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1 Introduction

Instruction-level Parallelism (ILP) is a family of processor and compiler design techniques that

speed up execution by causing individual machine operations, such as memory loads and stores,

integer additions and floating point multiplications, to execute in parallel. The operations

involved are normal RISC-style operations, and the system is handed a single program written

with a sequential processor in mind. Thus an important feature of these techniques is that like

circuit speed improvements, but unlike traditional multiprocessor parallelism and massive

parallel processing, they are largely transparent to users. VLIWsand superscalars are examples

of processors that derive their benefit from instruction-level parallelism, and software pipelining

and trace scheduling are example software techniques that expose the parallelism that these

processors can use.

Although small amounts of ILP has been present in the highest performance uniprocessors of the

past 30 years, the 1980s saw it became a much more significant force in computer design.

Several systems were built, and sold commercially, which pushed ILP far beyond where it had

been before, both in terms of the amount of ILP offered and in the central role ILP played in the

design of the system. By the early 1990s, advanced microprocessor design at all major CPU

manufacturers incorporated ILP, and new techniques for ILP became a popular topic at academic

conferences. With all of this activity, we felt that, in contrast to a report on suggested future

techniques, there would be great value in gathering, in an archival reference, reports on

experience with real ILP systems and reports on the measured potential of ILP. Thus this special

issue of the Journal of Supercomputing.

1.1 ILP Execution

A typical ILP processor has the same type of execution hardware as a normal RISC machine.

The differences between a machine with ILP and one without is that there may be more of that

hardware, for example several integer adders instead of just one, and that the control will allow,

and possibly arrange, simultaneous access to whatever execution hardware is present.

Consider the execution hardware of a simplified ILP processor consisting of four functional units

and a branch unit connected to a common register file (Table 1). Typically ILP execution

hardware allows multiple-cycle operations to be pipelined, so we may assume that a total of four
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operations can be initiated each cycle. If in each cycle the longest latency operation is issued,

this hardware could have 10 operations "in flight" at once, which would give it a maximum

possible speed-up of a factor of 10 over a sequential processor with similar execution hardware.

As the papers in this issue show, this execution hardware resembles that of several VLIW

processors that have been built and used commercially, though it is more limited in its amount of

ILP. Several superscalar processors now being built also offer a similar amount of ILP.

Table 1: Executionhardware for a simplified ll...P processor

Functional Unit Operations Performed Latency
Integer Unit 1 Integer ALU operations 1

Integer multiplication 2
Loads 2
Stores 1

Integer Unit 2 / Branch Integer ALU operations I
Unit Integer multiplication 2

Loads 2
Stores 1
Test-and-branch 1

Floating-point Unit I Floating-point 3
Floating-point Unit 2 operations

There is a large amount of parallelism available even in this simple processor. The challenge is

to make good use of it-we will see that with the technology available today, an ILP processor is

unlikely to achieve nearly as much as a factor of 10 on many classes of programs, though

scientific programs, and others, can yield far more than that on a processor which has more

functional units. The first question that comes to mind is whether enough ILP exists in programs

to make this possible. Then, if this is so, what must the compiler and hardware do to

successfully exploit it? In reality, as we shall see in Section 4, the two questions have to be

reversed; in the absence of techniques to find and exploit ILP, it remains hidden, and we are left

with a pessimistic answer.

Figure la shows a very large expression taken from the inner loop of a compute-intensive

program. It is presented cycle-by-cycle as it might execute on a processor with similar

functional units to those shown in Table 1, but capable of having only one operation in flight at a

time. Figure 1b shows the same program fragment as it might be executed on the hardware of

Table 1.
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xseed * 1309

vseed * 1306

yseed * 1308

xseedl + 13849
yseedl + 13849
xseed2 && 65535
yseed2 && 65535
tseed * 1307

goto @xy-no-hit

tseed1 + 13849
vseed1 + 13849
tseed2 && 65535
vseed2 && 65535

xseed * xseed

1 xseed1
2 nop
3 nop
4 yseed1
5 nop
6 nop
7 xseed2
8 yseed2
9 xseed
o yseed

11 tseed1
12 nop
13 nop
14 vseed1
15 nop
16 nop
17 tseed2
18 vseed2
19 tseed
20 vseed
21 xsq =
22 nop
23 nop
24 ysq = yseed * yseed
25 nop
26 nop
27 xysumsq = xsq + ysq
28 tsq tseed * tseed
29 nop
30 nop
31 vsq = vseed * vseed
32 nop
33 nop
34 tvsumsq = tsq + vsq
35 pIc = pIc + 1
36 tp = tp + 2
37 if xysumsq > radius

CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE

(al

INT ALU INT ALU FLOAT ALU FLOAT ALU

if xysumsq>radius goto @xy-no-hit

vseedl=vseed*1306 tseedl=tseed*1307
yseedl=yseed*1308 xseedl=xseed*1309

CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE

1 tp=tp+2
2
3 nop
4 vseed2=vseed1+13849
5 yseed2=yseed1+13849
6 yseed=yseed2&&65535
7 vseed=vseed2&&65535
8
9 nop
o xysumsq=xsq+ysq

11 tvsumsq=tsq+vsq

pIc=pIc+l

tseed2=tseed1+13849
xseed2=xseedl+13849
xseed=xseed2&&65535
tseed=tseed2&&65535 ysq=yseed*yseed

vsq=vseed*vseed
xsq=xseed*xseed
tsq=tseed*tseed

(b)

Figure 1. (a) An example of thesequential record of execution fora loop. (b) The instruction-level parallel record
of execution forthesame loop.
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Note that several of the cycles in Figure la contain no-cps. This is because the sequential

processor must await the completion of the 3-cycle latency multiply issued in cycle 1 before

issuing the next operation. (These no-ops would not appear in the text of a program, but are

shown here as the actual record of what is executed each cycle.) Most instruction-level parallel

processors can issue operations during these nop cycles, when previous operations are still in

flight, and many can issue more than one operation in a given cycle. In our ILP record of

execution (Figure Ib), both effects are evident: in cycle 1, 4 operations are issued; in cycle 2, 2

more operations are issued even though neither multiply in cycle 1 has yet competed execution.

This special issue of The Journal of Supercomputing concerns itself with the technology of

systems which try to attain the kind of record of execution in Figure 1b, given a program written

with the record of execution in Figure la in mind.

1.2 Early History of Instruction-level Parallelism

In small ways, instruction-level parallelism factored into the thinking of machine designers in the

1940s and 1950s. Parallelism that would today be called horizontal microcode appeared in

Turing's 1946 design of the Pilot ACE [1], and was carefully described by Wilkes [2]. Indeed, in

1952 Wilkes and Stringer wrote, "In some cases it may be possible for two or more micro­

operations to take place at the same time" [3].

