
Assigning Confidence to Conditional Branch Predictions 

Erik Jacobsen, Eric Rotenbergf, and J. E. Smith 
Departments of Electrical and Computer Engineering and 

t Computer Sciences 
University of Wisconsin-Madison 

Madison, WI 53706 
jacobsen@cae.wisc.edu, ericro@cs.wisc.edu, jes@ece.wisc.edu 

Abstract 
Many high performance processors predict condi- 

tional branches and consume processor resources based 
on the prediction. In some situations, resource allocation 
can be better optimized if a confidence level is assigned to 
a branch prediction; i.e. if the quantity of resources allo- 
cated is a function of the confidence level. To support 
such optimizations, we consider hardware mechanisms 
that partition conditional branch predictions into two 
sets: those which are accurate a relatively high percen- 
tage of the time, and those which are accurate a relatively 
low percentage of the time. The objective is to concen- 
trate as many of the mispredictions as practical into a 
relatively small set of low confidence dynamic branches. 

We first study an ideal method that pro$iles branch 
predictions and sorts static branches into high and low 
confidence sets, depending on the accuracy with which 
they are dynamically predicted. We find that about 63 
percent of the mispredictions can be localized to a set of 
static branches that account for 20 percent of the dynamic 
branches. We then study idealized dynamic confidence 
methods using both one and two levels of branch correct- 
ness history. We find that the single level method per- 
forms at least as well as the more complex two level 
method and is able to isolate 89 percent of the mispredic- 
tions into a set containing 20 percent of the dynamic 
branches. Finally, we study practical, less expensive 
implementations and find that they achieve most of the 
performance of the idealized methods. 

1. Introduction 
It is becoming common practice in high perfor- 

mance processors to predict conditional branches 
[4,7,9,13] and speculatively execute instructions based 
on the prediction [2,8]. Typically, when speculation is 
used, all branch predictions are acted upon because there 
is low penalty for speculating incorrectly. I.e. most 
resources available to speculative instructions would be 
unused anyway. And, on average, a branch prediction 
will be correct a high percentage of the time. 

However, as processors become more advanced, 
we can envision implementations where the penalty for an 
incorrect speculation may be high enough that it may be 

better not to speculate in those instances where the likeli- 
hood of a branch misprediction is relatively high. That is, 
it may be desirable to vary behavior depending on the 
likelihood of a misprediction. Consequently, we would 
like to develop hardware methods for assessing the likeli- 
hood that a conditional branch prediction is correct; we 
refer to these as branch prediction confidence mechan- 
isms. Consider the following potential applications. 

1) Selective Dual Path Execution: Resources may be 
made available for simultaneously executing instructions 
down both paths following a conditional branch. How- 
ever, it will likely be too expensive to follow both paths 
after all branches, especially when several conditional 
branches may be unresolved at any given time. Conse- 
quently, it may be desirable to set a limit of two threads at 
any given time and to fork a second execution thread for 
the non-predicted path only in those instances when a 
branch prediction is made with relatively low confidence. 
After most predicted branches only the predicted path 
would be speculatively followed, but occasionally, both 
paths would be followed. 

2) Guiding instruction fetching in simultaneous mul- 
tithreading (SMT): In SMT, instruction fetching has been 
identified as a critical resource [lo]. This resource can be 
more efficiently used by fetching instructions only down 
predicted paths that have a high likelihood of being 
correctly predicted. That is, threads predicted with a high 
confidence should be given priority over those with low 
confidence. This will reduce the number of wasted 
instruction fetches caused by following the wrong specu- 
lative path. 

3) Dynamic Selector for a hybrid branch predictor: 
Hybrid branch predictors [ 1,5] use more than one predic- 
tor and select the prediction made by one of them based 
on the history of prediction accuracies of the constituent 
predictors. The methods proposed in [ 1,5] are basically 
ad hoc confidence mechanisms developed for this specific 
application. By studying confidence mechanisms in gen- 
eral, we may be able to arrive at more accurate hybrid 
selectors. 

4) Branch Prediction Reverser: If the confidence in a 
branch prediction can be determined to be less than SO%, 

142 
1072-445X% $5.00 0 1996 IEEE 



then the prediction should be reversed. Hence, a 
confidence mechanism could be used to generate a 
“reverse prediction” signal for those branch predictions 
with a less than 50% accuracy. 

In theory, one could focus on developing hardware 
that computes probabilities that individual branch predic- 
tions are correct (or incorrect). However, in practice this 
could be rather complex (because a division is implied), 
and a computed probability for each branch is not what is 
really wanted, anyway. Rather, we attempt to divide 
branch predictions into two sets: those in which there is 
high confidence, and those in which there is low 
confidence. A binary signal is generated simultaneously 
with a branch prediction to indicate the confidence set to 
which the prediction belongs. The pair of prediction and 
confidence signals are illustrated in Fig. I. To see how a 
confidence signal could be used, consider again the four 
applications listed above. 

1) For Selective Dual Path Execution, the confidence sig- 
nal can be used to trigger the forking of a second thread 
for low confidence branch predictions. 

2) For the SMT instruction fetching application, the 
confidence signal can be used to enable instruction fetch- 
ing for speculative threads in which there is high 
confidence. 

3) For designing a hybrid prediction selector, confidence 
signals from the multiple predictors can be compared to 
select the prediction to be used. 

4) For the reverser application, if the confidence threshold 
can be set at approximately 50% accuracy, then the 
confidence signal can be used to reverse a prediction. 

