were to fit in the cache, dedicating a
significant portion of the cache space to analyze different policies
degrades performance because a large number of the SDMs
continue to use the incorrect policy. In fact, attempting to find the
best search string using brute force can degrade overall
performance.3 For the purpose of this paper, brute force is
considered as an infeasible solution.

3.3. Scalable Thread-Aware Adaptive Insertion

When the number of concurrently executing applications is large,
finding the best performing insertion string requires searching
through an exponential number of decisions. The search space
can be reduced by exploiting the fact that some of the bits in the
best-performing insertion string can be determined
independently. For example, applications that do not benefit from
the cache (such as streaming applications) should always use BIP.
The exponential search space can be reduced to a linear search
space by individually learning the best insertion decision for each
application in the presence of all other competing applications.
We now describe practical mechanisms for implementing TADIP
using a linear number of SDMs.

3.3.1 TADIP-Isolated

Our first approach attempts to independently discover whether or
not an application benefits from the cache compared to the
baseline LRU policy. We call this approach TADIP-Isolated
(TADIP-I) because it attempts to learn the insertion decision of
each application in isolation. For a cache shared by N
applications, we use N+1 SDMs to learn the insertion policy of
each application independently. The first SDM called the
baseline-SDM uses the LRU policy for all the applications. The N

remaining SDMs, called bimodal-SDMs, use BIP for one
application and the LRU policy for the remaining applications.
Figure 3b demonstrates this scheme for a cache shared by four
applications. The baseline-SDM uses the binary string <0,0,0,0>
implying that all applications use the LRU policy. For the four
bimodal-SDMs, each bimodal-SDM uses the binary string
<1,0,0,0>, <0,1,0,0>, <0,0,1,0>, and <0,0,0,1> respectively. The
<1,0,0,0> bimodal-SDM uses BIP for the first application and the
LRU policy for all other applications, the <0,1,0,0> bimodal-
SDM uses BIP for the second application and the LRU for all
other applications, and so on. Note that the hamming distance
between the baseline-SDM and any bimodal-SDM is one. In
other words, only one insertion policy is different between the
baseline-SDM and any given bimodal-SDM. This helps TADIP-I
decide the insertion policy for the given application.

TADIP-I decides the best insertion policy for each application
by dedicating a PSEL counter to each application. Misses in the
baseline-SDM increments all PSEL counters while misses in the
bimodal-SDM only decrements the PSEL counter dedicated to
the application. On a miss in the follower sets, the MSB of the
PSEL counter of the miss causing application decides the
insertion policy. If the MSB of PSEL is zero, LRU is used
otherwise BIP is used.

The per-application PSEL counter values provide insight on
whether or not the particular application is causing thrashing.
Thrashing applications can be identified based on PSEL values
that are close to maximum. Applying BIP to such applications
provides two benefits: (a) it preserves the working set of
applications that can co-exist in the cache (b) it preserves some
portion of the working set of the thrashing application in the
remaining portion of the cache.

TADIP-I can be thought of as a cache learning about each
application: “In the presence of other applications, is the given
application degrading overall cache performance under the LRU
policy? If so, use BIP for this application.”

3.3.2 TADIP-Feedback

The problem with TADIP-I is that the insertion decision of one
application may be dependent on the insertion decisions of
another application. For example, consider three applications X,
Y, and Z sharing a 2MB cache. Application X needs 0.5MB,
application Y needs 1MB, and application Z needs 3MB.
Although applications X and Y can co-exist in the cache, the
presence of application Z can cause thrashing for application Y.
Independently evaluating the insertion policies of applications X,
Y, and Z using TADIP-I can result in BIP for Y. However, if
application Z is doing BIP, then application Y can fit in the cache
using the LRU policy. To incorporate such feedback, we propose
TADIP-with Feedback (TADIP-F).

TADIP-F requires 2N SDMs to learn the best insertion policy
for each application given the insertion policies for all other
applications. Of the 2N SDMs, a pair of SDMs are owned by
every application. One of the SDMs in the pair is used for LRU
and the other for BIP. For the owner applications, the LRU-SDM
always uses the LRU policy and the BIP-SDM always uses BIP.

3. The performance overhead of SDMs can be reduced by using separate hardware
structures external to the cache. However, this approach is expensive in terms of
hardware, area, power, and verification overhead.
212

For the remaining applications, the SDMs use the insertion policy
that is currently doing the best. Misses in the LRU-SDM
increments the SDM owner’s PSEL and misses in the BIP-SDM
decrements the SDM owner’s PSEL. On a miss in the follower
sets, the MSB of the PSEL counter of the miss causing
application decides the insertion policy.

