
Zero-Value Caches: Cancelling Loads that Return Zero

Mafijul Md. Islam and Per Stenstrom
Department of Computer Science and Engineering

Chalmers University of Technology, SE-412 96, Goteborg, Sweden
Email: {mafijul.islam, pers}@chalmers.se

Members of the HiPEAC Network of Excellence

Abstract� The speed gap between processor and memory
continues to limit performance. To address this problem, we
explore the potential of eliminating Zero Loads � loads
accessing memory locations that contain the value �zero� � to
improve performance and energy dissipation. Our study shows
that such loads comprise as many as 18% of the total number
of dynamic loads. We show that a significant fraction of zero
loads ends up on the critical memory-access path in out-of-
order cores. We propose a non-speculative microarchitectural
technique � Zero-Value Cache (ZVC) � to capitalize on zero
loads and explore critical design options of such caches. We
show that with modest investment, we can obtain speedups up
to 78% and reduce the overall energy dissipation by up to
39%. Most importantly, zero-value caches never cause
performance loss.

Keywords- Zero-Value Cache, Load Scheduling, Load
Criticality, Frequent Value Locality, Zero Load

I. INTRODUCTION
On-chip cache hierarchies are widely used in modern

processors to address the gap between processor speed and
DRAM access time. While caches are successful in reducing
the accesses to memory, even a small fraction of the
remaining accesses may cause substantial performance loss.
Moreover, despite advances in cache management, load
latency is still a limiting factor in achieving high
performance in dynamically scheduled processors. This
clearly calls for novel techniques to improve efficiency of
load scheduling and cache hierarchies.

Typically, a load accesses the first level data cache (DL1)
and searches the load/store queue (LSQ) in parallel to find a
matching store. If the load does not obtain its value from
either source, it accesses the next level of cache hierarchy
and experiences longer latency that limits performance.
Performance and energy losses increase with the number of
visited cache/memory levels. Ideally, if a load request could
be satisfied without injecting it into the cache hierarchy, it
would not result in performance or energy loss. To this end,
we propose and evaluate a non-speculative
microarchitectural technique to satisfy load requests as early
as possible to reap performance gains and energy savings.

Numerous approaches for load scheduling and execution
to enhance performance, power, and energy efficiencies have
been proposed. Load-value prediction schemes [4, 5, 19] aim
to reduce average memory access time and rely heavily on
speculation to predict load values with high accuracy.

However, these techniques require detecting misspeculation
and consequently, re-executions lead to performance and
power loss. On the other hand, store-to-load forwarding
techniques [22, 25, 26] can cancel load accesses early if there
is an outstanding store to the same address. In contrast, we
propose a non-speculative technique that is capable of
cancelling load accesses that are not cancelled by store-to-
load forwarding techniques.

Our approach leverages frequent value locality, as
observed by Yang and Gupta [28], to track loads that access
zero-valued memory locations. In particular, we establish
that a significant fraction of dynamic loads read the value
�zero� from the memory. We refer to such loads as Zero
Loads (ZLDs). Remarkably, on average, 18% of the total
number of executed loads are ZLDs for applications of the
SPEC CPU2000 benchmark suite. Such loads can be
executed without accessing the cache hierarchy, and this
opens a number of opportunities. We contribute a new
architectural concept referred to as Zero-Value Cache
(ZVC). Unlike a conventional cache, a ZVC keeps track of
zero-valued locations compactly and responds quickly to
such load requests. We find that this simple structure can
improve performance by up to 78% with a low additional
complexity.

While Frequent Value Cache (FVC) [29] can be thought
of as a general mechanism of capturing the value zero, it
trades energy efficiency for lower performance. The FVC
always increases load latency of non-frequent values. In
contrast, our proposed ZVC takes a different view on how to
leverage frequent value locality by targeting only the value
zero as well as ensuring that performance will never suffer
and overall energy dissipation will diminish. Several earlier
studies have leveraged the prevalence of the value zero for
other purposes: Alameldeen and Wood [1], Villa et al. [31]
and Dusser et al. [7] for cache compression, and Ekman and
Stenstrom [8] for main memory compression. But no prior
study has exploited this phenomenon to cancel load requests
before they reach the memory hierarchy as done in this
study.

The remainder of the paper is organized as follows: We
introduce and characterize zero loads in Section II to
motivate the architectural innovation presented in Section III.
We describe the experimental methodology in Section IV
before we present and analyze the results in Section V. We
discuss related work in Section VI and provide concluding
remarks in Section VII.

2009 18th International Conference on Parallel Architectures and Compilation Techniques

1089-795X/09 $25.00 © 2009 IEEE

DOI 10.1109/PACT.2009.29

226

2009 18th International Conference on Parallel Architectures and Compilation Techniques

1089-795X/09 $25.00 © 2009 IEEE

DOI 10.1109/PACT.2009.29

237

II. CHARACTERIZATION OF ZERO LOADS
We first introduce Zero Loads (ZLDs) and quantify such

loads as fraction of the total number of executed loads. We
then discuss the criticality and L2 miss rate of ZLDs to
anticipate their impact on performance. This serves as
motivation for studying opportunities to exploit ZLDs in
terms of architectural innovations.

A. Frequency of Zero Loads
We quantify the occurrences of dynamic zero loads for a

set of applications of the SPEC CPU2000 benchmark suite
using the experimental methodology presented in Section IV.
The results are shown in Fig. 1. The Y-axis represents the
percentage of all dynamic loads that are ZLDs. We see that
the frequency of ZLDs lies between 5% and 55% of the total
number of executed loads, with an arithmetic mean of 18%.
It is noteworthy that ZLDs are indeed common in every
application.