The 1960s saw the appearance of transistorized computers. One effect of this revolution was that

it became practical to build reliable machines with far more gates than was necessary to build a

general-purpose CPU. This led to commercially successful machines which used this available

hardware to provide instruction-level parallelism at the machine-language level. In 1963,

Control Data Corporation started delivering its CDC 6600 [4, 5], which had 10 functional units-­

integer add, shift, increment (2), multiply (2), logical, branch, floating-point add and divide. Any

one of these could start executing in a given cycle whether or not others were still processing

data-independent earlier operations. In this machine the hardware decided, as the program

executed, which operation to issue in a given cycle; its model of execution was well along the

way toward what we would today call superscalar. Indeed, in many ways it strongly resembled

its direct descendant, the scalar portion of the CRAY-1. The CDC 6600 was the scientific

supercomputer of its day.
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Also during the 1960s, IBM introduced, and in 1967-8 delivered, the 360/91 [6]. This machine,

based partly on IBM's instruction-level parallel experimental Stretch processor, offered less

instruction-level parallelism than the CDC-6600, having only a single integer adder, a floating­

point adder, and a floating-point multiply/divide. But it was far more ambitous than the CDC

6600 in its attempt to rearrange the instruction stream to keep these functional units busy--a key

technology in today's superscalar designs. For various non-technical reasons, the 360/91 was not

as commercially successful as it might have been, with only about 20 machines delivered [7].

But its CPU architecture was the start of a long line of successful high performance processors.

As with the CDC 6600, this ILP pioneer started a chain of superscalar architectures that has

lasted into the 1990s.

In the 1960s, research into "parallel processing" often was concerned with the ILP found in these

processors. By the mid-1970s, the term was used more often for multiple processor parallelism,

and for regular array and vector parallelism. In part, this was due to some very pessimistic

results about the availability of ILP in ordinary programs, which we discuss below.

1.3 Modern Instruction-Level Parallelism

In the late 1970s the beginnings of a new style of ILP, called VLIW (for Very Long Instruction

Word), emerged on several different fronts. In many ways, VLIWs were a natural outgrowth of

horizontal microcode, the first ILP technology, and they were triggered, in the 1980s, by the

same changes in semiconductor technology that had such a profound impact upon the entire

computer industry.

For sequential processors, as the speed gap between writeable and read-only memory narrowed,

the advantages of a small, dedicated, read-only control store began to disappear. One natural

effect of this was to diminish the advantage of microcode; it no longer made as much sense to

define a complex language as a compiler target, and then interpret this in very fast read-only

microcode. Instead, the vertical microcode interface was presented as a clean, simple compiler

target. This concept was called RISC [8-10]. In the 1980s the general movement of

microprocessor products was towards the RISC concept and instruction-level parallel techniques

fell out of favor. In the mini-supercomputer price-bracket though, one innovative superscalar

product, the 2S-1, which could issue up to two instructions each cycle, was built and marketed

by Astronautics [11].
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The same changes in memory technology were having a somewhat different effect upon

horizontally microcoded processors. During the 1970s, a large market had grown in specialized

signal processing computers. Not aimed at general purpose .use, these CPUs hard-wired FFTs

and other inportant algorithms directly into the horizontal control store, gaining tremendous

advantages from the instruction-level parallelism available there. When fast, writable memory

became available, some of these manufacturers, most notably Floating Point Systems [12],

replaced the read-only control store with writeable memory, giving users access to instruction­

level parallelism in far greater amounts than the early superscalar processors had. These

machines were extremely fast, the fastest processors by far in their price ranges, for important

classes of scientific applications. However, despite attempts on the part of several manufacturers

to market their products for more general, everyday use, they were almost always restricted to a

narrow class of applications. This was caused by the lack of good system software, which in turn

was caused by the idiosyncratic architecture of processors built for a single application, and by

the lack at that time of good code generation algorithms for ILP machines with that much

parallelism.

As with RISC, the crucial step was to present a simple, clean interface to the compiler. However,

in this case the clean interface was horizontal, not vertical, so as to afford greater ILP [13, 14].

This style of architecture was dubbed VLIW [14]. Code generation techniques, some of which

had been developed for generating horizontal microcode, were extended to these general-purpose

VLIW machines, so that the compiler could specify the parallelism directly [15, 16].

In the 1980s, VLIW CPUs were offered commercially in the form of capable, general-purpose

machines. Three computer startups-Culler, Multiflow and Cydrome--built VLIWs with varying

degrees of parallelism [17, 18]. As a group, these companies were able to demonstrate that it

was possible to build practical machines which achieved large amounts of ILP on scientific and

engineering codes. Although, for various reasons, none was a lasting business success, several

major computer manufacturers acquired access to the technologies developed at these startups,

and there are several active VLIW design efforts underway. Furthermore, many of the compiler

techniques developed with VLIWs in mind, and reported upon in this issue, have been used to

compile for superscalar machines as well.
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ILP in the 19905

Jlist as had happened 30 years ago when the transistor became available, CPU designers in the

1990s now have offered to them more silicon space on a single chip than a RISC processor

requires. Virtually all designers have begun to add some degree of superscalar capability, and

some are investigating VLIWs as well. It is a safe bet that by 1995 virtually all new CPUs will

embody some degree of ILP.

Partly as a result of this commercial resurgence of interest in ILP, research into that area has

become a dominant feature of architecture and systems conferences of the 1990s. Unfortunately,

those researchers who found themselves designing state-of-the-art products at computer startups

did not have the time to document the progress that was made, and the large amount that was

learned. Virtually everything that was done by these groups was relevant to what designers

wrestle with today. This issue represents an attempt to archive some of those advances.

2 ILP Architectures

The end result of instruction-level parallel execution is that multiple operations are

simultaneously in execution, either as a result of having been issued simultaneously or because

the time to execute an operation is greater than the interval between the issuance of successive

operations. How exactly are the necessary decisions made as to when an operation should be

executed and whether an operation should be speculatively executed? The alternatives can be

broken down depending on the extent to which these decisions are made by the compiler rather

than by the hardware and on the manner in which information regarding parallelism is

communicated by the compiler to the hardware via the program.
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A computer architecture is a contract between the class of programs that are written for the

architecture and the set of processor implementations of that architecture. Usually this contract

is concerned with the instruction format and the interpretation of the bits that constitute an

instruction, but in the case of ILP architectures it extends to information embedded in the

program pertaining to the available parallelism between the instructions or operations in the

program. With this in mind, ILP architectures can be classified as follows.

o Sequential architectures: architectures for which the program is not expected to convey

any explicit information regarding parallelism. Superscalar processors ([4, 19,20, 11,21­

28]) are representative of ILP processor implementations for sequential architectures.

o Dependence architectures: architectures for which the program explicitly indicates the

dependences that exist between operations. Dataflow processors ([29-31]) are

representative of this class.

o Independence architectures: architectures for which the program provides information

as to which operations are independent of one another. Very Long Instruction Word

(VLIW) processors ([12, 17, 18]) are examples of the class of independence architectures.