For each of these applications, we would like to 
divide the predictions into high and low confidence sets 
and concentrate as many of the mispredicted branches as 
possible into the low confidence set -- while at the same 
time keeping the low confidence set relatively small. 
Note that in general, one could divide the branches into 

Fig. 1. A generic speculative processor con- 
taining a branch prediction signal paired 
with higMow confidence signal. 

multiple sets with a range of confidence levels. To date, 
we have not pursued this generalization and consider only 
two confidence sets in this paper. 

To generate the signal that separates the two 
confidence sets, we propose using benchmarks to collect 
prediction accuracy data. This data can then be used to 
design logic so that the high and low confidence sets have 
the characteristics we desire. Note that this logic is 
designed using data for our selected benchmarks. How- 
ever, once implemented, the confidence logic is used for 
all programs. That is, to simplify the hardware design, we 
do not dynamically adjust the criteria for determining the 
high and low confidence sets. 

1.1. Previous Work 
In [9] there is a proposal for assigning confidence 

levels to different counter values in predictors based on 
saturating counters. There is also a relatively abstract 
example of optimizing performance by speculating to dif- 
ferent degrees based on the confidence level. 

In [ 121 the authors use branch probability levels to 
guide disjoint eager execution when forking multiple 
threads. Multiple threads are forked, with the most prob- 
able being forked first. Because of the difficulties with 
dynamically computing the probabilities, static profile- 
based probabilities are used in the suggested implementa- 
tion. 

Regarding the specific application to reversing 
predictions, some processors have static “prediction 
reversal” bits. The Livermore S-l [3] made a static 
branch prediction, but had a dynamic “reverse” bit in the 
instruction cache that was used to reverse the static pred- 
iction after it was found to be incorrect. The more recent 
PowerPC 601 microprocessor [6] makes a prediction 
based on the opcode and direction of the branch, but 
allows the compiler to place a “reverse” bit in the instruc- 
tion to change the default prediction. 

1.2. Simulation Methodology 
We collected branch prediction accuracy data using 

trace-driven simulation. For benchmarks, we used the 
Mach version of the IBS benchmark suite [ 1 l] -- chosen 
because they more accurately represent branch charac- 
teristics of real programs than the commonly used SPEC 
benchmarks, and, because they include kernel code. 

We arrive at composite data for the collection of 
benchmarks by averaging. We do this by weighting the 
results so that each benchmark, in effect, executes the 
same number of conditional branches. 

An important part of the study is the underlying 
branch predictor. In most of our simulations, we use a 
fairly aggressive predictor. It is the gshare predictor [5] 
with 216 entries -- each of which is a saturating 2-bit 
counter. The counter array is addressed with the 
exclusive-OR of bits I7 through 2 of the program counter 
and the most recent I6 branch outcomes held in a branch 

143 



history register (BHR). In Section 5 we consider perfor- 
mance using less expensive predictors. 

1.3. Paper Overview 
We focus on methods of assigning confidence to 

branch predictions -- not the applications of the 
confidence methods. We are currently investigating some 
of the more interesting applications, and our goal here is 
to establish a set of base confidence methods to use as a 
starting point for other studies. In Section 2, we collect 
branch prediction accuracy statistics and relate them to 
static branches. This exercise establishes the general 
method we will use to display confidence results, and it 
suggests an optimal static confidence method that we use 
as a baseline for comparing the dynamic methods to fol- 
low. In Section 3, we look at a number of general 
dynamic confidence methods, using both one and two lev- 
els of tables. In Section 4, we give some experimental 
results for the dynamic methods using the IBS benchmark 
suite. In Section 5, we consider some practical imple- 
mentation issues for dynamic confidence methods with a 
goal of reducing logic complexity and cost. Section 6 
concludes the paper. 

2. Analysis of Static Branches 
We first consider an idealized method where all 

static branches are assigned either high or low confidence 
levels, based on the accuracy with which they can be 
predicted. We begin with the relatively powerful gshare 
dynamic predictor described in Section 1.2 and collect 
statistics for each static branch: 1) the number of times 
the branch is executed, and 2) the number of incorrect 
predictions. Consequently, the misprediction rate for 
each static branch can be generated. 

Then we combine the branches for all the bench- 
marks and normalize them so that each benchmark effec- 
tively contributes the same number of dynamic branches. 
Next, we sort the static branches according to their 
misprediction rates, highest rate first. This concentrates 
the most difficult to predict static branches at the top of 
the sorted list, and the sorted list can then be used to 
divide the predicted branches into low and high 
confidence sets. 

Of course, many such sets are possible, depending 
on what we define to be “low” and “high” -- we have thus 
far been vague on this point. To understand the range of 
possibilities, we go down the the sorted list of branch 
statistics and plot accumulated fractions of mispredicted 
branches versus the accumulated fractions of executed 
branches that produce them. For the IBS benchmarks, 
Fig. 2 is the resulting plot. 

Note that the graph has discrete data points 
(although they run together when plotted), corresponding 
to each static branch that occurs in the sorted list. Each 
such point defines a pair of high and low confidence 
branch prediction sets. To interpret the graph, consider 

e5.2.70.6) 

I “SWiC” 

40 60 80 100 
% of Dynamic Branches 

Fig. 2. Cumulative mispredictions versus cu- 
mulative dynamic branches. 

the data point (25.2,70.6), marked on the graph. At this 
point, 25.2 percent of the dynamic branches have been 
accumulated by the time we reach the static branch in 
question, and 70.6 of the mispredictions are included. 
That is, we can separate the branches so that 25.2 percent 
of executed branches are placed in the low confidence set 
and account for 70.6 percent of the mispredictions. 