Figure 1. Frequency of zero loads.

This finding provides several optimization opportunities.
Most importantly, the latency of a ZLD can be reduced to
provide performance and power/energy benefits if the
request can be satisfied without issuing it to the cache
hierarchy. The gain will be particularly high if a ZLD is not
resident in data caches and would have to access main
memory. A large fraction of ZLDs actually exhibits this
behavior.

B. Criticality of Zero Loads
Traditionally, cache hierarchies exploit locality of

references to increase the fraction of memory accesses that
can be satisfied by the cache. This, in turn, reduces the
average load latency and improves performance. However,
Srinivasan et al. [24] show that latencies of all load
operations do not equally penalize overall performance in a
dynamically scheduled, out-of-order processor. Loads that
must complete early to avoid performance degradation are
Critical Loads (CLDs). In this study, we classify a load as
Zero Critical Load (ZCLD) if a critical load returns zero.
Srinivasan et al. [24] classify a load as critical if it satisfies
any of the following criteria: 1) The load feeds into a mis-
predicted branch, 2) The load feeds into another load that
incurs an L1 cache miss, or 3) The number of independent
instructions issued in an N-cycle window following the load
is below a threshold.

We establish the relative occurrences of ZCLDs based on
the stated criteria using a window of four cycles and a
threshold of four instructions. We also quantify the fraction
of L2 misses caused by ZLDs, assuming the cache hierarchy
parameters that we present in Section IV. The Y-axis of Fig.
2 shows the frequency of ZCLDs as percentage of the total

number of executed ZLDs. The X-axis shows the application
name, and the first, second and third rows below show the
frequency of ZCLDs as percentage of all dynamic loads, L2
miss per 1000 memory references and the percentage of L2
misses caused by ZLDs, respectively.

0

10

20

30

40

50

60

ammp
(0.3)
(0.4)
(0.5)

art
(7.4)

(84.7)
(15.3)

equake
(3.7)

(31.2)
(13.9)

mesa
(0.7)
(0.0)
(0.6)

bzip2
(0.5)
(2.2)
(7.5)

gcc
(5.4)
(2.7)
(6.6)

gzip
(1.7)
(0.5)
(7.5)

mcf
(9.4)

(59.7)
(13.3)

parser
(6.3)
(7.6)

(11.9)

perlbmk
(0.6)
(0.0)
(6.3)

twolf
(8.9)

(39.1)
(47.2)

vortex
(3.0)
(3.5)

(39.5)

vpr
(0.4)

(12.7)
(12.9)

AVG
(3.7)

(18.8)
(14.1)

Figure 2. Frequency of ZCLD and L2 miss rate.

The figure shows that about 20% of all dynamic ZLDs
are critical and that such loads comprise about 4% of all
executed loads. Furthermore, the figure shows that about
14% of all L2 misses are caused by ZLDs. More detailed
analysis reveals that (a) ZCLDs constitute a moderately large
fraction of all dynamic loads in many applications (art,
equake, gcc, mcf, parser, twolf, and vortex), (b) ZLDs
contribute significantly to L2 miss rate (at least 10% of total
number of L2 misses) in many applications (art, equake,
mcf, parser, twolf, vortex, and vpr), and (c) the impact of
ZLDs on L2 miss rate and the frequency of ZCLDs are
relatively lower in several applications (ammp, mesa, bzip2,
and perlbmk).

The results make ZLDs a natural target for optimization.
However, it is important to note that the notion of criticality
adopted in this study merely indicates that a critical load
degrades performance, but does not quantify performance
loss caused by such loads. In the next section, we present a
novel, non-speculative architectural scheme to exploit ZLDs.

III. ZERO-VALUE CACHES
A Zero-Value Cache (ZVC) is a small, cache-like

structure dedicated to a subset of memory locations
guaranteed to contain the value zero. We say that a load
request is a data hit in the ZVC if there is an entry for that
zero-valued location. Conversely, it is a data miss if the entry
contains a non-zero value and an entry miss if there is no
entry for that location. We consider two placements for the
ZVC: placed between the CPU and the L1 data cache (DL1)
or alongside the DL1. We first present the microarchitecture
of the baseline processor model in Section III-A. In the
subsequent sections, we discuss the organizational issues of
the ZVC and elaborate on its design tradeoffs.

A. Baseline Microarchitectural Model
While ZVC can be integrated in most conventional

microarchitectural models, we assume for simplicity a
straightforward model with six pipeline stages (fetch,
decode, issue, execute, write back, and commit) similar to
that of Sun Microsystems� Niagara [16]. Unlike Niagara,
however, we assume an out-of-order core. Both instruction
decoding and register renaming happen at the decode
pipeline stage as in the MIPS R10000 superscalar processor
[30]. The entries are allocated in the reorder buffer (ROB),

0
5

10
15
20
25
30
35
40

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr AVG

55%

227238

and the instructions proceed to the issue stage. Instructions
execute as soon as dependences are resolved and the required
functional units are available. The execution outcome is then
broadcast to wake up other dependent instructions at the
write back stage. Finally, the resources used by the
instructions are reclaimed, and caches and memory are
updated at the commit stage.

B. Organization of the ZVC
Each entry of the ZVC stores a tag corresponding to the

address of a B-Byte block, a bit-vector of that entire block, a
Cache Indicator Bit (CIB), and a valid bit, as shown in Fig.
3. Each bit in the bit vector designates whether the
corresponding byte or word of a block is zero (�1� represents
zero whereas �0� represents unknown/non-zero value). A
new design parameter is the granularity to represent zero-
valued locations. We evaluate two options: one bit per byte
(BB), and one bit per four-byte word (BW).