In the context of this taxonomy, vector processors [32-34] are best thought of as processors for a

sequential, elSe (complex instruction set computer) architecture. The complex instructions are

the vector instructions which do possess a stylized form of instruction-level parallelism internal

to each vector instruction. Attempting to execute multiple instructions in parallel, whether scalar

or vector, incurs all of the same problems that are faced by a superscalar processor. Because of

their stylized approach to parallelism, vector processors are less general in their ability to exploit

all forms of instruction-level parallelism. Nevertheless, vector processors have enjoyed great

commercial success over the past decade. Not being true ILP processors, vector processors are

outside the scope of this special issue. (Vector processors have received large amounts of

attention, elsewhere, over the past decade and, have been treated extensively in many books and

articles, for instance, the survey by Dongarra [35] and the book by Schneck [36]. ) Also, certain

hybrid architectures [37-39], which also combine some degree of multi-threading with ILP, fall

outside of this taxonomy for uniprocessors.
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If ILP is to be achieved, between the compiler and the runtime hardware, the following functions

must be performed:

o the dependences between operations must be determined,

o the operations, that are independent of any operation that has not as yet completed, must

be determined, and

o these independent operations must be scheduled to execute at some particular time, on

some specific functional unit, and must be assigned a register into which the result may

be deposited.

Figure 2 shows the breakdown of these three tasks, between the compiler and runtime hardware,

for the three classes of architecture.

Sequential

(Superscalar)

Dependence
Architecture
(Dataflow)

J!ld~enden.£.e _
Architecture

(Horizon)

Compiler Hardware

Figure 2. Divisionof responsibilities betweenthe compilerand the hardwarefor the three classesof architecture.
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2.1 Sequential architectures and superscalar processors

The program for a sequential architecture contains no e~plicit information regarding the

dependences that exist between instructions. Consequently, the compiler need neither identify

parallelism nor make scheduling decisions since there is no explicit way to communicate this

information to the hardware. (It is true, nevertheless, that there is value in the compiler

performing these functions and ordering the instructions so as to facilitate the hardware's task of

extracting parallelism.) In any event, if instruction-level parallelism is to be employed, the

dependences that exist between instructions must be determined by the hardware. It is only

necessary to determine dependences with sequentially preceding operations that are in flight, i.e.,

those that have been issued but have not yet completed. The operation is now independent of all

other operations and may begin execution. At this point, the hardware must make the scheduling

decision of when and where this operation is to execute.

A superscalar processor! strives to issue an instruction every cycle, so as to execute many

instructions in parallel, even though the hardware is handed a sequential program. The problem

is that a sequential program is constructed with the assumption only that it will execute correctly

when each instruction waits for the previous one to finish, and that is the only order that the

architecture guarantees to be correct. The first task, then, for a superscalar processor is to

understand, for each instruction, which other instructions it actually is dependent upon. With

every instruction that a superscalar processor issues, it must check whether the instruction's

operands (registers or memory locations that the instruction uses or modifies) interfere with the

operands of any other instruction in flight, i.e., one that is either:

o already in execution, or

o has been issued but is waiting for the completion of interfering instructions that would

have been executed earlier in a sequential execution of the program.

If either of these conditions is true, the instruction in question must be delayed until the

instructions on which it is dependent have completed execution. For each waiting operation,

these dependences must be monitored to determine the point in time at which neither condition is

1 The first machines of this type that were built in the 19605 were referred to as look-ahead processors. Subsequently, machines that performed

out-of-order execution, while issuing multiple operations per cycle, came to be termed superscalar processors. Since look-ahead processors are

001 y quantitatively different from superscalar processors, we shall drop the distinction and refer to them, too, as superscalar processors.
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true. When this happens, the instruction is independent of all other uncompleted instructions and

can be allowed to begin executing at any time thereafter. In the meantime, the processor may

begin execution of subsequent instructions which prove to be independent of all sequentially

preceeding instructions in flight. Once an instruction is independent of all other ones in flight,

the hardware must also decide exactly when and on which available functional unit to execute

the instruction. The Control Data CDC 6600 employed a mechanism, called the scoreboard, to

perform these functions [4]. The IBM System/360 Model 91, built in the early 1960s, utilized

an even more sophisticated method known as Tomasulo's Algorithm ([40]) to carry out these

functions.

The further goal of a superscalar processor is to issue multiple instructions every cycle. The

most problematic aspect of so doing is that of determining the dependences between the

operations that one wishes to issue simultaneously. Since the semantics of the program, and in

particular the essential dependences, are specified by the sequential ordering of the operations,

the operations must be processed in this order to determine the essential dependences. This

constitutes an unacceptable performance bottleneck in a machine that is attempting parallel

execution. On the other hand, eliminating this bottleneck can be very expensive as is always the

case when attempting to execute an inherently sequential task in parallel. An excellent reference

on superscalar processor design and its complexity is the book by Johnson [41].

A number of superscalar processors have been built during the past decade including the

Astronautics' ZS-1 decoupled access mini-supercomputer [11, 42], Apollo's DNl0000 personal

supercomputer [21, 22] and, most recently, a number of microprocessors [23-28].

Note that an ILP processor need not issue multiple operations per cycle in order to achieve a

certain level of performance. For instance, instead of a processor capable of issuing five

instructions per cycle, the same performance could be achieved by pipelining the functional units

and instruction issue hardware five times as deeply, speeding up the clock rate by a factor of five

but issuing only one instruction per cycle. This strategy, which has been termed

superpipelining ([43]), goes full circle back to the single-issue, superscalar processing of the

1960s. Superpipelining may result in some parts of the processor (such as the instruction unit

and communications busses) being less expensive and better utilized and other parts (such as the

execution hardware) being more costly and less well used.
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2.2 Dependence architectures and dataflow processors

In the case of dependence architectures, the compiler of the programmer identifies the

parallelism in the program and communicates it to the hardware by specifying, in the executable

program, the dependences between operations. The hardware must still determine, at run-time,

when each operation is independent of all other operations and then perform the scheduling.

However, the inherently sequential task, of scanning the sequential program in its original order

to determine the dependences, has been eliminated.