The general shape of the curve is a steep rise that 
rounds a “knee” into a nearly horizontal line. This partic- 
ular curve for static branches has a rather gentle knee; 
some of the dynamic methods given in the next section 
have much sharper knees. The steeper the initial slope 
and the farther to the left the knee occurs, the better. 
With a curve of this shape, more mispredictions are con- 
centrated within a smaller set of low confidence predic- 
tions. Or, in other words, the branches in the lower 
confidence set have a higher misprediction rate, and, con- 
versely, the branches in the higher confidence set have a 
lower misprediction rate. The ideal low confidence set 
would consist solely of mispredicted branches. The 
corresponding graph would have a straight line parallel to 
the y-axis shifted to the right from the origin by the 
mispredict rate. 

One could develop a static branch confidence 
method based on the procedure just followed. That is, 
one could profile branches as we have just done. Then a 
threshold misprediction rate could be set, with all static 
branches above the threshold being tagged one way (low 
confidence), and those below tagged another (high 
confidence). Or, alternatively, a fraction of mispredic- 
tions could be chosen, and the corresponding set of static 
branches could be selected as the low confidence ones. 

For the static confidence method just described, the 
graph in Fig. 2 provides an optimistic estimate of the per- 
formance. The method is optimistic because it represents 

144 



“perfect” profiling -- we are executing the programs with 
exactly the same data as for the profile. Nevertheless, we 
use the results from this optimistic static method for com- 
parison with the dynamic methods we consider in the fol- 
lowing sections. At a minimum, we would like the 
dynamic methods to exceed the performance of the static 
method. 

3. Dynamic Confidence Mechanisms 
In the previous section we partitioned static 

branches into high and low confidence sets. That is, all 
dynamic predictions of the same static branch are 
assigned to the same confidence set. However, we can 
also partition branches so that dynamic predictions of the 
same static branch can be assigned to different confidence 
sets. This partitioning is done based on dynamic history, 
and we refer to these as dynamic conjidence mechanisms. 
There are a large number of dynamic confidence mechan- 
isms available. They are first cousins of dynamic branch 
predictors, and many such branch predictors have been 
proposed over the years [4,7,9,13]. In this paper, we 
cannot explore the entire design space. But we select 
some representative confidence methods -- those that 
preliminary experiments indicated as being more interest- 
ing variations. 

We begin with generic confidence mechanisms that 
are somewhat idealized. In Section 5 we refine them to 
more practical implementations. 

3.1. One-Level Confidence Methods 
The one level dynamic confidence methods are so- 

named because they use a single level of table lookup; 
this is illustrated in Fig. 3. The table contains the n most 
recent correct/incorrect indications for the given table 
entry. These n-bit entries are essentially shift registers. 
We call each of these a Correct/Incorrect Register (CIR, 
pronounced “sir”), and we refer to the entire table as the 
CIR Table (CT). We use the convention that a 1 in a CIR 
indicates an incorrect prediction, and a 0 indicates correct 
prediction. For example if a prediction is correct 3 times, 
followed by an incorrect prediction, followed by 4 correct 
predictions, then an &bit CIR contains 00010000. 

There are a number of possibilities for accessing 
the table. In one, the (truncated) program counter for a 
branch instruction is used as an index into the CT. Alter- 
natively, one could keep track of global branch outcomes 
in a branch history register (BHR) and use it to index into 
the CT. A third alternative is to maintain a global CIR 
(i.e. correct/incorrect status collected for the most recent 
dynamic branches) and use it to index into the CT. 

Beginning with these three basic methods of index- 
ing into the CT (PC, global BHR, global CIR), one can 
construct a number of others by concatenating portions of 
each or exclusive-ORing them. Preliminary studies we 
have done indicate that exclusive-ORing is more effective 
than concatenating sub-fields. However, this can be 

Fig. 3. One Level Dynamic Confidence 
Mechanism(s). 

influenced by the table size and deserves further study. 
Our preliminary studies also indicate that indexing with a 
global CIR is of little value -- it gives low performance 
when used alone and typically reduces performance when 
added to the others. Consequently, we will report results 
only for implementations using the PC and global BHR. 
This leads to three variations for indexing into the CT: PC 
alone, global BHR alone, and PC xor BHR. 

Now, to divide the branches into two sets, we have 
to take the CIR accessed from the table and reduce it to a 
single binary signal. In general, we do this by passing the 
CIR through a combinational logic block, named the 
“reduction” function in Fig. 3. For example, the reduction 
function could perform a ones count on the CIR: more 
ones indicate a higher number of recent mispredictions 
which would tend to indicate lower accuracy. In Section 
5, we will consider this ones count reduction function, 
along with some others. 

In an actual implementation, complete CIRs could 
be kept in the CT, with a separate logic block implement- 
ing the reduction function, exactly as shown in Fig. 3. 
However, one might also use implementations that main- 
tain a compressed form of the CIRs in the CT along with 
a simplified reduction function. These will be discussed 
more in Section 5. 