Figure 3. A ZVC entry and its size.

To exploit spatial locality offered by larger blocks for
better cache utilization, we assume the proposed ZVC is not
inclusive with respect to the conventional cache hierarchy.
However, we assume inclusiveness across cache levels in the
baseline cache hierarchy. To this end, the CIB indicates
whether a particular block of the ZVC is present in the last
level cache or not. If not, a load request bypasses the
traditional cache hierarchy to reduce miss penalty and power
consumption as proposed by Memik et al. [20]. Each ZVC

entry may have N CIBs if the block size of the ZVC is N
times larger than the L2 cache block size. Finally, a valid bit
serves the same purpose as in a conventional cache and
similar to the CIB, each ZVC entry may have N valid bits.

C. ZVC placed between the CPU and the DL1
The proposed ZVC can be placed between the CPU and

the DL1 to treat it as another level in the cache hierarchy.
The advantage is that the load latency is completely
eliminated if there is a data hit in the ZVC, since the load can
be satisfied immediately. However, this design is constrained
by the clock frequency of the pipeline and loads that miss in
the ZVC may experience longer latency.

Let us now explain the different possible scenarios on a
read access in the presence of the ZVC. At the issue stage of
the pipeline, a load request is issued to the ZVC in parallel
with carrying out the address translation. First, if there is a
data hit in the ZVC, the load is not issued to the cache
hierarchy and the LSQ lookup is not done. Second, if either
an entry miss or a data miss occurs, the request is issued to
the LSQ and the DL1 as it happens in the baseline processor
model. However, on a data miss, if the load is not served by
the LSQ and the DL1, the status of the corresponding CIB in
the ZVC dictates how the request will travel through the rest
of the cache/memory hierarchy. If the CIB is �0�, i.e., the
block is not present in the last level cache (L2 in the baseline
model), the main memory is accessed directly without
searching the next level caches, the block is installed into the
caches and the corresponding CIB is set to �1�. This reduces
the miss penalty. Conversely, if the CIB is �1�, the load
traverses the cache/memory hierarchy as in the baseline
processor model. Fig. 4(a) shows the integration of the
proposed ZVC into the baseline processor model. In the
figure, the additional logic and connections are shown using
dotted rectangles and lines, respectively.

Figure 4. The integration of the ZVC into the baseline processor model.: (a) ZVC placed betweem the CPU and the DL1, (b) ZVC alongside the DL1.

Cache Indicator Bit (CIB)

(a)

Entry M
iss,

L2 M
iss

CPU

L2

Zero-detection
L

ogic

Bus to Main Memory

ZVC Data Hit

DL1 LSQ

ZVC

Entry or
Data Miss

LSQ, DL1 Miss

LS
Q

/D
L1

 H
it

Data Miss: CIB �1� CIB �0�

Entry Miss,
L2 Hit

CPU

DL1 ZVC

L2

Zero-detection
Logic

Bus to Main Memory

ZV
C

 D
at

a
H

it

Entry Miss,
L2 Hit

LSQ
, D

L1 m
iss and

(D
ata M

iss: C
IB �1� or

Entry M
iss)

LSQ
 and D

L1 M
iss,

D
ata M

iss: C
IB �0�

LSQ

LS
Q

/D
L1

 H
it

Entry M
iss,

L2 M
iss

(b)

Size in bits (Block size in byte):
 Tag = 32 - log2(Number of Sets) + log2(Block Size),
 Bit-vector = (ZVC Block Size) / W, W = 1 if BB or W = 4 if BW,
 CIB = (ZVC Block Size) / (L2 Block Size), and
 Valid bit = (ZVC Block Size) / (L2 Block Size).

Valid BitBit-vector Tag

228239

The allocation of a ZVC entry and the modifications of
the corresponding bits are done at the issue stage of the
pipeline model. First, if there is an entry miss and a miss in
the L2, the block is fetched from the main memory at the
ZVC block size granularity. The entire block passes through
the zero-detection logic to create the bit vector following the
specified granularity (BB or BW) and place it in the ZVC.
However, only the relevant fraction (L2 block size) of the
fetched block is placed in the L2. At this point, the CIBs and
valid bits of the newly allocated ZVC entry are updated. This
may increase the memory traffic on read misses if the ZVC
block size is larger than the L2 block size. Second, if there is
an entry miss but a hit in the L2, the block is fetched from
the L2 and placed in the ZVC. The bit vector formation and
the modifications of the CIBs as well as valid bits are done
similarly as in the first case. In both cases, the ZVC stores
only non-speculative data. Finally, as soon as an in-flight
store completes, i.e., the effective address and the value are
known, a new entry is allocated if it is not in the ZVC. Only
the bytes for which the value zero is written are marked by
�1� in the bit vector. The valid bits are set but the CIBs are
not set. This approach allows the ZVC to hold speculative
data and support store-to-load forwarding if the load finds a
matching store in the ZVC with the corresponding bit(s) of
the bit vector set.

Since the proposed scheme is non-speculative, the entries
of the ZVC have to be validated to maintain correctness
during program execution. During the recovery from the
misspeculation, the ZVC is validated against each squashed
store. This requires clearing the corresponding bit vector
positions of a cached ZVC entry to �0�. At the commit stage
of the pipeline, the ZVC lookup is performed for each ready-
to-commit store to detect zero silent stores � a special case of
silent stores [17] that update zero-valued memory locations
with the same value. Thus the proposed ZVC detects zero
silent stores basically for free and this may reduce the overall
write traffic.