The objective of a dataflow processor is to execute an instruction at the earliest possible time

subject only to the availability of the input operands and a functional unit upon which to execute

the instruction [29, 30]. To do so, it counts on the program to provide information about the

dependences between instructions. Typically, this is accomplished by including in each

instruction a list of successor instructions. (An instruction is a successor of another instruction if

it uses as one of its input operands the result of that other instruction.) Each time an instruction

completes, it creates a copy of its result for each of its successor instructions. As soon as all of

the input operands of an instruction are available, the hardware fetches the instruction, which

specifies the operation to be performed and the list of successor instructions. The instruction is

then executed as soon as a functional unit of the requisite type is available. This property,

whereby the availability of the data triggers the fetching and execution of an instruction, is what

gives rise to the name of this type of processor. Because of this property, it is redundant for the

instruction to specify its input operands. Rather, the input operands specify the instruction! If

there is always at least one instruction ready to execute on every functional unit, the dataflow

processor achieves peak performance.

Computation within a basic block typically does not provide adequate levels of parallelism.

Superscalar and VLIW processors use control parallelism and speculative execution to keep the

hardware fully utilized. (This is discussed in greater detail in Sections 3 and 4.) Dataflow

processors have traditionally counted on using control parallelism alone to fully utilize the

functional units. A dataflow processor is more successful than the others at looking far down the

execution path to find abundant control parallelism. When successful, this is a better strategy

than speculative execution since every instruction executed is a useful one and the processor

does not have to deal with error conditions raised by speculative operations.
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As far as the authors are aware, there have been no commercial products built based on the

dataflow architecture, except in a limited sense [44]. There have, however, been a number of

research prototypes built, for instance, the ones built at the University of Manchester [31] and at

MIT [45].

2.3 Independence architectures and VLIW processors

In order to execute operations in parallel, the system must determine that the operations are

independent of one another. Superscalar processors and dataflow processors represent two ways

of deriving this information at run-time. In the case of the dataflow processor, the explicitly

provided dependence information is used to determine when an instruction may be executed so

that it is independent of all other concurrently executing instructions. The superscalar processor

must do the same but, since programs for it lack any explicit information, it must also first

determine the dependences between instructions. In contrast, for an independence architecture,

the compiler identifies the parallelism in the program and communicates it to the hardware by

specifying which operations are independent of one another. This information is of direct value

to the hardware, since it knows with no further checking which operations it can execute in the

same cycle. Unfortunately, for any given operation, the number of operations of which it is

independent is far greater than the number of operations on which it is dependent. So, it is

impractical to specify all independences. Instead, for each operation, independences with only a

subset of all independent operations (those operations that the compiler thinks are the best

candidates to execute concurrently) are specified.

By listing operations that could be executed simultaneously, code for an independence

architecture may be very close to the record of execution produced by an implementation of that

architecture. If the architecture additionally requires that programs specify where (on which

functional unit) and when (in which cycle) the operations are executed, then the hardware makes

no run-time decisions at all and the code is virtually identical to the desired record of execution.

The VLIW processors that have been built to date are of this type and represent the predominant

examples of machines with independence architectures. The program for a VLIW processor

specifies exactly which functional unit each operation should be executed on and exactly when

each operation should be issued so as to be independent of all operations that are being issued at

the same time as well as of those that are in execution. A particular processor implementation of

a VLIW architecture could choose to disregard the scheduling decisions embedded in the
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program, making them at run-time instead. In doing so, the processor would still benefit from

the independence information but would have to perform all of the scheduling tasks of a

superscalar processor. Furthermore, when attempting to execute concurrently two operations

that the program did not specify as being independent of each other, it must determine

independence, just as a superscalar processor must.

With a VLIW processor, it is important to distinguish between an instruction and an operation.

An operation is a unit of computation, such as an addition, memory load or branch, which would

be referred to as an instruction in the context of a sequential architecture. A VLIW instruction is

the set of operations that are intended to be issued simultaneously. It is the task of the compiler

to decide which operations should go into each instruction. This process is termed scheduling.

Conceptually, the compiler schedules a program by emulating at compile-time what a dataflow

processor, with the same execution hardware, would do at run-time. All operations that are

supposed to begin at the same time are packaged into a single VLIW instruction. The order of

the operations within the instruction specifies the functional unit on which each operation is to

execute. A VLIW program is a transliteration of a desired record of execution which is feasible

in the context of the given execution hardware.

The compiler for a VLIW machine specifies that an operation be executed speculatively merely

by performing speculative code motion, that is, scheduling an operation before the branch that

determines that it should, in fact, be executed. At run-time, the VLIW processor blindly executes

this operation exactly as specified by the program just as it would for a non-speculative

operation. Speculative execution is virtually transparent to the VLIW processor and requires

little additional hardware. When the compiler decides to schedule an operation for speculative

execution, it can arrange to leave behind enough of the state of the computation to assure correct

results when the flow of the program requires that the operation be ignored. The hardware

required for the support of speculative code motion consists of having some extra registers, of

fetching some extra instructions, and of suppressing the generation of spurious error conditions.

The VLIW compiler must perform many of the same functions that a superscalar processor

performs at run-time to support speculative execution, but it does so at compile-time.

The earliest VLIW processors built were the so-called attached array processors [46-48, 12,49]

of which the best known were the Floating Point Systems products, the AP-120B, the FPS-164

and the FPS-264. The next generation of products were the mini-supercomputers: Multiflow's

Trace series of machines [17, 50] and Cydrome's Cydra 5 [51, 18, 52] and the Culler machine
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for which, as far as we are aware, there is no published description in the literature. Over the last

few years, the VLIW architecture has begun to show up in microprocessors [53-57].

Other types of processors with independence architectures have been built or proposed. A

superpipelined machine may issue only one operation per cycle, but if there is no superscalar

hardware devoted to preserving the correct execution order of operations, the compiler will have

to schedule them with full knowledge of dependencies and latencies. From the compiler's point

of view, these machines are virtually the same as VLIWs, though the hardware design of such a

processor offers some tradeoffs with respect to VLIWs. Another proposed independence

archilfCture, dubbed Horizon ([58]), encodes an integer H into each operation. The architecture

guarantees that all of the next H operations in the instruction stream are data-independent of the

current operation. All the hardware has to do to release an operation, then, is assure itself that no

more than H subsequent operations are allowed to issue before this operation has completed.

The hardware does all of its own scheduling, unlike VLIWs and deeply pipelined machines

which rely on the compiler, but the hardware is relieved of the task of determining data

dependence. The key distinguishing features of these three ILP architectures are summarized in

Table 2.

3 Hardware and software techniques for ILP execution

Regardless of which ILP architecture is considered, certain functions must be performed if a

sequential program is to be executed in an ILP fashion. The program must be analyzed to

determine the dependences; the point in time at which an operation is independent, of all

operations that are as yet not complete, must be determined; scheduling and register allocation

must be performed; often, operations must be executed speculatively, which in turn requires that

branch prediction be performed. All these functions must be performed. The choice is, first,

whether they are to be performed by the compiler or by run-time hardware and, second, which

specific technique is to be employed. These alternatives are reviewed in the rest of this section.