3.2. Two Level methods 
With two level dynamic confidence methods, we 

index into a first level CT in a manner similar to the one 
level methods, then combine the CIR read from the table 
with some combination of the PC and global BHR to 
index into a second level CT. The second level table con- 
tains the Correct/Incorrect values for the p most recent 
times the first level CIR/PC/BHR combination occurred. 
Finally, the CIR read out of the second level table passes 
through a combinational reduction function as in the pre- 
vious one level methods. 

There are several variations of the two-level 
method (refer to Fig. 4). In general, one can hash some 

145 



Level I 
ClR History Table 

Level 2 
CIR History Table 

Fig. 4. Two Level Dynamic Confidence 
Mechanism(s). 

combination of PC and global BHR for the first table, 
then hash the output of the first table with some combina- 
tion of PC and global BHR. This leads to 12 different 
possibilities -- and other two level structures could prob- 
ably be made (one could consider using the global CIR 
when computing the index into the second level table, for 
example). After some preliminary exploration, we settle 
on only three representative methods. 

In the first variation, the PC alone is used to read 
the first table, and the CIR alone is used to access the 
second level table. In the second variation, the PC xor 
BHR is used to read the first level table, and the CIR read 
from the table is used to read the second level table. The 
third variation is like the second except the PC and BHR 
are exclusive-ORed with the CIR read from the first level 
table before indexing into the second level table. 

4. Experimental Results 
We now use trace-driven simulation to study the 

dynamic confidence methods outlined in the previous sec- 
tion. As stated earlier, the underlying branch predictor is 
a gshare predictor using a table with 2t6 two-bit counters. 
The prediction table is accessed with the exclusive-OR of 
the 16 low order PC bits and a 16 bit global BHR. For the 
one level confidence methods, the CIR tables also have 
216 entries, each of which contains a 16 bit CIR. We 
simulate the IBS benchmark suite. Results are averaged 
by weighting the individual benchmarks so that each con- 
tributes the same total number of dynamic branches. For 
the relatively large underlying branch predictor we use, 
the overall misprediction rate is 3.85 percent. 

For all methods, we initialize the branch predictor 
table to “weakly taken” and the CIR tables to all ones. 
All ones was found to give better results than other initial 
CT values we studied; additional information on initial 
values will be given in Section 5. 

Initially, we will collect separate statistics for each 
CIR value read from the CT (the second level CT in the 
case of the two level methods). For each CIR pattern we 
keep track of number of times the pattern appears and the 
fraction of incorrect predictions that occurred when that 
CIR pattern was read. 

After collecting this data for each CIR pattern, we 
sort and construct a graph similar to that used for the 
static method in section 2. In particular, we sort the CIR 
patterns according to misprediction rates, highest rate at 
the top. The sorted list is used to plot data points -- one 
per CIR. For each point the X axis value is the fraction of 
accumulated conditional branches corresponding to this 
CIR and those higher on the list; the Y axis value is the 
fraction of mispredictions the conditional branches 
account for. Now, each point can be used to define high 
and low confidence prediction sets. A combinational 
reduction function that detects the sets selects only those 
CIRs above (low confidence) or below (high confidence) 
the CIR in question. The CIRs define minterms for the 
reduction function. 

As in the static method, this method of determining 
the confidence sets is idealized because the reduction 
function is tuned to a specific set of data input values. In 
addition, the combinational reduction function could be 
very complicated, i.e. it could have many prime impli- 
cants -- many of which could conceivably be minterms. 
In Section 5 we look at more practical reduction func- 
tions. 

4.1. One Level Methods 
Fig. 5 gives performance graphs for one level 

methods: indexing with PC alone, global BHR alone, and 
PC xor BHR. Note that in order to avoid the data points 
running together (as they do in Fig. 2) we only plot those 
points that differ from a previous point by 2.5 percent. 
The best method (the one that concentrates the largest set 
of mispredictions into the smallest set of predictions) uses 
PC xor BHR to index into the table. The reason is that the 
PC and the BHR together more precisely establish a con- 
text for the branch in question than either alone (essen- 
tially the same reasoning that leads to the gshare predic- 
tor). A close second in performance indexes with the glo- 
bal BHR alone, and the worst performance is provided by 
using the PC alone. Consider the points in the curves that 
correspond to a low confidence set containing 20 percent 
of all the branch predictions (20 percent is chosen rather 
arbitrarily for illustrative purposes). Indexing with PC 
xor BHR concentrates 89 percent of the mispredictions 
into the low confidence set; BHR alone concentrates 85 
percent, and the PC concentrates 72 percent. 

146 



L 
“BHRxorPC” * 

20 40 60 80 100 
% of Dynamic Branches 

Fig. 5. Cumulative mispredictions versus cu- Fig. 6. Cumulative mispredictions versus cu- 
mulative dynamic branches for one level mulative dynamic branches for two level 
dynamic confidence methods. dynamic confidence methods. 

Also shown in the Fig. 5 graph is a curve for the 
static method given in Section 2. We see that the 
dynamic methods are capable of performing much better 
than the optimistic static method. For comparison, with 
the static method 20 percent of the branches concentrate 
only about 63 percent of the mispredictions. 