The virtually-indexed ZVC allows the TLB lookup to
proceed in parallel. In the proposed placement, this will
partially hide the additional latency of accessing the ZVC
and the DL1 sequentially. As the ZVC size is quite small, the
cost of dealing with virtual aliases will be low.

D. ZVC alongside the Level-1 Cache
The ZVC may alternatively be placed next to the first

level data cache (DL1) to perform lookups simultaneously.
Fig. 4(b) shows the integration of the proposed ZVC into the
baseline processor model with the associated additional logic
marked using dotted rectangles and lines. In this case, the
LSQ, the ZVC and the DL1 are searched in parallel on a load
request. If the request is satisfied by any, the L2 cache is not
accessed. But on a ZVC data miss in addition to the LSQ and
the DL1 miss, the CIB of the ZVC entry determines whether
to access the L2 cache. If the CIB is �1�, the L2 cache is
accessed as in the baseline processor model. Otherwise, the
main memory is accessed directly to bring in the required
block to the caches. The allocation of a new ZVC entry,
modifications of the bit vector, CIBs and valid bits, and the
maintenance of non-speculative nature are performed in the

same way as done in the ZVC placed between the CPU and
the DL1.

The placement of the ZVC alongside the DL1, unlike the
other approach, offers more flexibility in the design as it only
needs to be as fast as the L1 cache and does not incur any
performance penalty on data/entry miss. However, the
performance and energy benefits are now limited to zero
loads that access the L2 cache in absence of the ZVC.

E. Threshold-based Insertion/Replacement
We have thus far assumed that a particular block is

placed in the ZVC without determining the relative
frequency of zero-valued bytes/words in the block. As a
result, in the worst case, the ZVC may entirely fill up with
blocks that primarily consist of non-zero values. To address
this issue, we propose and evaluate a scheme that inserts a
block into the ZVC only if the number of zero-valued
bytes/words is above a preset threshold. Though the
threshold-based approach requires extra hardware to count
the number of zero bytes/words, it may increase ZVC
utilization. It is notable that this approach is not applicable if
the ZVC is updated via an in-flight store. We assume the
LRU replacement policy in all cases.

F. Cache Coherence Issues
Since inclusion between the ZVC and conventional cache

hierarchy is not maintained, all cache coherence transactions
will travel all the way to the ZVC through the cache
hierarchy. This may pose severe performance loss in multi-
cores. However, we show in Section V that even a small
ZVC is effective in cancelling a large number of loads
destined to zero-valued locations. Therefore, it is reasonable
to duplicate the ZVC at the last level private cache. We
assume that the content of the duplicated ZVC is consistent
with the ZVC placed between the CPU and the DL1 or next
to the DL1. The replicated ZVC filters out all cache
coherence transactions not involving blocks contained in the
ZVC. However, proper actions must be taken, including
invalidating ZVC entries for the blocks involved in a cache
coherence transaction. Note that we do not evaluate the
impact of the ZVC on multi-cores.

IV. EXPERIMENTAL METHODOLOGY
We evaluate the performance potential of the proposed

mechanism via a modified version of sim-outorder from the
SimpleScalar toolset [3]. The baseline processor model
supports dynamic scheduling and speculative execution. We
describe the pipeline model in Section III-A. We modify a
memory implementation [10] to model SDRAM-based
memory subsystem and integrate it into the SimpleScalar
toolset. We model the corresponding controller and latencies,
including contention according to JEDEC Standard No. 79-
3C [13]. We present the parameters of the baseline processor
model and memory subsystem in Table I. In addition, we
perform sensitivity analysis of the proposed method using a
larger L2 cache.

229240

TABLE I. THE BASELINE PROCESSOR PARAMETERS.

Parameter Value
Decode, Issue and
Commit Width

4 instructions/cycle, out-of-order issue and
execution

Register Update
Unit (RUU), LSQ

(128, 64) instructions

L1 Instruction
Cache

32KB, block size 32 bytes, 4-way set-associative,
256 sets, LRU replacement policy, 2 cycles
latency

L1 Data Cache 32KB, block size 32 bytes, 4-way set-associative,
256 sets, LRU replacement policy, 2 cycles
latency

Unified L2 Cache 512KB, block size 64 bytes, 8-way set-
associative, 1024 sets, LRU replacement policy,
10 cycles latency

Branch Predictor Combined: 2K-entry Bimodal + gshare with 2K
entries in 2nd level; RAS: 8-entry; BTB: 4-way,
512 sets

Memory
subsystem

Number of banks: 8, DIMM width: 64 bits,
Number of SDRAM chips: 8, Capacity: 2 Gbits,
Memory clock speed: 200 MHz, Bus clock speed:
800 MHz, Address map: interleaved, Control
signals: pipelined, Latencies: 9-9-9-24 in the
format �tCAS-tRCD-tRP-tRAS�

We use nine applications (bzip2, gcc, gzip, mcf, parser,

perlbmk, vortex, vpr, and twolf) from the SPEC CINT2000
and four applications (ammp, art, equake, and mesa) from
the SPEC CFP2000 of the SPEC CPU2000 benchmark suite.
We compile each with optimization level �O3 and gcc
version 2.7.2 for a MIPS-compatible processor. We omit two
remaining C applications (gap and crafty) due to compilation
problems. We use the reference inputs for all the selected
applications. We use SimPoint3.2 to quickly simulate parts
of a program�s execution (100M instructions) to represent
the entire execution [23]. Table II shows each selected
application, the simulation point and the input set used in this
study.

TABLE II. APPLICATIONS AND INPUT SETS.