3.1 Hardware features to support ILP execution

Instruction-level parallelism involves the existence of multiple operations in flight at anyone

time, i.e., operations that have begun, but not completed, executing. This implies the presence of

execution hardware that can simultaneously process multiple operations. This has, historically,
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been achieved by two mechanisms: first, providing multiple, parallel functional units and,

second, pipelining the functional units. Although both are fairly similar from a compiler's

viewpoint--the compiler must find enough independent operations to keep the functional units

busy--they have their relative strengths and weaknesses from a hardware viewpoint.

Table 2: A comparison of the instruction-level parallel architecture types discussed in this paper.

Sequential Dependence Independence
Architecture Architecture Architecture

Additional None Complete Minimally, a partial list of
information specification of independences. Typically,
required in the dependences a complete specification of
program between operations when and where each

operation is to be executed
Typical kind of Superscalar Dataflow VLIW
ILP processor
Analysis of Performed by Performed by the Performed by the compiler
dependences hardware compiler
between operations
Analysis of Performed by Performed by Performed by the compiler
independent hardware hardware
operations
Final operation Performed by Performed by Typically, performed by
scheduling hardware hardware the compiler
Role of compiler Rearranges the code Replaces some Replaces virtually all the

to make the analysis analysis hardware analysis and scheduling
and scheduling hardware
hardware more

successful

In principle, pipelining is the more cost-effective way of building ILP execution hardware. For

the relatively low cost of adding pipeline latches within each functional unit, the amount of ILP

can be doubled, tripled, or more. The limiting factor in increasing the performance by this means

are the data and clock skews and the latch setup and hold times. These issues were studied during

the 1960s and 1970s, and the upper limits on the extent of pipelining were determined [59-63].

However, the upper limit on pipe1ining is not necessarily best from the viewpoint of achieved

performance. Pipelining adds delay to the execution time of individual operations (even though

multiple of them can be in flight on the same functional unit). Especially on computations that

have small amounts of parallelism, beyond a certain point the increase in the latency

counterbalances the benefits of the increase in ILP, yielding lower performance [64]. Parallelism
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achieved by adding more functional units does not suffer from this drawback, but has its own set

of disadvantages. First, the amount of functional unit hardware goes up in linear proportion to the

parallelism. Worse, the cost of the interconnection network and the register files goes up

proportional to the square of the number of functional units since, ideally, each functional unit's

output bus must communicate with every functional unit's input buses through the register file.

Also, as the number of loads on each bus increases, so must the cycle time or the extent of

pipelining, both of which degrade performance on computation with little parallelism.

The related techniques of pipelining and overlapped execution were employed as early as in the

late 1950s in computers such as IBM's STRETCH computer [65, 66] and UNIVAC's LARC

[67]. Traditionally, overlapped execution refers to the parallelism that results from multiple

active instructions, each in a different one of the phases of instruction fetch, decode, operand

fetch, and execute whereas pipelining is used in the context of functional units such as

multipliers and floating-point adders [68, 69]. (A potential source of confusion is that, in the

context of RISC processors, overlapped execution and pipelining, especially when the integer

ALU is pipelined, have been referred to as pipelining and superpipelining, respectively [43].)

The organization of the register files becomes a major issue when there are multiple functional

units operating concurrently. For ease of scheduling, it is desirable that every operation (except

loads and stores) be register-register and that the register file be the hub for communication

between all the functional units. However, with each functional unit performing two reads and

one write per cycle from or to the register file, the implementation of the register file becomes

problematic. The chip real-estate of a multi-ported register file is proportional to the product of

the number of read ports and the number of write ports. The loading of multiple read ports on

each register cell slows down the access time. For these reasons, highly parallel ILP hardware is

structured as multiple clusters of functional units, with all the functional units within a single

cluster sharing the same multi-ported register files [14, 70, 17, 50]. Communication between

clusters is slower and occurs with lower bandwidth. This places a burden upon the compiler to

partition the computation intelligently across the clusters; an inept partitioning can result in

worse performance than if just a single cluster were used, leaving the rest of them idle.

The presence of multiple, pipelined function units places increased demands upon the instruction

issue unit. In a fully sequential processor, each instruction is issued after the previous one has

completed. Of course, this totally defeats the benefits of parallel execution hardware. However, if

the instruction unit attempts to issue an instruction every cycle, care must be taken to not do so if
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an instruction, upon which this one is dependent, is still not complete. The scoreboard in the

CDC 6600 [4] was capable of issuing an instruction every cycle until an output dependence was

discovered. In the process, instructions following one which was waiting on a flow dependence

could begin execution. This was the first implementation of an out-of-order execution scheme.

Stalling instruction issue is unnecessary on encountering an output dependence if register

renaming is performed. The Tomasulo algorithm [40], which was implemented in the IBM

Systeml360 Model 91 [19], is the classical scheme for register renaming and has served as the

model for subsequent variations [71-73, 25, 74]. A different, programmatically-controlled

register renaming scheme is obtained by providing rotating register files, i.e., base-displacement

indexing into the register file using an instruction-provided displacement off a dedicated base

register [12, 51, 75, 18]. Although applicable only for renaming registers across multiple

iterations of a loop, rotating registers have the advantage of being considerably less expensive in

their implementation than are other renaming schemes.

The first consideration given to the possiblity of issuing multiple instructions per cycle from a

sequential program was by Tjaden and Flynn [76]. This line of investigation into the logic

needed to perform multiple-issue was continued by various researchers [72, 73, 77-81]. This

idea, of multiple instruction issue of sequential programs, was probably first referred to as

superscalar execution by Agerwala and Cocke [82]. A careful assessment of the complexity of

the control logic involved in superscalar processors is provided by Johnson [41]. An interesting

variation on multiple-issue, which made use of architecturally-visible queues to simplify the out­

of-order execution logic, was the decoupled access/execute architecture proposed by Smith [83]

and subsequently developed as a commercial product [11, 42].

A completely different approach to achieving multiple instruction issue which grew out of

horizontal microprogramming was represented by attached processor products such as the

Floating Point Systems AP-120B [48], the Polycyclic project at ESL [16, 84, 13], the Stanford

University MIPS project [85] and the ELI project at Yale [14, 70]. The concept is to have the

compiler decide which operations should be issued in parallel and to group them in a single, long

instruction. This style of architecture, which was dubbed a Very Long Instruction Word (VLIW)

architecture [14], has the advantage that the instruction issue logic is trivial in comparison to that

for a superscalar machine but suffers the disadvantage that the set of operations that are to be

issued simultaneously is fixed once and for all at compile-time. One of the implications of

issuing multiple operations per instruction is that one needs the ability to issue (and process)
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multiple branches per second. Various types of multiway branches, each corresponding to a

different detailed model of execution or compilation have been suggested [86-88, 17].