For the dynamic methods, the all zeros CIR occurs 
frequently, and we refer to this all zeros CT entry as the 
“zero bucket”. The zero bucket corresponds to the case 
where the table entry has seen a correct prediction the last 
16 times in a row. It is not surprising that the zero bucket 
is accessed frequently, given that the overall prediction 
accuracy is 96.15 percent. The large zero bucket explains 
the long gap between data points for the dynamic methods 
in the right side of the graph. For example, with the two 
better dynamic methods, about 80 percent of the branch 
predictions lead to the all zeros CIR, and 12-15 percent of 
the mispredictions occur with the all zeros CIR. Hence, 
in the 20 to 100 percent dynamic branch region of the 
graph, the dynamic methods have no data points. The 
static method does have data points, however, and these 
points allow the static curve to arc above the interpolated 
curves for the dynamic methods in this region. 

Finally, we note once again that the dynamic results 
are idealized in a way similar to the way the static 
branches are. In particular, we sort the CIRs from worst 
to best based on their performance for the IBS bench- 
marks, and effectively use an optimal reduction function 
for the resulting CT. When we look at practical reduction 
functions, this level of optimism will be mitigated. 

4.2. Two Level Methods 
Now, we consider the two level confidence 

methods. The results are shown in Fig. 6 The best 

80 

20 40 60 80 100 
% of Dynamic Branches 

method accesses the first level table with PC xor BHR, 
and the second level table is accessed only with the CIR 
read from the first level table. The method that accesses 
the first level table with PC xor BHR and the second level 
table with the first level CIR xor PC xor BHR is generally 
the second best performer. However, there is a region in 
the 5 to 10 percent range (X-axis) where the third method 
-- PC accessing the first level, CIR the second level -- is 
slightly better. Otherwise the third method is worse than 
the other two level methods we chose to simulate. As 
with the one level methods, the all zeros CT entry is very 
large and leads to no data points from the lo-30 percent 
region to the 100 percent point on the X-axis. 

In Fig. 7, we compare our best one level method 
(from Fig. 5) with our best two level method (from Fig. 6) 
and the static method (from Fig. 2). We see that the one 
and two level methods give very similar performance. If 
anything, the two level method performs very slightly 
worse. The main difference is the presence or absence of 
the second level table; the first level tables are identical. 
Consequently we conclude that the extra hardware in the 
second level table is not worth the cost, at least when we 
use ideal reduction functions. Additional studies with 
realistic reduction functions tend to reinforce this conclu- 
sion, so we do not consider two level tables further in this 
paper. 

5. Implementation Issues 
In this section we apply the results from the previ- 

ous section to arrive at actual implementations. First, we 
look at reduction functions, then consider what we call 
the “granularity” issue, cost considerations, and initializa- 
tion issues. 

147 



20 40 60 80 100 
% of Dynamic Branches 

Fig. 7. Comparison of best one level, two lev- 
el, and static methods. 

5.1. Reduction Functions 
We now propose some simple reduction functions 

and compare results they provide with the relatively 
optimistic results from the previous section. For the obvi- 
ous reasons of reducing cost and/or logic complexity, we 
would like simple reduction functions. We have arrived 
at three by inspection of the sorted lists of CIRs, guided 
by our intuition. 

We have already observed that PC xor BHR index- 
ing performs best of the one level methods we studied. 
Consequently, in this section, we focus on this method. 
Note that we will occasionally refer to this method simply 
as the “best”, even though it is only the best of those we 
studied. 

Ones Counting. First, we consider counting the ones in 
the CIRs read from the table. The reasoning is that the 
more ones in the CIR, the higher the number of recent 
mispredictions, and therefore the more likely there will be 
a future mispredict. Because the CIRs are length 16 in 
the study given above, we have 17 data points (0 ones, i.e. 
no mispredictions out of the last 16, a single one, i.e. one 
mispredict, etc. up to 16 ones). The results for ones 
counting and for the other reduction methods considered 
in this section are plotted in Fig. 8. On the same graph is 
the plot for the optimistic reduction function we are trying 
to approximate; the optimistic curve does not have the 
discrete data points plotted to make the other points easier 
to read. Note that for ones counting the zero bucket lines 
up with the optimistic zero bucket (as it should). The one 
level method with ones counting falls short of optimum 
for other data points, however. 

The reason is that with a one level table, there is 
significant time ordering in the CIR, with the most recent 
16 predictions being represented, in time sequence. 

However, recent mispredictions, e.g. the most recent, 
correlate better than the older ones, e.g. 16 predictions 
ago. Yet, with ones counting, they are all given equal 
weight. 

Saturating Counters. A second reduction function that 
we consider is a saturating ones count on the CIR values. 
We do not expect this method to perform any better than 
ones counting. However, it could lead to a less costly 
confidence method because the saturating counters can be 
embedded into the CT in place of the CIRs -- leading to 
an essentially logarithmic reduction in table space. Using 
counters that count from 0 to 16 allow us to compare 
directly with the ones counters from the preceding sub- 
section (although a slightly less expensive implementation 
would count from 0 to 15). We count up for each correct 
prediction and down for each incorrect one, saturating at 
the extremes of 0 and 16. We once again have 17 data 
points which we plot in Fig. 8. We see that saturating 
counters have a potential deficiency. In particular, the 
equivalent of the zero bucket, the maximum saturated 
counter, becomes significantly larger; i.e. it contains more 
mispredicted branches. This happens because branches 
that are correctly predicted a vast majority of the time 
usually access a maximum saturated counter. If there is a 
single m&prediction, followed by a correct prediction, 
then the saturating count will be non-maximum for only 
one branch. On the other hand, if the full CIR is kept and 
a ones count is used, the single misprediction will lead to 
a nonzero CIR for the next 16 branches. This means 
many non-zero CIRs containing a single one are “con- 
verted” to the maximum saturated count value. 