Application SimPoint Input

ammp 846 ammp-ref

ert 257 art-470

equake 985 equake-ref

mesa 3909 mesa-ref

bzip2 384 bzip2-program

gzip 567 gzip-source

gcc 116 gcc-166

mcf 321 mcf-ref

parser 24 parser-ref

perlbmk 64 perlbmk-diffmail

twolf 1402 twolf-ref

vortex 696 vortex-lendian1

vpr 368 vpr-route

We incorporate the proposed ZVC designs into our

processor model and evaluate their impact on performance,

power, energy, chip-area and memory traffic. We evaluate
many configurations of the ZVC, as shown in Table III. In
the table, the ZVC size includes CIB and valid bit. In each
case, the ZVC is 4-way set-associative with the LRU
replacement policy.

TABLE III. CONFIGURATIONS OF THE ZVC.

Bit-vector Block Size
(in byte) Threshold ZVC Size

(in byte)

BB, BW 64, 128, 256 0%, 50%, 100% 576, 2112, 4224

We use CACTI 5.3 [27] to estimate power consumption,

access latency, and chip-area overhead of the ZVC,
assuming a 2-GHz processor clock speed and 45nm
technology. We present the estimated access time of the
various configurations of the ZVC in Table IV. Note that all
designs are accommodated within a single cycle for a 2-GHz
processor core. We use Wattch [2] to estimate dynamic
power and energy dissipation. We assume 1-cycle latency for
each of zero-detection logic and the counter used in the
threshold-based approach.

TABLE IV. ACCESS TIME (IN NS) OF THE ZVC.

Block
Size

Bit-vector Number
of Sets

ZVC Size
(in byte)

Access
Time

64 BB 64 2112 0.481577

128 BB 32 2112 0.476364
256 BB 16 2112 0.476364
256 BB 32 4224 0.476364

256 BW 16 576 0.447053

V. RESULTS AND ANALYSIS
In this section, we present and discuss the results that we

obtain through systematic exploration of the ZVC design
space. Our default ZVC is four-way set-associative and
assumes LRU replacement policy.

A. Impact of Placement on Performance
We evaluate the impact of ZVC placement and lookup on

speedup using three different configurations and present the
results in Fig. 5. There are three bars for each application in
the figure and from left to right, they represent the speedup
obtained using a 2KB ZVC with 128-byte blocks placed
between the CPU and the first level cache (L0, 2KB), a 2KB
ZVC with 128-byte blocks (L1, 2KB) and a 4KB ZVC with
256-byte blocks (L1, 4KB) alongside the L1. The estimated
access latency is one cycle in the first case whereas it is two
cycles in the other cases. Each ZVC model forms bit vector
using byte granularity (BB).

We see from Fig. 5 that four applications (art, gcc, mcf,
and twolf) achieve significant speedup (between 12% and
80%), three applications (equake, parser, and vortex) obtain
moderate speedup (between 3% and 7%), and most
importantly, no application experiences performance
degradation. We observe that the ZVC placed alongside the
L1, in general, performs slightly better than the ZVC placed

230241

between the CPU and the L1 in all applications except
vortex.

Figure 5. Impact of ZVC placement on speedup.

We observe that the speedup obtained is in line with the
expectation if we recall the results on criticality and L2 miss
rate of ZLDs presented in Fig. 2 in Section II-B. For
example, in mcf, critical ZLDs constitute 9.4% of all
dynamic loads and ZLDs contribute 13.3% to the overall L2
miss rate, and those are only 0.3% and 0.5%, respectively in
ammp. We look into the data hit rate of the critical zero loads
(ZCLD) of the 4KB ZVC placed alongside the L1 to
understand the observed trend and present the results in Fig.
6. In the figure, the solid line represents the speedup in
percentage and the dotted line represents the data hit rate of
the ZCLDs as percentage of the total number of executed
loads. In the X-axis, the row below the application name
shows the data hit rate of the ZCLDs as percentage of all
dynamic ZCLDs. We see from Fig. 6 that the higher data hit
rate of ZCLDs leads to higher gains in performance and the
proposed ZVC tracks majority of the executed ZCLDs in
most applications (mesa, gcc, gzip, mcf, parser, perlbmk,
twolf, vortex, and vpr).

Figure 6. Data hit rate of the ZCLD.

The results discussed in this section reveal that the ZVC
placed next to the L1 to perform lookups simultaneously, in
general, performs better. More importantly, this design
ensures that non-zero loads � about 82% of all dynamic
loads � do not suffer from any performance penalty.

B. Impact of ZVC Block Size on Performance
We assume that the ZVC is searched in parallel with the

L1 and evaluate the impact of its block size on speedup. We
use BB to form bit vectors. Fig. 7 shows the results. In the
figure, the three bars from left to right correspond to the
obtained speedup in percentage for block sizes of 64, 128,
and 256 bytes, respectively for a 2KB ZVC.

It is evident from Fig. 7 that the speedup increases in
several applications (art, equake, gcc, parser, and vortex) as
we increase the block size. However, we do not observe any
noticeable impact on speedup in most of the applications

(ammp, mesa, bzip2, gzip, perlbmk, twolf, and vpr) and
observe a slight decrease in speedup in mcf. In general, the
ZVC with 256-byte block size performs the best.

Figure 7. Impact of ZVC block size on speedup.

C. Impact of Bit-vector Granularity
We assess the impact of the granularity to represent zero-

valued locations in the bit vector on speedup by considering
byte (BB � 1 bit/byte) and word (BW � 1 bit/word)
granularities. We assume that the ZVC is placed next to the
L1 and uses 256-byte blocks. In Fig. 8, the left and the right
bars correspond to the speedup obtained using BB and BW,
respectively. The results in the figure reveal that speedup is
almost entirely independent of the granularity.