The first obstacle that one encounters when attempting ILP computation is the, generally, small

size of basic blocks. In light of the pipeline latencies and the inter-operation dependences, little

instruction-level parallelism is to be found. It is important that operations from multiple basic

blocks be executed concurrently if a parallel machine is to be fully utilized. Since the branch

condition, which determines which block is to be executed next, is often resolved only at the end

of a basic block, it is necessary to resort to speculative execution, i.e., continuing execution along

one or more paths before it is known which way the branch will go. Dynamic schemes for

speculative execution [72, 73, 89,90] must provide ways to

o terminate unnecessary speculative computation once the branch has been resolved,

o undo the effects of the speculatively executed operations which should not have been

executed,

o ensure that no exceptions are reported until it is known that the excepting operation

should, in fact, have been executed, and

o preserve enough execution state at each speculative branch point to enable execution to

resume down the correct path if the speculative execution happened to proceed down the

wrong one.

All this can be expensive in hardware. The alternative is to perform speculative code motion at

compile-time, i.e., move operations from subsequent blocks up past branch operations into

preceeding blocks. These operations will end up being executed before the branch that they were

supposed to follow; hence, they are executed speculatively. Such code motion is fundamental to

global scheduling schemes such as trace scheduling [91, 15,92]. The hardware support needed is

much less demanding. First, a mechanism to ensure that exceptions caused by speculatively

scheduled operations are reported if and only if the flow of control is such that they would have

been executed in the non-speculative version of the code [93] and, second, additional

architecturally visible registers to hold the speculative execution state. A limited form of

speculative code motion is provided by the "boosting" scheme [94, 95].

Since all speculative computation is wasted if the wrong path is followed, it is important that

accurate branch prediction be used to guide speculative execution. Various dynamic schemes of
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varying levels of sophistication and practicality have been suggested, that gather execution

statistics of one form or another while the program is running [96-99]. The alternative is to use

profiling runs to gather the appropriate statistics and to embed the prediction, at compile-time,

into the program. Trace scheduling and superblock scheduling [100, 101] use this approach to re­

order the control flow graph to reflect the expected branch behavior. Hwu, et al., claim better

performance than with dynamic branch prediction [100]. Fisher and Freudenberger have

examined the extent to which branch statistics gathered using one set of data are applicable to

subsequent runs with different data [102]. Although static prediction can be useful for guiding

both static and dynamic speculation, it is not apparent how dynamic prediction can assist static

speculative code motion.

Predicated execution is an architectural feature that permits the execution of individual

operations to be determined by an additional, boolean input. It has been used to selectively

squash operations that have been moved up from successor blocks into the delay slots of a

branch operation [103, 88]. In its more general form [51, 18,52], it is used to eliminate branches

in their entirety over an acyclic region of a control flow graph [104-106] which has been IF­

converted [107].

3.2 ILP Compilation

3.2.1 Scheduling

Scheduling algorithms can be classified based on two broad criteria. The first one is the nature of

the control flow graph that can be scheduled by the algorithm. The control flow graph can be

described by the following two properties:

o whether it consists of a single basic block or multiple basic blocks, and

o whether it is an acyclic or cyclic control flow graph.

Algorithms that can only schedule single acyclic basic blocks are known as local scheduling

algorithms. Algorithms that jointly schedule multiple basic blocks (even if these are multiple

iterations of a single static basic block) are termed global scheduling algorithms. Acyclic global

scheduling algorithms deal either with control flow graphs that contain no cycles or, more

typically, cyclic graphs for which a self-imposed scheduling barrier exists at each back-edge in
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the control flow graph. As a consequence of these scheduling barriers, back-edges present no

opportunity to the scheduler and are, therefore, irrelevant to it. Acyclic schedulers can yield

better performance on cyclic graphs by unrolling the loop, a transformation which though easier

to visualize for cyclic graphs with a single back-edge, can be generalized to arbitrary cyclic

graphs. The benefit of this transformation is that the acyclic scheduler now has multiple

iterations worth of computation to work with and overlap. The penalty of the scheduling barrier

is amortized over more computation. Cyclic global scheduling algorithms attempt to directly

optimize the schedule across back-edges as well. Each class of scheduling algorithms is more

general that the previous one and, as we shall see, attempts to build on the intuition and heuristics

of the simpler, less general algorithm. As might be expected, the more general algorithms

experience greater difficulty in achieving near-optimality or of even articulating intuitively

appealing heuristics.

The second classifying criterion is the type of machine for which scheduling is being performed,

which in tum is described by the following assumed properties of the machine:

o finite vs. unbounded resources,

o unit latency vs. multiple cycle latency execution, and

o simple resource usage patterns for every operation (i.e., each operation uses just one

resource for a single cycle, typically during the first cycle of the operation's execution)

vs. more complex resource usage patterns for some or all of the operations.

Needless to say, real machines have finite resources, generally have at least a few operations that

have latencies greater than one cycle, and often have at least a few operations with complex

usage patterns. We believe that the value of a scheduling algorithm is proportional to the degree

of realism of the assumed machine model.

Finally, the scheduling algorithm can also be categorized by the nature of the process involved in

generating the schedule. At one extreme are one-pass algorithms that schedule each operation

once and for all. At the other extreme are algorithms that perform an exhaustive, branch-and­

bound style of search for the schedule. In between, is a spectrum of possibilities such as iterative

but non-exhaustive search algorithms or incremental algorithms that make a succession of

elementary perturbations to an existing legal schedule to nudge it toward the final solution. This

aspect of the scheduling algorithm is immensely important in practice. The further one diverges
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from a one-pass algorithm, the slower the scheduler gets until, eventually, it is unacceptable in a

real-world setting.

Local scheduling

Scheduling, as a part of the code generation process, was first studied extensively in the context

of microprogramming. Local scheduling is concerned with generating as short a schedule as

possible for the operations within a single basic block; in effect a scheduling barrier is assumed

to exist between adjacent basic blocks in the control flow graph. Although it was typically

referred to as local code compaction-, the similarity to the job of scheduling tasks on processors

[108-'117] was soon understood and a number of notions and algorithms from scheduling theory

were borrowed by the microprogramming community. Attempts at automating this task have

been made since at least the late 1960s [118-125,91, 126, 127, 15]. Since scheduling is known to

be NP-complete [115], the initial focus was on defining adequate heuristics [118, 128, 129, 116,

130, 91]. The consensus was that list scheduling using the highest-level-first priority scheme

[113,91] is relatively inexpensive computationally (a one-pass algorithm) and near-optimal most

of the time. Furthermore, this algorithm has no difficulty in dealing with non-unit execution

latencies.