For the portions of the curves at the extreme left of the 
graph, i.e. before the zero bucket region is reached, 

100 

80 

“BHRxarPC” - 
“BWRxorPC.lCnt” -8 

“BHRxorPCReset” -+ 
I I “gHRxorPC.Sat” 0 

0 20 40 60 80 loo 
% of Dynamic Branches 

Fig. 8. Confidence graph for one level 
method with reduction via ones counting, 
saturating counting, and resetting counting. 

148 



saturating counters behave about as well as ones count- 
ing. Consequently, if we choose to partition the 
confidence sets in this region, i.e. with 10 percent or 
fewer of the dynamic branches in a low confidence set 
containing about 60 percent of the mispredictions, then 
saturating counters appear to be adequate. However, the 
large maximum saturated counter region makes it impos- 
sible to partition with a larger low confidence set -- i.e. 
containing more than 60 percent or more of the mispred- 
ictions. Consequently, we might like to find a better 
method for cost-saving than saturating counters that main- 
tains the zero bucket characteristics of the optimal curve. 

Resetting Counters. A third algorithm was arrived at by 
examining the sorted lists of ClRs. In doing so, we 
observed that a few CIR patterns account for most of the 
dynamic branches. In particular those containing all 
zeros or a single one -- this reflects the high accuracy of 
the underlying branch predictor. This suggests that we 
can capture most of the information of full-length CIRs 
by only keeping track of the time the most recent 
misprediction has occurred, and this can be accomplished 
by incrementing a counter held in the CT each time the 
corresponding branch is predicted correctly, and resetting 
the counter to zero on any misprediction. The counter 
saturates at 16 -- to match the CIR and counter sizes used 
in the preceding subsections. 

Fig. 8 shows the results with a resetting counter, as 
compared with the ideal reduction function, ones count- 
ing, and saturating counters. We see that the resetting 
counter works quite well. It tracks the ideal curve 
closely, and has the same zero bucket. In addition, as 
observed earlier for saturating counters, a resetting 
counters can replace the full-length ClRs in the CT, yield- 
ing a logarithmic cost savings. We conclude that reset- 
ting counters are probably the best choice for implement- 
ing confidence methods in a practical manner. 

5.2. Threshold Granularity 
For producing the confidence sets in practice, we 

note we are at the mercy of the natural “buckets” that 
result from the reduced ClRs. For example, if we were 
using resetting counters, we can only establish confidence 
sets at data points determined by the 17 resetting counter 
values. Table 1 contains the 17 data points defined by the 
best single level method using resetting counters that 
count from 0 to 16. These counters saturate at 16. The 
first column contains the counter value; the second is the 
misprediction rate when the counter has the shown in the 
first column. The third and fourth columns are the per- 
centages of references and mispredictions that occur for 
the counter value, and the fifth and sixth columns are the 
cumulative reference and misprediction percentages from 
the top of the table. If we were to use a count value of 0 
to define the low confidence set, then we could isolate 
41.7 percent of the mispredictions to a set of 4.28 percent 
of the branch predictions. Of course, we would only need 

Table 
,: - . . - - ~~. - -- 

Statistics for Resetting Counter Values 

Count 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Mis- 
pred. 
Rate 
.376 
.24 1 
.I74 
.136 
.I12 
,090 
.079 
.071 
.062 
.058 
.053 
.045 
.043 
.040 
.039 
,037 
.005 

% 
Refs. 

4.28 
2.58 
1.91 
1.54 
1.31 
1.14 
1.03 
.936 
.860 
.798 
.744 
.699 
.662 
.628 
.598 
.571 
79.7 

% Cum. Cum.% 
Mis- % Mis- 

preds. Refs. preds. 
41.7 4.28 41.7 
16.2 6.85 57.9 
8.64 8.76 66.5 
5.45 10.3 72.0 
3.80 11.6 75.8 
2.66 12.8 78.5 
2.12 13.8 80.6 
1.73 14.7 82.3 
1.39 15.6 83.7 
1.19 16.4 84.9 
1.02 17.1 85.9 
.817 17.8 86.7 
.746 18.5 87.5 
.645 19.1 88.1 
.599 19.7 88.7 
.550 20.3 89.3 
10.7 100. 100. 

a single-bit “counter” to accomplish this. Similarly, if we 
were to use a count of 0 or 1, then we could isolate 57.9 
percent of the mispredictions to within a set of 6.85 per- 
cent of the branch predictions, etc. The maximum count, 
16, is equivalent to the zero bucket for full-length ClRs. 
Consequently, if we use counter values from 0 to 15, we 
can isolate 89.3 percent of the mispredictions to a set of 
20.3 percent of the branches. In the relatively large zero 
bucket region defined by the saturated counter, we can not 
achieve any finer granularity. We could, however, use 
larger counters to get somewhat better granularity, but 
this approach is limited. 

Finally, note that we are using the same tables and 
reduction functions for all programs, yet we have been 
discussing confidence levels for a particular set of bench- 
marks. There can be variation in the confidence sets 
depending on the individual benchmark or program. Con- 
sidering just the IBS benchmarks, Fig. 9 shows the 
confidence curves for the best (JPEG) and worst (GCC) 
performing IBS benchmarks using the best single level 
method with ideal reduction. We see that there is consid- 
erable variation. The zero buckets appear to contain 
approximately the same fractions of mispredictions, but 
the total number of branches in the zero bucket varies 
considerably. The importance of this characteristic will 
depend on the application to which the confidence 
mechanism is applied. 