Figure 8. Speedup and bit-vector granularity.

To understand this trend, we quantify the relative
occurrences of different granularities (byte, half-word, word)
of ZLDs and present the results in Fig. 9. In the figure, the
three bars from bottom to top correspond to the relative
occurrences of byte (1-byte), half-word (2-byte) and word
(>=4-byte) ZLDs, respectively as percentage of all dynamic
ZLDs. We find that byte-ZLDs are dominant � at least 60%
of all dynamic ZLDs � only in three applications (bzip2,
gzip, and twolf). The results suggest that we use BW because
it reduces the ZVC size by a factor of four with respect to
BB and provides almost same performance benefit as BB.

0%

20%

40%

60%

80%

100%

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

1-byte 2-byte >=4-byte

Figure 9. Granularity of dynamic zero loads.

D. Impact of the Zero-Count Threshold
In this section, we assume that a particular block is

placed in the ZVC only if it satisfies a certain threshold of
zero-count and evaluate the impact on speedup. For example,
when the threshold is N, a block is placed in the ZVC if the

0
3
6
9

12
15
18
21
24
27

ammp
(23%)

art
(41%)

equake
(33%)

mesa
(99%)

bzip2
(44%)

gcc
(74%)

gzip
(68%)

mcf
(96%)

parser
(79%)

perlbmk
(89%)

twolf
(82%)

vortex
(81%)

vpr
(64%)

ZCLD Data Hit Speedup (%) 78%

0
3
6
9

12
15
18
21
24
27
30

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

Sp
ee

du
p(

%
)

L0, 2KB L1, 2KB L1, 4KB
78%, 80%, 78%

0
3
6
9

12
15
18
21
24
27
30

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

Sp
ee

du
p(

%
)

64-byte 128-byte 256-byte

82%, 80%, 78%

0
3
6
9

12
15
18
21
24
27
30

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

Sp
ee

du
p(

%
)

BB BW

 78%, 78%

231242

block contains N% zero words. The ZVC with 256-byte
blocks is searched in parallel with the L1 and uses BW to
form bit vectors. We apply three different thresholds and
present the results in Fig. 10. In the figure, there are three
bars for each application and from left to right, they
correspond to the achieved speedup by applying no threshold
(0%), thresholds of 50%, and 100%, respectively. Note that a
threshold of 0% means that we do not count the number of
zero-valued words in a particular block before placing it in
the ZVC. We see from Fig. 10 that speedup decreases in
most applications as we increase the threshold from 0% to
100%.

Figure 10. Impact of threshold on speedup.

E. Energy, Power and Area of the ZVC
We estimate the efficiency of our proposed ZVC in terms

of energy, power and chip-area. We evaluate a ZVC that sits
alongside the L1, applies no zero-count threshold, is 4-way
set-associative with 16 sets, and uses 256-byte blocks. We
assume that BW is used to create bit vectors. Thus, the size
of the ZVC is 576 bytes including CIB and valid bit. We use
CACTI 5.3 [27] to obtain the results and present those in
Table V. We see from the table that the ZVC increases
leakage power only by 0.18% and chip-area only by 0.15%
with respect to data caches.

TABLE V. THE OVERHEAD OF THE ZVC.

Parameter DL1 L2 ZVC Overhead
Dynamic read
energy (nJ) 0.0163 0.0903 0.0024 2.25%

Dynamic write
energy (nJ) 0.0134 0.0444 0.0026 4.5%

Dynamic read
power (nW) 46.872 74.048 16.209 13.4%

Leakage per
bank (mW) 66.27 855.14 1.7037 0.18%

Area (mm2) 0.288 3.621 0.0057 0.15%

We also use Wattch [2] to estimate the impact of the
ZVC on the overall dynamic power consumption and energy
dissipation. The proposed ZVC reduces the power
consumption in two ways: (a) the L2 cache is not accessed
on a read request if it is a data hit in the ZVC but misses in
the L1, and (b) data caches are not accessed on a write
request if the ZVC detects the store as a zero silent store.

However, the ZVC itself consumes power. In addition, the
ZVC accesses the L2 cache to maintain CIB, and fetch the
required block on entry miss and L2 hit. This may increase
the overall power consumption. We estimate that the
dynamic power consumption of the baseline processor model
increases by 3%. The ZVC may reduce the overall energy
dissipation in the applications that achieve speedup and
increase it in the other applications. We estimate the total
dynamic energy dissipation and show the results in Fig. 11.
We see from the figure the total energy usage of the
processor is reduced in many applications (art, equake, gcc,
mcf, parser, twolf, and vortex) and increased slightly (about
1%) in some applications (ammp, bzip2, gzip, perlbmk, and
vpr).

Figure 11. Impact of the ZVC on dynamic energy.

F. Impact of the ZVC on Memory Traffic
Memory bandwidth is a bottleneck in current and future

processors [9]. This motivates us to evaluate the impact of
the proposed ZVC on memory traffic. If the ZVC blocks are
larger than the L2 blocks, we expect that the read traffic may
increase as an entry miss in the ZVC along with L2 miss
fetches additional data from the memory. In contrast, the
write traffic may decrease as the ZVC is capable of detecting
zero silent stores. We observe that such stores, on average,
constitute about 11% of the total committed stores. It is
important to note that only a critical silent store a specific
dynamic silent store that, if not squashed, will cause a cache
line to be marked as dirty and, hence, require a writeback
[17] suppresses write traffic.