The other dimension in which local scheduling matured was in the degree of realism of the

machine model. From an initial model in which each operation used a single resource for a single

cycle (the simple resource usage model) and had unit latency, algorithms for local scheduling

were gradually generalized to cope with complex resource usage and arbitrary latencies [128,

131, 120, 132, 121, 129, 130] culminating in the fully general resource usage "microtemplate"

model proposed by Tokoro, et al. [133], and which was known in the hardware pipeline design

field as a reservation table [134]. In one form or another, this is now the commonly used machine

model in serious instruction schedulers. This machine model is quite compatible with the

highest-level-first list scheduling algorithm and does not compromise the near-optimality of this

algorithm [15].

2 We shall consistently refer to this code generation activity as scheduling.
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Global acyclic scheduling

A number of studies have established that basic blocks are quite short-vtypically about 5-20

instructions on the average. So, whereas local scheduling can generate a near-optimal schedule,

data dependences and execution latencies conspire to make the optimal schedule, itself, rather

disappointing in terms of its speedup over the original sequential code. Further improvements

require overlapping the execution of successive basic blocks, which is achieved by global

scheduling.

Early strategies for global scheduling attempted to automate and emulate the ad hoc techniques

that hand coders practiced of first performing local scheduling of each basic block and then

attempting to move operations from one block into an empty slot in a neighboring block [135,

133]. The shortcoming of such an approach is that, during local compaction, too many arbitrary

decisions have already been made which failed to take into account the needs of and

opportunities in the neighboring blocks. Many of these decisions might need to be undone before

the global schedule can be improved.

In one very important way, the mindset inherited from microprogramming was an obstacle to

progress in global scheduling. Traditionally, code compaction was focused on the objective of

reducing the size of the microprogram so as to allow it to fit in the microprogram memory. In the

case of individual basic blocks, the objectives of local compaction and local scheduling are

aligned. This alignment of objectives is absent in the global case. Whereas global code

compaction wishes to minimize the sum of the code sizes for the individual basic blocks, global

scheduling must attempt to minimize the total execution time of all the basic blocks. In other

words, global scheduling must minimize the sum of the code sizes of the individual basic blocks

weighted by the number of times each basic block is executed. Thus, effective global scheduling

might actually increase the size of the program by greatly lengthening an infrequently visited

basic block in order to slightly reduce the length of a high frequency basic block. This difference

between global compaction and global scheduling, which was captured neither by the early ad

hoc techniques nor by the syntactically-driven hierarchical reduction approach proposed by

Wood [136], was noted by Fisher [91, 15].

Furthermore, the focus of Fisher's work was on reducing the length of those sequences of basic

blocks that are frequently executed by the program. These concepts were captured by Fisher in

the global scheduling algorithm known as trace scheduling [91, 15]. The procedure is centered
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around the concept of a trace, which is an acyclic sequence of basic blocks embedded in the

control flow graph. i.e., a path through the program that could conceivably be taken for some set

of input data. Traces are selected and scheduled in order of.their frequency of execution. The

next trace to be scheduled is defined by selecting the highest frequency basic block that has not

yet been scheduled as the seed of the trace. The trace is extended forward along the highest

frequency edge out of the last block of the trace as long as that edge is also the most frequent

edge into the successor block, and as long as the successor block is not already part of the trace.

Likewise, the trace is extended backwards, as well, from the seed block. The selected trace is

then scheduled as if it were a single basic block, i.e., giving no special consideration to branches,

except that they are constrained to remain in their original order. Implicit in the resulting

schedule is inter-block code motion along the trace in either the upward or downward direction.

Matching off-trace code motions must be performed as prescribed by the rules of inter-block

code motion specified by Fisher. This activity is termed bookkeeping. Thereafter, the next trace

is selected and scheduled. This procedure is repeated until the entire program has been

scheduled. The key property of trace scheduling is that, unlike previous approaches to global

scheduling, the decisions as to whether to move an operation from one block to another, where to

schedule it, and which register to allocate to hold its result (see Section 3.2.2 below) are all made

jointly rather than in distinct compiler phases.

Fisher and his co-workers at Yale went on to implement trace scheduling in the Bulldog compiler

as part of the ELI project [14, 70]. This trace scheduling implementation and other aspects of the

Bulldog compiler have been extensively documented by Ellis [92]. The motion of code

downwards across branches and upwards across merges results in code replication. Although this

is generally acceptable as the price to be paid for better global schedules, Fisher recognized the

possibility that the greediness of highest-level-first list scheduling could sometimes cause more

code motion and, hence, replication than is needed to achieve a particular schedule length [15].

Su and his colleagues have recommended certain heuristics for the list scheduling of traces to

address this problem [137-139]. Experiments over a limited set of test cases indicate that these

heuristics appear to have the desired effect

The research performed in the ELI project formed the basis of the production-quality compiler

that was built at Multiflow. One of the enhancements to trace scheduling implemented in the

Multiflow compiler was the elimination of redundant copies of operations caused by

bookkeeping. When an off-trace path, emanating from a branch on the trace, rejoins the trace

lower down, an operation that is moved above the rejoin and all the way to a point above the
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branch can make the off-trace copy redundant under the appropriate circumstances. The original

version of trace scheduling, oblivious to such situations, retains two copies of the operation.

Gross and Ward describe an algorithm to avoid such redundancies [140]. Freudenberger and

Ruttenberg discuss the integrated scheduling and register allocation in the Multiflow compiler

[141]. Lowney, et al., provide a comprehensive description of the Multiflow compiler [142].

Hwu and his colleagues on the IMPACT project have developed a variant of trace scheduling

that they term superblock scheduling [143, 144]. In an attempt to facilitate the task of

incorporating profile-driven global scheduling into more conventional compilers, they separate

the trace selection and code replication from the actual scheduling and bookkeeping. To do this,

they limit themselves to only moving operations up above branches, never down, and never up

past merges. To make this possible, they outlaw control flow into the interior of a trace by means

of tail duplication, i.e., creating a copy of the trace below the entry point and redirecting the

incoming control flow path to that copy. Once this is done for each incoming path, the resulting

trace consists of a sequence of basic blocks with branches out of the trace but no incoming

branches except to the top of the trace. This constitutes a superblock, also known as an extended

basic block in the compiler literature. Chang and Hwu have studied different trace selection

strategies and have measured their relative effectiveness [145]. A comprehensive discussion of

the results and insights from the IMPACT project are provided in this special issue [101].