Figure 3c illustrates TADIP-F for a cache shared by four
applications. The cache has eight SDMs, one pair of SDMs for
each application. For instance, the two SDMs for the first
application use the binary strings <0,P1,P2,P3> and <1,P1,P2,P3>
respectively, where Px is the MSB of PSELx. The <0,P1,P2,P3>
SDM always follows the LRU policy for the first application and
the insertion policy predicted by the per-application SDMs for the
remaining applications, whereas, the <1,P1,P2,P3> SDM always
follows BIP for the first application and the best insertion policy
predicted by the per-application SDMs for the remaining
applications. Note that the hamming distance of the insertion
policy strings between the per-application pair of SDMs is one.
Also note that feedback is guaranteed since the decisions
produced by one pair of SDMs is directly used by other SDMs.

TADIP-F can be thought of as a cache learning about each
application: “In the presence of other applications using their
current insertion policy, is the given application degrading
overall cache performance under the LRU policy? If so, use BIP
for this application.”

3.4. Summary of Insertion Policies

Table 1 presents a summary of the insertion policies for managing
shared caches. The baseline LRU policy does not require any
SDMs. DIP searches in the two extremes: LRU for all
applications or BIP for all applications and requires two SDMs
and one PSEL counter. To make thread aware decisions, a brute
force approach searches through all the possible decisions and
requires 2N SDMs and 2N counters. The brute force approach is
impractical for large N. TADIP-I searches a hamming distance of
1 from the LRU policy and requires N+1 SDMs, but lacks
feedback information. Finally, TADIP-F searches hamming
distance 1 from the current best decision and requires 2N SDMs.
Note that both TADIP-I and TADIP-F incur hardware overhead
of N PSEL counters and logic to identify the SDMs.

4. EXPERIMENTAL METHODOLOGY

We use CMP$im [5], a Pin [9] based simulator for our
performance studies. Our baseline system is a 4-core CMP with a
three level cache hierarchy that does not enforce inclusion. The

L1 and L2 caches are private to each core. The L1 instruction and
data caches are 2-way 32KB each. The L2 cache is unified 8-way
256KB. Throughout this study, the size of the L1 and L2 caches
are kept constant. The last-level cache (L3) is 16-way 4MB and
shared by all four cores. All caches use a 64B cache line size. For
replacement decisions, the L1 cache uses a true LRU replacement
policy while the L2 and L3 cache use the pseudo-LRU policy
with most recently used (MRU) bits [2]. Only demand references
to the cache update the LRU state while non-demand references
(e.g. write back references) leave the LRU state unchanged. The
latency for accessing the L2 cache is 10 cycles, L3 cache is 24
cycles and memory is 350 cycles. To keep the simulations
tractable we use a simple in-order core model that has an L1 hit
IPC of 1. Without loss of generality, we assume that each
application runs on one core.

4.1. Benchmarks

For our study, we use 17 SPEC CPU2006 benchmarks compiled
using the icc compiler with full optimization flags. We created 15
workload mixes by combining four different SPEC CPU2006
benchmarks to form one workload. Simulation continues till all
benchmarks in the workload mix have executed 1 billion
instructions. When a benchmark reaches 1 billion instructions, it
continues to execute so that all applications compete for the
shared cache. However, statistics are collected only for the first
one billion instructions of each benchmark. Table 2 lists the
SPEC CPU2006 benchmarks used in the study and Table 3 lists
the workload mixes. Figure 4 provides the cache sensitivity study
of each application.

4.2. Metrics

For our studies we use the three metrics commonly used in
literature for measuring the performance of multiple concurrently
executing applications: throughput, weighted speedup, and
fairness. The weighted speedup metric indicates reduction in
execution time [16]. The “harmonic mean fairness” metric (which
is harmonic mean of normalized IPCs) balances both fairness and
performance [10]. The different metrics are defined as follows:

Throughput = ΣIPCi (Eq. 1)

Weighted Speedup =Σ(IPCi/SingleIPCi) (Eq. 2)

Harmonic Mean Fairness = N/Σ(SingleIPCi/IPCi) (Eq. 3)

Table 1: Comparison of Adaptive Insertion Policies

 Policy Insertion Policy Search Space # Set Dueling
Monitors

Counters

LRU Replacement <0, 0, 0,... 0> 0 0

Dynamic Insertion <0, 0, 0,... 0> and <1, 1, 1,... 1> 2 1

Brute Force Approach <0, 0, 0,... 0>... <1, 1, 1,... 1> 2N 2N

TADIP-I Approach <0, 0, 0,... 0> and Hamming Distance of 1 N+1 N

TADIP-F Approach <P0,P1,P2...PN-1> and Hamming Distance of 1 2N N
213

Table 2: Benchmarks

SPEC CPU2006 Benchmarks (Reference Input Sets)

gamess.c, perlbench.d, h264ref.f, hmmer.r, astar.r, gcc.s, bzip2.c, mcf.r,
GemsFDTD.r, sphinx3.a, xalancbmk.r, soplex.p, lbm.l, zeusmp.z,
libquantum.r, soplex.r, milc.s