We assume the ZVC is placed next to the L1, is 4-way
set-associative with 16 sets and 256-byte blocks, uses BW to
form bit vectors and applies no threshold on zero-count. The
L2 block size is 64 bytes. We present the results in Table VI.
Note that a particular number following the �-� sign implies
increase in traffic. We see from Table VI that memory read
traffic increases up to 33% and all applications except gcc
experience increase in the read traffic. We also observe that
the memory write traffic decreases between 1% and 66% in
seven applications (art, mesa, gcc, gzip, mcf, parser, and
vortex) and remains unaffected in the remaining six
applications. We find that the proposed ZVC detects about
62% of the total number of committed zero silent stores, i.e.,
about 9% of all committed stores.

TABLE VI. IMPACT OF THE ZVC ON MEMORY TRAFFIC (READ AND WRITE).

Application ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr
Read Traffic -29 -17 -6 -14 -20 14 -11 -33 -4 -22 -25 -26 -31

Write Traffic 0 29 0 1 0 66 5 57 12 0 0 17 0

0
3
6
9

12
15
18
21
24
27
30

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

Sp
ee

du
p(

%
)

0% 50% 100%

78%, 77%, 77%

-2
1
4
7

10
13
16
19
22

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

R
ed

uc
tio

n
(%

)

39%

232243

G. Sensitivity Analysis
Processor vendors such as IBM and Intel are

incorporating large on-chip L2 cache [11, 18]. This
motivates us to appraise our proposed ZVC in relation to the
size of the L2 (last level) cache. We use a 4MB L2 cache that
is 8-way set-associative with 128-byte blocks and 10-cycle
access latency. The 576-byte ZVC placed next to the L1 is 4-
way set-associative and uses 256-byte blocks with BW to
create bit vectors. Fig. 12 shows the results. We see from
Fig. 12 that the speedup is reduced if we use a 4MB L2
cache. In particular, the performance advantage disappears
completely in art. We analyze the miss rates of both L2
caches to understand the observed differences in speedup

and present the results in Table VII. We see from Table VII
that the miss rate is reduced significantly in the 4-MByte L2
cache and in fact, it goes down to almost zero in art. This
justifies the observed drop in speedup.

Figure 12. Sensitivity analysis of the ZVC.

TABLE VII. THE MISS RATE (MISS PER MEMORY REFERENCE) OF 512KB L2 (BASE) AND 4MB L2.

Application ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr
Base L2 0.08 0.56 0.22 0.00 0.03 0.04 0.01 0.45 0.06 0.00 0.08 0.01 0.10

4MB L2 0.02 0.00 0.14 0.00 0.00 0.03 0.01 0.28 0.01 0.00 0.01 0.00 0.02

VI. RELATED WORK
Previous research focuses on efficient techniques to

improve memory performance. Lipasti et al. [19] recognize
that load instructions exhibit value locality and conclude that
there is potential for prediction. Last-value predictors, stride
predictors, context predictors, and hybrid predictors have
been proposed to predict load values [4, 5, 19]. Calder and
Reinman perform a comparative study of load speculation
techniques such as value prediction, address prediction,
dependence prediction, and memory renaming [5]. Roth [21]
proposes a filtering mechanism to reduce the re-execution
overhead of a given speculative technique. Ceze et al. [6]
and Kirman et al. [15] propose checkpointing to
speculatively retire long-latency load accesses and unclog
the ROB. On the other hand, store-to-load forwarding
techniques [22, 25, 26] address non-scalability and power
inefficiency of conventional LSQ designs. Unlike load
speculation, checkpoint assisted load retirement, and store-
to-load forwarding schemes, our proposed ZVC is non-
speculative, simpler in terms of hardware resources, and
efficient from performance and energy perspectives.

Kin and Mangione-Smith [14] introduce the filter cache,
a small cache placed in between CPU and L1, to achieve
power reduction. This, however, increases the execution time
of programs in contrast to our proposed ZVC. The Frequent
Value Cache (FVC) presented by Yang and Gupta [29]
encodes frequent values in a compressed format. While
frequent values are accessed directly, accessing a non-
frequent value results in performance loss. In contrast, the
ZVC proposed in this study is sufficiently small to be
accessed in parallel with the L1 or even before the L1. The
non-zero loads do not suffer from any speedup penalty. This
is important because about 82% of all dynamic loads return
non-zero values.

Several recent techniques exploit the potential of zero-
valued memory locations [7, 12]. In our previous work [12],
we observe that zero loads are common in certain integer

applications, and study the upper limit of potential benefits
of exploiting such loads. Concurrently, Dusser et al. [7]
propose Zero-Content Augmented (ZCA) cache to avoid
storing a block in conventional caches if the entire block
contains zero values. While their proposal can improve cache
utilization, it cuts down the load latency only if the entire
block contains zero values. On the other hand, our proposed
ZVC can be placed close to the pipeline allowing loads to be
cancelled immediately.

VII. CONCLUSION
In this paper, we introduce the notion of Zero Loads to

improve load scheduling and cache hierarchy efficiency to
achieve performance and energy benefits. We observe that
Zero Loads, on average, comprise about 18% of the total
number of executed loads and about one fifth of them appear
on the critical memory-access path of out-of-order cores. We
propose and evaluate a novel, non-speculative micro-
architectural technique � Zero-Value Caches � to exploit
such loads. We find that our proposed scheme with
additional storage of only about 576 bytes improves
performance by up to 78% and reduces the overall energy
dissipation of the processor core by up to 39%. Most
importantly, the concept of zero-value cache requires only
modest resources and never causes performance loss.

ACKNOWLEDGMENT
This research is sponsored by the SARC project under

the EU funded FET program. Authors are members of the
HiPEAC Network of Excellence. Authors are indebted to
Sally A McKee for her comments on earlier drafts of the
manuscript. Authors would like to also thank the colleagues
in the research group for their input.