5.3. Cost Considerations 

The study thus far has assumed fairly large (and 
relatively expensive) predictors and confidence methods. 
We did this to reduce aliasing effects so that we could get 

149 



20 40 60 80 100 
% of Dynamic Branches 

Fig. 9. Confidence graphs for best (JPEG) 
and worst (GCC) performing benchmarks. 
The best one level confidence method with 
ideal reduction is used. 

an idea of how a more pure implementation might per- 
form. However, we should also consider smaller, less 
expensive implementations. We do not fully explore the 
design space here. Rather, we choose a particular small 
predictor and investigate the performance of the single 
level confidence method when aliasing is present. We use 
a series of small confidence history tables to illustrate the 
fall-off in performance as we reduce the table size. 

For the smaller underlying branch predictor we use 
a gshare branch predictor with 4K entries consisting of 
saturating 2-bit counters. The predictor is accessed with 
the exclusive-OR of bits 13-2 of the branch program 
counter and 12 bits of global branch history. The 
misprediction rate of this predictor for the IBS bench- 
marks is 8.6 percent. 

We implemented a confidence mechanism that uses 
the best single level method, which is accessed the same 
way as the gshare predictor. Resetting counters are held 
in the CT. We simulate tables that are the same size as 
the predictor, 4K entries, down to 128 entries. The results 
arc plotted in Fig. 10. 

We see that for the case where the confidence table 
is the same size as the predictor, relative performance is 
somewhat less than for the larger table studied. We note 
that the zero bucket regions -- i.e. where counters are at 
their maximum values -- contain about the same fraction 
of mispredictions as before, but there are fewer overall 
branches in this region. To put it another way, the low 
confidence sets contain about the same fraction of 
mispredictions, but they are larger sets. This occurs 
because of the aliasing that takes place. If any branch 
accessing the same table entry suffers a misprediction, 
then the counter resets, and it will take at least 16 correct 

predictions for the the counter to re-enter the saturated 
state. Hence, aliased counters are likely to spend more of 
their time in the non-saturated state. Nevertheless, the 
performance is still fairly good with 75 percent of the 
mispredictions being identified with 20 percent of the 
conditional branches. This suggests that the confidence 
method can be applied when smaller, less costly predic- 
tors are used. For the case where the prediction and 
confidence tables have the same number of entries, the 
cost of the confidence method is twice the underlying 
predictor (Chit resetting counters versus 2-bit saturating 
counters). 

From Fig. 10, we also see that performance dimin- 
ishes in a well-behaved manner as the confidence table is 
reduced in size. Again, this loss is no doubt due to alias- 
ing. We can not make any definite statement about any 
one table size being more cost-effective than another, 
however, because to do so would require some 
knowledge of the application where the confidence 
method is to be used. That is, a performance/simulation 
model of the application for which we are using the 
confidence method would have to be used to determine 
actual performance impact of the confidence sets. 

5.4. The Effect of Initial State 
In the course of this study, we found that the initial 

state of the CIRs held in the CT is important, because it 
takes a long time for the tables to build up history. There 
are a number of possibilities for initializing the CIRs. For 
example, one could initialize the CIRs to all OS, all Is, and 
random. Another alternative is to not initialize the CIRs 
between context switches, but we did not study this alter- 
native. 

100 

80 

0 I I I “128” -i.-. 

0 20 40 60 80 loo 
% of Dynamic Branches 

Fig. 10. Performance with small CIR tables; 
tables hold resetting counters, accessed 
with PC xor BHR. 

150 



Fig. 11 shows results for the ideal one level method 
using a CT with 2 I6 entries. We see that all l’s and ran- 
dom perform similarly, but all OS does not perform nearly 
as well. As mentioned above, there are differences 
because the CT has a fairly “deep” memory, and initial 
state effects still appear even when the benchmarks are 
run to their full length. The all O’s initialization increases 
the number of branches in the zero bucket when a bench- 
mark begins. At startup there is likely to be a higher 
number of mispredictions, but the initially zero CIRs will 
assign them a high confidence. On the other hand, a 
non-zero initial value will tend to assign a lower 
confidence. However, exactly which non-zero initial 
value is used does not seem to make much difference. 

If better performance is provided by avoiding all 
zeros, then a reasonable alternative is to initialize only the 
“oldest” bit in the CIR to 1 and the others to zero. We 
refer to this as “lastbit”, and the results are shown in Fig. 
11 along with the other initial values. We see that the 
performance is essentially the same as for the other 
nonzero methods. From this experiment, we conjecture 
that one could probably leave the CIRs at their current 
values at the time of a context switch, except the oldest 
bit which should be initialized at 1. This would tend to 
simplify the initialization hardware and provide good per- 
formance. 

6. Conclusions 
For implementing confidence methods, there is a 

large design space -- probably as large as for branch pred- 
iction, and many branch prediction methods have been 
proposed and studied over the years. Consequently, the 
methods proposed here are by no means comprehensive. 

20 40 60 80 100 
% of Dynamic Branches 

Fig. 11. The effect of different CT initializa- 
tions; the best one level confidence method 
with ideal reduction is used. 

Our goal has been to introduce the concept of assigning 
confidence to branch predictions and to look at the 
characteristics of some methods. There are no doubt 
many other possible methods that can (and should) be 
explored. 