Table 3: Workload Mixes

Mix
Name

Benchmarks in Mix

MIX_00 xalancbmk.r | mcf.r | milc.s | gcc.s

MIX_01 sphinx3.a | mcf.r | hmmer.r | soplex.r

MIX_02 bzip2.c | zeusmp.z | lbm.l | hmmer.r

MIX_03 soplex.r | xalancbmk.r | h264ref.f | astar.r

MIX_04 libquantum.r | milc.s | soplex.p | bzip2.c

MIX_05 soplex.r | sphinx3.a | soplex.p | bzip2.c

MIX_06 zeusmp.z | h264ref.f | gcc.s | soplex.p

MIX_07 astar.r | GemsFDTD.r | hmmer.r | gcc.s

MIX_08 zeusmp.z | xalancbmk.r | sphinx3.a | soplex.r

MIX_09 mcf.r | xalancbmk.r | astar.r | perlbench.d

MIX_10 libquantum.r | soplex.p | perlbench.d | hmmer.r

MIX_11 soplex.p | milc.s | libquantum.r | zeusmp.z

MIX_12 lbm.l | xalancbmk.r | soplex.r | milc.s

MIX_13 zeusmp.z | libquantum.r | soplex.r | milc.s

MIX_14 gamess.c | perlbench.d | h264ref.f | hmmer.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

0.5

1

1.5

2

2.5

3

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

astar.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

1

2

3

4

5

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

bzip2.c

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

2

4

6

8

10

M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

gcc.s

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

25

30

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

GemsFDTD.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

0.5

1

1.5

2

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

h264ref.f

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

0.5

1

1.5

2

2.5

3

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

hmmer.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

10

20

30

40

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

lbm.l

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

20

40

60

80

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

mcf.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

25

30

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

milc.s

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

10

20

30

40

M
is

se
s P

er
 1

00
0

In
st

ru
ct

io
ns

soplex.p

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

25

30

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

soplex.r

Figure 4: Cache Sensitivity of Individual SPEC CPU2006 applications. The applications gamess.c and perlbench.d are not shown because
they have very few cache misses.

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

libquantum.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

sphinx3.a

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

5

10

15

20

M
is

se
s

Pe
r 1

00
0

In
st

ru
ct

io
ns

xalancbmk.r

1/64 1/32
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Cache Size (MB)

0

2

4

6

8
M

is
se

s
Pe

r 1
00

0
In

st
ru

ct
io

ns
zeusmp.z
214

where IPCi is the IPC of the ith application when it concurrently
executes with other applications and SingleIPCi is IPC of the
same application in isolation.

5. RESULTS AND ANALYSIS

5.1. Throughput

Figure 5 shows the throughput of the three adaptive insertion
policies (DIP, TADIP-I, and TADIP-F) normalized to the baseline
LRU policy. The x-axis represents the different workload mixes.
The bar labeled geomean is the geometric mean of all 15
workloads. DIP improves throughput by more than 10% for four
out of the fifteen workloads. For Mix-0, DIP improves
throughput by 42%. TADIP-I provides further improvement
compared to DIP. For example, for the Mix-3, Mix-4, Mix-5, and
Mix-9 workloads DIP does not improve any performance,
whereas, TADIP-I improves performance significantly. TADIP-I
improves performance by more than 10% for eight out of the 15
workloads. The addition of feedback improves the performance
of TADIP-I. For example, for Mix-4, Mix-5 and Mix-8
workloads, TADIP-F improves throughput by more than 10%
when compared to TADIP-I. Note that the Mix-13 and Mix-14
workloads do not receive any benefit from adaptive insertion.
This is because the Mix-13 workload contains only streaming
applications and the Mix-14 workload contains applications
whose combined working-set fits into the shared cache. For such
mixes cache performance can not be improved compared to LRU
and the proposed policy performs similar to LRU. On average,
DIP improves throughput by 7%, TADIP-I improves throughput
by 14% and TADIP-F improves throughput by 18%. This
illustrates the importance of making insertion policies that are not
only thread-aware but also incorporate feedback.

5.2. Weighted Speedup

Figure 6 shows the performance of DIP, TADIP-I, and TADIP-F
insertion policies on the weighted speedup metric. The values are

normalized to the weighted speedup of the baseline LRU policy.
DIP improves performance by more than 10% for four out of the
15 workloads. TADIP-I improves performance by more than 10%
for six out of the 15 workloads. By adding feedback, TADIP-F
improves performance further and allows 9 out of the 15
workloads to have more than 10% performance improvement. On
average, DIP improves weighted speedup by 4%, TADIP-I
improves weighted speedup by 8% and TADIP-F improves
weighted speedup by 10%. Again, we notice that a thread-aware
insertion policy with feedback provides the best performance.

5.3. Fairness

Adaptive insertion schemes can improve the performance of
some benchmarks at the expense of hurting other benchmarks in
the workload mix. The fairness metric proposed by [10] considers
both fairness and performance. Figure 7 shows the performance
of the baseline LRU policy, DIP, TADIP-I, and TADIP-F for the
fairness metric. The baseline LRU policy has an average fairness
metric value of 0.80, DIP of 0.84, TADIP-I of 0.89, and TADIP-F
of 0.91. Thus, on average, we notice that adaptive insertion with
feedback improves the fairness metric by 12% compared to LRU.