REFERENCES
[1] A. R. Alameldeen and D. A. Wood, �Adaptive Cache
Compression for High-Performance Processors,� In Proc. ISCA-
31, pp. 212-223, 2004.

0
3
6
9

12
15
18
21
24
27
30

ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr

Sp
ee

du
p(

%
)

Base L2 4MB L2

78%, 43%

233244

[2] D. Brooks, V. Tiwari, and M. Martonosi, �Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,� In Proc. ISCA-27, pp. 83-94, 2000.
[3] D. Burger and T. Austin, �The SimpleScalar Tool Set Version
2.0,� Technical Report TR-CS-97-1342, University of Wisconsin-
Madison, 1997.
[4] M. Burtscher and B. G. Zorn, �Hybrid Load-Value
Predictors,� IEEE Transactions on Computers, 51(7): 759 � 774,
2002.
[5] B. Calder and G. Reinman, �A Comparative Survey of Load
Speculation Architectures,� Journal of Instruction-Level
Parallelism, 2000(1): 1-39.
[6] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau,
�CAVA: Using Checkpoint-assisted Value Prediction to Hide L2
Misses,� ACM Trans. Archit. Code Optim. 3(2): 182-208, 2006.
[7] J. Dusser, T. Piquet, and A. Seznec, �Zero-Content
Augmented Caches,� Technical Report RR-6705, INRIA, October,
2008.
[8] M. Ekman and P. Stenstrom, �A Robust Main-Memory
Compression Scheme,� In Proc. ISCA-32, pp. 74-85, 2005.
[9] D. Burger, J. R. Goodman, and A. Kagi, �Memory Bandwidth
Limitations of Future Microprocessors,� In Proc. ISCA-23, pp. 78-
89, 1996.
[10] M. Gries and A. Romer, �Performance Evaluation of Recent
DRAM Architectures for Embedded Systems,� TIK Report Nr. 82,
Swiss Federal Institute of Technology (ETH), 1999.
[11] Intel Corporation, �Introducing the 45nm Next-Generation
Intel® Core� Microarchitecture,� Technology@Intel Magazine,
4(10), 2007.
[12] M. M. Islam and P. Stenstrom, �Zero Loads: Canceling Load
Requests by Tracking Zero Values,� In Proc. MEDEA 2008
Workshop, October, 2008.
[13] JEDEC, �JEDEC Standard No. 79-3C,� November, 2008.
[14] M. G. J. Kin and W. H. Mangione-Smith, �The Filter Cache:
An Energy Efficient Memory Structure,� In Proc. MICRO-30, pp.
184-193, 1997.
[15] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez,
�Checkpointed Early Load Retirement,� In Proc. HPCA-11, pp.
16-27, 2005.
[16] P. Kongetira, K. Aingaran, and K. Olukotun, �Niagara: A 32-
Way Multithreaded SPARC Processor,� IEEE Micro: 21-29, 2005.
[17] K. M. Lepak, G. B. Bell, and M. H. Lipasti, �Silent Stores and
Store Value Locality,� IEEE Transactions on Computers, 50(11):
1174-1190, 2001.
[18] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O�Connell, D.Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T.
Vaden, �IBM POWER6 microarchitecture,� IBM Journal of
Research and Development, 51(6): 639 - 662, 2007.
[19] M. H. Lipasti, C. B Wilkerson, and J. P. Shen, �Value
Locality and Load Value Prediction,� In Proc. ASPLOS, pp. 138-
147, 1996.
[20] G. Memik, G. Reinman, and W. H. Mangione-Smith, �Just
Say No: Benefits of Early Cache Miss Determination,� In Proc.
HPCA-9, pp. 307-316, 2003.
[21] A. Roth, �Store Vulnerability Window (SVW): A Filter and
Potential Replacement for Load Re-Execution,� Journal of
Instruction Level Parallelism, vol. 8, September 2006.
[22] T. Sha, M. M. K. Martin, and A. Roth, �NoSQ: Store-Load
Communication without a Store Queue,� IEEE Micro, vol. 27, no.
1, pp. 106-113, Jan./Feb. 2007.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
�Automatically Characterizing Large Scale Program Behavior,� In
Proc. ASPLOS, pp. 45-57, 2002.
[24] S. T. Srinivasan, R. D. Ju, A. R. Lebeck, and C. Wilkerson,
�Locality vs. Criticality,� In Proc. ISCA-28, pp. 132-143, 2001.
[25] S. S. Stone, K. M. Woley, and M. I Frank, �Address-Indexed
Memory Disambiguation and Store-to-Load Forwarding,� In Proc.
MICRO-38, pp. 171�182, 2005.
[26] S. Subramaniam and G. H. Loh, �Fire-and-Forget: Load/Store
Scheduling with No Store Queue at All,� In Proc. MICRO-39, pp.
273�284, 2006.
[27] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
�CACTI 5.1,� Technical Report HPL-2008-20, 2008.
[28] J. Yang and R. Gupta, �Frequent Value Locality and its
Applications,� ACM Transactions on Embedded Computing
Systems, 1(1):79�105, Nov 2002.
[29] J. Yang and R. Gupta, �Energy Efficient Frequent Value Data
Cache Design,� In Proc. MICRO-35, pp. 197-207, 2002.
[30] K. C. Yeager, �The MIPS R10000 Superscalar
Microprocessor,� IEEE Micro, 16(2): 28-40, 1996.
[31] L. Villa, M. Zhang, and K. Asanovic, �Dynamic Zero
Compression for Cache Energy Reduction,� In Proc. of the
MICRO-33, pp. 214�220, 2000.

234245