Just looking at static branches indicates that some 
are predicted with higher confidence than others; but to 
better separate the low and high confidence predictions 
one must look at dynamic information. This is similar to 
the case with branch prediction where predictors taking 
the dynamic context into account perform better than 
static predictors. 

Dynamic confidence methods are indeed better than 
static ones -- even the ideal static method. In general, it 

.appears that the single level dynamic methods work as 
well as the two level methods and are less expensive. Of 
reduction functions, we found that resetting counters 
work well, and these counters can be embedded into the 
CIR table to reduce cost. 

Most of our study was for large (64K) predictors 
and confidence tables. When using smaller (4K) predic- 
tors and smaller confidence tables (4K and smaller), we 
found that the confidence methods performed relatively 
worse -- the reason is that the use of resetting counters 
tends to amplify the negative effects of aliasing. 

Of the applications we mentioned above, we are 
currently researching three out of the four. We are study- 
ing potential performance benefits of selective dual thread 
forking as well as aspects of the implementation. For this 
application, data for the single level methods indicate that 
if we fork a dual thread following 20 percent of the condi- 
tional branch predictions, we can capture over 80 percent 
of the mispredictions. We conjecture that this will be 
adequate to provide worthwhile performance gains. 

We also have studies for the reverser and the hybrid 
prediction selector underway. The reverser application 
looks promising, but a key issue will be whether the 
cost/performance of a predictor plus reverser is better 
than the cost/performance of a more powerful predictor -- 
indeed, the predictor/reverser model could be considered 
a method of decomposing the design of a powerful pred- 
ictor. The study of the hybrid prediction selector has just 
begun, but we are optimistic that work on branch 
confidence will lead to a systematic way of developing 
near-optimal selectors. 

Acknowledgements 
This work was supported in part by NSF Grant 

MIP-9505853 and by the U.S. Army Intelligence Center 
and Fort Huachuca under Contract DABT63-95-C-0127 
and ARPA order no. D346. The views and conclusions 
contained herein are those of the authors and should not 
be interpreted as necessarily representing the official poli- 
cies or endorsements, either expressed or implied, of the 
U.S. Army Intelligence Center and Fort Huachuca, or the 

151 



U.S. Government. Eric Rote&erg is funded by an IBM 
graduate fellowship. Erik Jacobsen was funded by a 
Wisconsin/Hilldale undergraduate research scholarship 

The authors would like to thank Joel Emer for help- 
ful discussions while this work was in progress and for 
suggesting potential applications. 

References 
[II M. Evers, P. Chang, and Y. Patt, “Using Hybrid 

Branch Predictors to Improve Branch Prediction 
Accuracy in the Presence of Context Switches,” 
International Symposium on Computer Architec- 
ture, pp. 3-l 1 , May 1996. 

[2] Linley Gwennap, “MIPS RlOOOO Uses Decoupled 
Architecture,” Microprocessor Report, vol. 8, pp. 
18-22, October 24, 1994. 

131 B. T. Hailpern and B. L. Hitson, “S-l Architecture 
Manual,” CSL Report STAN-CS-79-715., Stan- 
ford University, January 1979. 

[4] J. K. F. Lee and A. J. Smith, “Branch Prediction 
Strategies and Branch Target Buffer Design,” 
Computer, vol. 17, pp. 6 - 22, January 1984. 

[5] S. McFarling, “Combining Branch Predictors,” 
Digital Western Research Lab Technical Note 
TN-36, June 1993. 

[6] Motorola, “PowerPC 601 User’s Manual,” 1993, 
No. MPC60 1 UM/AD. 

[71 S.-T. Pan, K. So, and J. T. Rahmeh, “Improving 
the Accuracy of Dynamic Branch Prediction Using 
Branch Correlation,” Proc. Architectural Support 
for Programming Languages and Operating Sys- 
tems (ASPLOS-V), pp. 76-84, October 1992. 

[8] Michael Slater, ‘ ‘AMD’s K5 Designed to Outrun 
Pentium,” Microprocessor Report, vol. 8, pp. 
1,6-11, October 24, 1994. 

[9] J. E. Smith, “A Study of Branch Prediction Stra- 
tegies,” Proc. Eighth Annual Symposium on Com- 
PuterArchitecture, pp. 135-148, May 1981. 

[lo] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and 
R. Stamm, “Exploiting Choice: Instruction Fetch 
and Issue on an Implementable Simultaneous Mul- 
tithreading Processor,” Proc. 23rd Annual Interna- 
tional Symposium on Computer Architecture, pp. 
191-202, May 1996. 

[ 1 l] Richard Uhlig, David Nagle, Trevor Mudge, Stuart 
Sechrest, and Joel Emer, “Instruction Fetching: 
Coping with Code Bloat,” Proc. 22nd Annual 
Symposium on Computer Architecture, pp. 345- 
356, June 1995. 

[12] A. K. Uht and V. Sindagi, “Disjoint Eager Execu- 
tion: An Optimal Form of Speculative Execution,” 
Proc. 28th Annual International Symposium on Mi- 
croarchitecture, pp. 3 13-325, November 1995. 

[ 131 T. Y. Yeh and Y. N. Patt, “Two-Level Adaptive 
Branch Prediction,” Proc. 24th Annual Intema- 
tional Symposium on Microarchitecture, No- 
vember 199 1. 

152 