1

1.1

1.2

1.3

1.4

1.5

1.6

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 L
R

U

DIP
TADIP-I
TADIP-F

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

Figure 5: Comparison of TADIP for Throughput Metric. Figure 6: Comparison of TADIP for Weighted Speedup.

1.00

1.05

1.10

1.20

W
ei

gh
te

d
Sp

ee
du

p
N

or
m

al
iz

ed
 to

 L
R

U

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

1.15

DIP
TADIP-I
TADIP-F

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ar

m
on

ic
 M

ea
n

of
 N

or
m

al
iz

ed
 IP

C
s

LRU
DIP
TADIP-I
TADIP-F

Figure 7: Comparison of TADIP for Harmonic Mean Fairness.
215

5.4. Static Profiling

We compare our adaptive insertion policies to an insertion policy
that uses statically generated profiling information. Profiling has
the advantage of statically exploring all possible insertion
decisions. However, such decisions are dependent on input sets,
applications, and cache sizes. Nonetheless, a static policy can
serve as a reference for comparing the performance of TADIP.

For our workload mixes, we statically run all 16 possible
insertion policies. For each workload mix, the binary string with
the best throughput is used as the “Static-Best” performance.
Figure 8 compares the throughput performance of DIP, TADIP-I,
and TADIP-F with Static-Best. For the MIX-08 workload,
TADIP-F outperforms the Static-Best policy by 4% as it can
dynamically adapt to changing phase behavior. For the remaining
workloads, Static-Best performs better than all the adaptive
insertion policies because it optimizes for the throughput metric
while TADIP-F minimizes cache misses. Though reducing misses
to memory is a good proxy for improving system performance,
the cost of a miss to memory can vary within a single application
[14] and even more so across multiple applications4. Variations of
TADIP-F that optimize for throughput instead of cache misses
can bridge the gap between Static-Best and TADIP-F.

Besides Static-Best optimizing for a different metric, other
reasons for the difference between Static-Best and TADIP-F
include: (a) the overhead of experimentation due to SDMs can
degrade performance even when the global decision is identical to
the Static-Best decision, (b) TADIP-F does not search
exhaustively through the entire search space (c) per-application
sampled SDMs do not completely reflect application behavior.

Despite the reasons mentioned above, the figure shows that
on average TADIP-F achieves 82% of the performance

improvement of the Static-Best policy (Static-Best improves
performance by 22% and TADIP-F improves performance by
18%). Since TADIP-F does not require any prior knowledge of
the workload mix or the choice of input sets and can adapt to
different system configurations, it is a practical design alternative.
For the rest of the paper, we only show results for TADIP-F.

5.5. Sensitivity to Cache Size

Cache performance can not only be improved by managing cache
resources intelligently but also by increasing the total cache
capacity. Figure 10 shows the throughput normalized to a
baseline 4MB shared cache for the following four cache
configurations: 4MB shared cache with TADIP-F, 8MB shared
cache with LRU policy, 8MB shared cache with TADIP-F, and
finally 16MB shared cache with LRU policy. Increasing the size
of an LRU managed cache from 4MB to 8MB and 4MB to 16MB
improves the average throughput by 15% and 36% respectively.
An adaptive insertion managed cache of 4MB increases
throughput by 18% and an adaptive insertion managed cache of
8MB increases throughput by 33%. Thus, TADIP-F is
particularly attractive as it provides performance benefits similar
to an LRU managed cache twice its size while requiring
negligible design and storage overhead (discussed in Section 5.7).

5.6. Interaction with Prefetching

Thus far we have focused on reducing cache misses by managing
the shared cache intelligently. Hardware prefetching is yet
another commonly used technique that improves cache
performance by learning the access patterns in the reference
stream. If the misses saved by TADIP belong only to the category
that can easily be prefetched, then the misses saved by TADIP
may not translate into performance improvement. Therefore, it is
important to analyze the interaction between TADIP and
prefetching. To study this interaction, for this section only, we add
a per-core stream prefetcher similar to [19] to our baseline. Each
core can have a maximum of two outstanding prefetches at
anytime. Misses caused by the prefetcher are treated similar to

4. The IPC loss for a given cache miss can vary across applications. For example, if
Application A accesses the L2 cache more often than Application B. And if both A
and B access the L3 cache at the same rate and have similar MPKI, then the IPC of A
will be lower than the IPC of B. A miss for B will cause a greater IPC loss than a miss
for A. TADIP-F can be made to optimize for throughput instead of misses by
increasing or decreasing the PSEL counter by a value of the estimated IPC-loss
instead of a constant value of 1.

Figure 8: Comparison of TADIP to Profile Based “Static Best”.

1

1.1

1.2

1.3

1.4

1.5

1.6

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 L
R

U

DIP
TADIP-I
TADIP-F
STATIC-BEST

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

1

1.1

1.2

1.3

1.4

1.5

1.6

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 L
R

U

TADIP-F Alone
Prefetching Alone
Prefetching+TADIP-F

Figure 9: Performance Impact of TADIP-F Under Prefetching.

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean
216

demand misses5. Figure 9 shows the throughput normalized to a
baseline 4MB LRU-managed shared cache without prefetching
for the following configurations: TADIP-F without prefetching,
LRU-managed cache with prefetching, and TADIP-F with
prefetching. Prefetching significantly improves performance for
10 out of the 15 workloads. TADIP-F improves performance even
in the presence of prefetching. On average, prefetching alone
improves performance by 27% and when combined with TADIP-
F improves performance by 41%. Thus, TADIP-F improves the
performance of a baseline system with prefetching by 11%
indicating that TADIP-F is applicable to systems with and
without prefetching.

5.7. Hardware Design Overhead

The hardware requirement for TADIP-F includes set selection
logic (to identify SDMs) and storage for per-application PSEL
counters. Identifying the SDMs can be done either with a CAM or
a hash function. CAMs require extra storage. To obviate this
storage, we use a hash function that leverages readily available
information when the miss occurs: cache set index and requesting
core ID. Assuming a cache with 4096 sets, Figure 11 illustrates a
hash function to identify LRU SDMs, BIP SDMs, and follower
sets. The hash function works as follows. When the sum of the
SetIndex[11:7] and ReqCoreID[1:0] equals SetIndex[6:0], the set

is dedicated to SDM-LRU for core ReqCoreID of the CMP.
Similarly, when the sum of SetIndex[11:7], ReqCoreID[1:0], and
NumCores (four in our case) equals SetIndex[6:0], the set is
dedicated to SDM-BIP for core ReqCoreID of the CMP. Note that
this hash function does not require any storage and only uses two
adders and two comparators to identify the SDMs. The only
storage required for TADIP-F are the per-core PSEL counters (9-
bits in our study). Since TADIP-F does not require any extra bits
in the tag store entry, it avoids changes to the existing structure of
the cache. Additionally, cache access latency remains unaffected
since set selection and insertion logic are not on the critical path.

5.8. Scalability

This section analyzes the scalability of TADIP-F. We compare the
performance of TADIP-F for a large number of workload mixes
for 2-core, 4-core, 8-core, and 16-core systems with a shared
cache of size 2MB, 4MB, 8MB, and 16MB respectively. For each
CMP configuration we generate 50 workload mixes by randomly
combining from the pool of 17 SPEC CPU2006 applications.
Figure 12 shows “s-curves” for the four systems where the
different workloads are on the x-axis and the percentage
improvement obtained by TADIP-F on the y-axis. TADIP-F
improves throughput by up to 95%, 66%, 33%, and 28% on 2-
core, 4-core, 8-core, and 16-core systems. An important
observation from these “s-curves” is that across the four systems
and for the 200 workload mixes, TADIP-F does not degrade
performance compared to the baseline LRU policy. Thus, TADIP-
F is robust (worst case behavior of LRU) and scalable to a large
number of cores (16 in our evaluation). On average, TADIP-F
improves throughput for 2-core, 4-core, 8-core, and 16-core
systems by 14%, 18%, 15%, and 17% respectively.

5. Further insertion policy optimizations are possible to improve system performance
with prefetching. However, such optimizations are beyond the scope of this paper.

1

1.2

1.4

1.6

1.8

2

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 4
M

B
 L

R
U

TADIP-F (4MB)
LRU (8MB)
TADIP-F (8MB)
LRU (16MB)

Figure 10: Sensitivity of TADIP to Cache Size.

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

Figure 11: Set Selection Logic to Identify SDMs with TADIP-F .

SetIndex[6:0]SetIndex[11:7]

ReqCoreID[1:0]

=

+4

+

=

IS_SDM_LRU

IS_SDM_BIP

IS_FOLLOWER_SET

(NumCores)

(a) 2-Core Workloads (b) 4-Core Workloads (c) 8-Core Workloads (d) 16-core Workloads
Figure 12: Scalability of TADIP-F. 2-core, 4-core, 8-core and 16-core studies with 50 randomly generated workload mixes.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 L
R

U

0 10 20 30 40 50 600 10 20 30 40 50 600 10 20 30 40 50 60
217

6. RELATED WORK

With CMPs and shared caches becoming common, there is an
active body of research both in industry and academia for
improving shared cache performance. One popular way of
managing shared caches among competing applications is via
cache partitioning. Cache partitioning allocates cache resources to
competing applications either statically or dynamically.

Stone et al. [17] investigated optimal (static) partitioning of
cache resources between multiple applications when the
information about change in misses for varying cache size is
available for each of the competing applications. However, such
information is non-trivial to obtain dynamically for all
applications as it is dependant on the input set of the application.
The focus of our study is to dynamically manage cache resources
without requiring any prior information about the application.

Dynamic partitioning of shared cache was first studied by Suh
et al. [18]. They describe a mechanism to measure cache utility
for each application by counting the hits to the recency position in
the cache and used way partitioning to enforce partitioning
decisions. The problem with way partitioning is that it requires
core identifying bits with each cache entry, which requires
changing the structure of the tag-store entry. Way partitioning
also requires that the associativity of the cache be increased to
partition the cache among a large number of applications.

Qureshi et al. [13] improved on [18] by separating the cache
monitoring circuits outside the cache so that the information
computed by one application is not polluted by other concurrently
executing applications. They provide a set-sampling based utility
monitoring circuit that requires a storage overhead of 2KB per
core and used way partitioning to enforce partitioning decisions.
TADIP-F is better able to respond to workloads that have working
sets greater than the cache size while UCP does not. For example,
when two applications (each with a working set 1.5x the cache
size) execute concurrently, UCP causes thrashing under LRU
replacement while TADIP-F retains some fraction of the working
set for both applications. Figure 13 shows the throughput of the
UCP policy and TADIP-F normalized to the baseline LRU policy.

For the 15 workloads in our study, UCP provides an average
performance improvement of 14% while TADIP-F outperforms
UCP by providing an average improvement of 18%. Unlike UCP,
TADIP-F does not require the storage overhead of monitoring
(2KB per core), changes to the existing cache design for enabling
way partitioning, and the complexity of doing look-ahead based
partitioning between multiple applications.

Several recent studies have focused on metrics other than
cache performance. For example, [7] describe fairness based
cache partitioning which uses profile information to do
partitioning such that all threads receive equal slowdowns.
Mechanisms for partitioning the shared cache are described in
detail in [4]. Recent work has also looked at different ways of
managing a shared cache using capitalist, socialist, and utilitarian
policies. Chang et al. [3] use timeslicing as a means of doing
cache partitioning so that each application is guaranteed cache
resources for a certain time quantum. Their scheme is still
susceptible to thrashing when the working set of the application is
greater than the cache size. Nesbit et al. [11] describe virtual
private caches that focus on bandwidth and cache resource
partitioning to enforce some level of quality of service.

Recent mechanisms [15] have also looked at reducing cache
pollution by dynamically changing the insertion position
depending on prefetcher accuracy. But this work inserts all
incoming demand lines in the MRU position. Hence it is not well
suited to managing shared caches. The recently proposed,
Dynamic Insertion Policy (DIP), the basis of our proposed
policies, provided a low overhead mechanism to provide high
performance private caches. We show that a direct extension of
DIP to shared caches does not perform as well because it cannot
make thread aware decisions. DIP improves the average
throughput over LRU by 7% while TADIP-F improves
throughput over LRU by 18% while only consuming negligible
hardware overhead of less than two bytes of storage per core.

7. SUMMARY AND FUTURE WORK

This paper investigates dynamic management of a shared cache
among multiple applications. The commonly used LRU
replacement policy can allocate cache resources to applications
that have no benefit from the cache, resulting in inefficient use of
cache space. We study adaptive insertion policies for managing
shared caches and make the following contributions:
1. This is the first work that studies Dynamic Insertion Policy

(DIP) for shared caches. We show that DIP improves shared
cache performance over LRU. However, since DIP makes
thread-unaware decisions, it leaves significant scope for
improving performance.

2. We show that Thread Aware Dynamic Insertion Policy
(TADIP), which can adapt to requirements of different
applications, can significantly outperform DIP. However, a
brute force approach for finding the best thread-aware insertion
decision requires hardware overhead that increases
exponentially with the number of applications.

3. To avoid the exponential overhead, we propose a scalable
mechanism, TADIP-Isolated, that performs thread-aware

Figure 13: TADIP-F vs. Utility Based Cache Partitioning (UCP).

TADIP-F
UCP

MIX_00
MIX_01
MIX_02
MIX_03
MIX_04
MIX_05
MIX_06
MIX_07
MIX_08
MIX_09
MIX_10
MIX_11
MIX_12
MIX_13
MIX_14
geo

mean

1

1.1

1.2

1.3

1.4

1.5

1.6

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 L
R

U

218

insertion by independently learning the best insertion decision
for each application in isolation. However, finding the best
insertion decision without taking into account the insertion
decisions of other competing applications leaves additional
scope for improving performance.

4. We propose a scalable mechanism, TADIP-Feedback (TADIP-
F), that incorporates feedback from other applications. TADIP-
F learns the best insertion decision for each application by
using current insertion decisions of all competing applications.

We evaluate TADIP for a variety of systems and for a large
number of workload mixes. We show that TADIP-F improves
throughput of a 2-core, 4-core, 8-core, and 16-core system by
14%, 18%, 15%, and 17% respectively. Furthermore, for a
baseline 4-core CMP configuration with a 4MB shared cache,
TADIP-F improves average throughput by 18%, DIP improves
throughput by 7%, and the recently proposed cache partitioning
policy (UCP) improves throughput by 14%. Unlike previous
proposals for cache partitioning, TADIP-F does not require any
additional hardware structures and design changes for cache
partitioning, and is scalable and robust across a wide variety of
workload and systems. Finally, TADIP-F provides performance
similar to doubling the size of an LRU-managed cache while
requiring a total storage overhead of less than two bytes per core.

This paper evaluates TADIP for a CMP system assuming one
thread per core. However, TADIP is also applicable to SMT-
enabled systems. In such a system, the total number of
concurrently executing applications managed by TADIP will be
equal to the total number of hardware threads per core. This paper
uses adaptive insertion to minimize misses in a shared cache.
Similarly, adaptive cache insertion can also be used to design
cache management policies that optimize other metrics such as
throughput, fairness, and Quality of Service (QoS). This study
uses adaptive insertion to distinguish access streams from
multiple applications. However, adaptive insertion can be
extended to distinguish between multiple access streams of a
single application. For example, different threads of the same
application, demand and prefetch stream, instruction and data
stream, read and write stream, and private and shared stream.
Exploring these extensions is part of our on-going work.

8. ACKNOWLEDGEMENTS

The authors would like to thank Michael Adler, Eric Borch,
Michelle Moravan, Angshuman Parashar, Paul Racunas, Ankush
Varma and the anonymous reviewers for their valuable feedback
in improving the quality of this paper.

9. REFERENCES

[1] Intel Corporation. Next leap in microprocessor architecture: Intel
core duo. White paper. http://ces2006.akamai.com.edgesuite.net/
yonahassets/CoreDuo_WhitePaper.pdf.

[2] H. Al-Zoubi, A. Milenkovic and M. Milenkovic. Performance
evaluation of cache replacement policies for the SPEC CPU2000
benchmark suite. In ACMSE, 2004.

[3] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. ICS-21, 2007.

[4] R. Iyer. CQoS: a framework for enabling QoS in shared caches of
CMP platforms. In ICS-18, 2004.

[5] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A Pin-
Based On-The-Fly Multi-Core Cache Simulator. In MoBS, 2008.

[6] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A
Dual-Core Multi-Threaded Processor. IEEE Micro, 24(2):40{47,
Mar. 2004.

[7] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In PACT-13,
pages 111–122, 2004.

[8] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21{29, March/
April 2005.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S.Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In PLDI, pages 190–200, 2005.

[10] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput
and fairness in smt processors. In ISPASS, pages 164–171, 2001.

[11] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In
ISCA-34, pages 57–68, 2007.

[12] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. Emer.
Adaptive insertion policies for high-performance caching. In
ISCA-34, 2007.

[13] M. K. Qureshi and Y. Patt. Utility Based Cache Partitioning: A
Low Overhead High-Performance Runtime Mechanism to
Partition Shared Caches. In MICRO-39, 2006.

[14] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for
MLP-Aware Cache Replacement. In ISCA-33, 2006.

[15] S. Srinath, O.Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers. In HPCA-13, 2007.

[16] A. Snavely and D. Tullsen. “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor”. In ASPLOS IX, 2000.

[17] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of
cache memory. IEEE Transactions on Computers., 41(9):1054–
1068, 1992.

[18] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of
shared cache memory. Journal of Supercomputing, 28(1):7–26,
2004.

[19] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 system microarchitecture. IBM Technical White
Paper, Oct. 2001.
219

	ABSTRACT
	Chip Multiprocessors (CMPs) allow different applications to concurrently execute on a single chip. When applications with differing demands for memory compete for a shared cache, the conventional LRU replacement policy can significantly degra...
	Adaptive Insertion Policies for Managing Shared Caches
	Aamer Jaleel† William Hasenplaugh† Moinuddin Qureshi§ Julien Sebot‡ Simon Steely Jr.† Joel Emer†
	This paper investigates the use of adaptive insertion policies to manage shared caches. We show that directly extending the recently proposed dynamic insertion policy (DIP) is inadequate for shared caches since DIP is unaware of the character...
	1. INTRODUCTION
	Figure 1: The Shared Cache Problem

	2. MOTIVATION
	Figure 2: Workload Diversity on CMPs

	3. ADAPTIVE INSERTION MANAGED SHARED CACHES
	3.1. Thread-Unaware Adaptive Insertion
	Figure 3: Adaptive Insertion Managed Shared Caches

	3.2. Thread-Aware Adaptive Insertion
	3.2.1 Profiling
	3.2.2 Brute Force

	3.3. Scalable Thread-Aware Adaptive Insertion
	3.3.1 TADIP-Isolated
	3.3.2 TADIP-Feedback

	3.4. Summary of Insertion Policies
	Table 1: Comparison of Adaptive Insertion Policies

	Policy
	Insertion Policy Search Space
	# Set Dueling Monitors
	# Counters
	LRU Replacement
	<0, 0, 0,... 0>
	0
	0
	Dynamic Insertion
	<0, 0, 0,... 0> and <1, 1, 1,... 1>
	2
	1
	Brute Force Approach
	<0, 0, 0,... 0>... <1, 1, 1,... 1>
	2N
	2N
	TADIP-I Approach
	<0, 0, 0,... 0> and Hamming Distance of 1
	N+1
	N
	TADIP-F Approach
	<P0,P1,P2...PN-1> and Hamming Distance of 1
	2N
	N
	4. EXPERIMENTAL METHODOLOGY
	4.1. Benchmarks
	Figure 4: Cache Sensitivity of Individual SPEC CPU2006 applications

	4.2. Metrics
	Throughput = SIPCi (Eq. 1)
	Weighted Speedup =S(IPCi/SingleIPCi) (Eq. 2)
	Harmonic Mean Fairness = N/S(SingleIPCi/IPCi) (Eq. 3)

	5. RESULTS AND ANALYSIS
	5.1. Throughput
	Figure 5: Comparison of TADIP for Throughput Metric

	5.2. Weighted Speedup
	Figure 6: Comparison of TADIP for Weighted Speedup

	5.3. Fairness
	Figure 7: Comparison of TADIP for Harmonic Mean Fairness

	5.4. Static Profiling
	Figure 8: Comparison of TADIP to Profile Based “Static Best”

	5.5. Sensitivity to Cache Size
	Figure 9: Performance Impact of TADIP-F Under Prefetching

	5.6. Interaction with Prefetching
	5.7. Hardware Design Overhead
	Figure 10: Sensitivity of TADIP to Cache Size
	Figure 11: Set Selection Logic to Identify SDMs with TADIP-F

	5.8. Scalability
	Figure 12: Scalability of TADIP-F

	6. RELATED WORK
	Figure 13: TADIP-F vs. Utility Based Cache Partitioning (UCP)

	7. SUMMARY AND FUTURE WORK
	1. This is the first work that studies Dynamic Insertion Policy (DIP) for shared caches. We show that DIP improves shared cache performance over LRU. However, since DIP makes thread-unaware decisions, it leaves significant scope for improving...
	2. We show that Thread Aware Dynamic Insertion Policy (TADIP), which can adapt to requirements of different applications, can significantly outperform DIP. However, a brute force approach for finding the best thread-aware insertion decision r...
	3. To avoid the exponential overhead, we propose a scalable mechanism, TADIP-Isolated, that performs thread-aware insertion by independently learning the best insertion decision for each application in isolation. However, finding the best ins...
	4. We propose a scalable mechanism, TADIP-Feedback (TADIP- F), that incorporates feedback from other applications. TADIP- F learns the best insertion decision for each application by using current insertion decisions of all competing applications.

	8. ACKNOWLEDGEMENTS
	9. REFERENCES
	[1] Intel Corporation. Next leap in microprocessor architecture: Intel core duo. White paper. http://ces2006.akamai.com.edgesuite.net/ yonahassets/CoreDuo_WhitePaper.pdf.
	[2] H. Al-Zoubi, A. Milenkovic and M. Milenkovic. Performance evaluation of cache replacement policies for the SPEC CPU2000 benchmark suite. In ACMSE, 2004.
	[3] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. ICS-21, 2007.
	[4] R. Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In ICS-18, 2004.
	[5] A. Jaleel, R. S. Cohn, C. K. Luk, and B. Jacob. CMP$im: A Pin- Based On-The-Fly Multi-Core Cache Simulator. In MoBS, 2008.
	[6] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A Dual-Core Multi-Threaded Processor. IEEE Micro, 24(2):40{47, Mar. 2004.
	[7] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip multiprocessor architecture. In PACT-13, pages 111-122, 2004.
	[8] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc processor. IEEE Micro, 25(2):21{29, March/ April 2005.
	[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation. In PLDI, pages 190-200, 2005.
	[10] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in smt processors. In ISPASS, pages 164-171, 2001.
	[11] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ISCA-34, pages 57-68, 2007.
	[12] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. Emer. Adaptive insertion policies for high-performance caching. In ISCA-34, 2007.
	[13] M. K. Qureshi and Y. Patt. Utility Based Cache Partitioning: A Low Overhead High-Performance Runtime Mechanism to Partition Shared Caches. In MICRO-39, 2006.
	[14] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case for MLP-Aware Cache Replacement. In ISCA-33, 2006.
	[15] S. Srinath, O.Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improving the performance and bandwidth- efficiency of hardware prefetchers. In HPCA-13, 2007.
	[16] A. Snavely and D. Tullsen. “Symbiotic Jobscheduling for a Simultaneous Multithreading Processor”. In ASPLOS IX, 2000.
	[17] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of cache memory. IEEE Transactions on Computers., 41(9):1054- 1068, 1992.
	[18] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache memory. Journal of Supercomputing, 28(1):7-26, 2004.
	[19] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system microarchitecture. IBM Technical White Paper, Oct. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