Although the global scheduling of linear sequences of basic blocks represents a major step

forward, it has been criticized for its total focus on the current trace and neglect of the rest of the

program. For instance, if there are two equally frequent paths through the program, that have

basic blocks in common, it is unclear as part of which trace these blocks should be scheduled.

One solution is to replicate the code as is done for superblock scheduling. The other is to

generalize trace scheduling to deal with more general control flow graphs. Linn [146] and Hsu

[103] have proposed profile-driven algorithms for scheduling trees of basic blocks in which all

but the root basic block have a single incoming path. Nicolau attempted to extend global

scheduling to arbitrary, acyclic control flow graphs using percolation scheduling [147, 87].

However, since percolation scheduling assumes unbounded resources, it cannot realistically be

viewed as a scheduling algorithm. Percolation scheduling was then extended to non-unit

execution latencies (but still with unbounded resources) [148].

The development of practical algorithms for the global scheduling of arbitrary, acyclic control

flow graphs is an area of active research. Preliminary algorithms, assuming finite resources have
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been defined by Ebcioglu [149, 150] and by Fisher [151]. These are both generalizations of trace

scheduling. However, there are very many difficulties in the engineering of a robust and efficient

scheduler of this sort. The challenges in this area of research revolve around the finding of

pragmatic engineering solutions to these problems.

A rather different approach to global acyclic scheduling has been pursued in the IMPACT

project [106]. An arbitrary, acyclic control flow graph, having a single entry can be handled by

this technique. The control flow graph is if-converted [107, 152] so as to eliminate all branches

internal to the flow graph. The resulting code, which is similar to a superblock in that it can only

be entered at the top but has multiple exits, is termed a hyperblock. This is scheduled in much the

same manner as a superblock except that two operations with disjoint predicates (i.e., operations

which cannot both be encountered on any single path through the original flow graph) may be

scheduled to use the same resources at the same time. After scheduling, reverse if-conversion is

performed to regenerate the control flow graph. Portions of the schedule in which m predicates

are active yield 2m versions of the code.

Cyclic scheduling

As with acyclic flow graphs, instruction-level parallelism in loops is obtained by overlapping the

execution of multiple basic blocks. With loops, however, the multiple basic blocks are the

multiple iterations of the same piece of code. The most natural extension of the previous global

scheduling ideas to loops is to unroll the body of the loop some number of times, and to then

perform trace scheduling, or some other form of global scheduling, over the unrolled loop body.

This approach was suggested by Fisher [153]. A drawback of this approach is that no overlap is

sustained across the back-edge of the unrolled loop. Fisher, et al., went on to propose a solution

to this problem, which is to continue unrolling and scheduling successive iterations until a

repeating pattern is detected in the schedule. The repeating pattern can be re-rolled to yield a

loop whose body is the repeating schedule. As we shall see, this approach was subsequently

pursued by various researchers. In the meantime, loop scheduling moved off in a different

direction which, as is true of most VLIW scheduling work, had its roots in hardware design.

Researchers concerned with the design of pipelined functional units, most notably Davidson and

his co-workers, had developed the theory of and algorithms for the design of hardware

controllers for pipelines to maximize the rate at which functions could be evaluated [134, 154­

158]. The issues considered here were quite similar to those faced by individuals programming
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the innermost loops of signal processing algorithms [159-164] on the early peripheral array

processors [46-48]. In both cases, the objective was to sustain the initiation of successive

function evaluations (loop iterations) before prior ones had completed. Since this style of

computation is termed pipelining in the hardware context, it was dubbed software pipelining in

the programming domain [12].

Early work in software pipelining consisted of ad hoc hand-coding techniques [164, 12]. Both

the quality of the schedules generated and the attempts at automating the generation of software

pipelined schedules were hampered by the architecture of the early array processors.

Nevertheless, Floating Point Systems developed, for the FPS-164 array processor, a compiler

that could software pipeline a loop consisting of a single basic block [165]. Weiss and Smith

[166] note that a limited form of software pipelining was present both in certain hand-coded

libraries for the CDC 6600 and also as a capability in the FORTRAN compiler for the CDC

6600.

The general formulation of the software pipelining process for single basic block loops was

stated by Rau, et al., [16, 84] drawing upon and generalizing the theory developed by Davidson

and his co-workers on the design of hardware pipelines. This work identified the attributes of a

VLIW architecture that make it amenable to software pipelining, most importantly, the

availability of conflict-free access to register storage between the output of a functional unit

producing a result and the functional unit that uses that result. This provides freedom in

scheduling each operation and is in contrast to the situation in array processors where, due to

limited register file bandwidth, achieving peak: performance required that a majority of the

operations be scheduled to start at the same instant that their predecessor operations completed

so that they could pluck their operands right off the result buses.

Rau, et al., also presented a condition which has to be met by any legal software pipelined

schedule--the "modulo constraint"--and derived lower bounds on the rate at which successive

iterations of the loop can be started, i.e., the initiation interval (II). (II is also the length of the

software pipelined loop, measured in VLIW instructions, when no loop unrolling is employed.)

This lower bound on IT, the minimum initiation interval (MIl), is the maximum of the lower

bound due to the resource usage constraints (ResMII) and the lower bound due to the cyclic data

dependence constraints caused by recurrences (RecMII). This lower bound is applicable both to

vectorizable loops as well as those with arbitrary recurrences and for operation latencies of

arbitrary length. A simple, deterministic software pipe1ining algorithm based on list scheduling,
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the modulo scheduling algorithm, was shown to achieve the MIl, thereby yielding an

asymptotically optimal schedule. This algorithm was restricted to DO-loops whose body is a

single basic block being scheduled on a machine in which each operation has a simple pattern of

resource usage, viz., the resource usage of each operation can be abstracted to the use of a single

resource for a single cycle (even though the latency of the operation is not restricted to a single

cycle). The task of generating an optimal, resource-constrained schedule for loops with arbitrary

recurrences is known to be NP-complete [167, 168] and any practical algorithm must utilize

heuristics to guide a generally near-optimal process. These heuristics were only broadly outlined

in this work.

Three independent sets of activity took this work and extended it in various directions. The first

one was the direct continuation at Cydrome, over the period 1984-1988, of the work done by

Rau, et al. [104, 105]. In addition to enhancing the modulo scheduling algorithm to handle loops

with recurrences and arbitrary acyclic control flow in the loop body, attention was paid to coping

with the very complex resource usage patterns that were the result of compromises forced by

pragmatic implementation considerations. Complex recurrences and resource usage patterns

make it unlikely that a one-pass scheduling algorithm, such as list scheduling, will be able to

succeed in finding a near-optimal modulo schedule, even when one exists, and performing an

exhaustive search was deemed impractical. Instead, an iterative scheduling algorithm was

employed, that could unschedule and reschedule operations. This iterative algorithm is guided by

heuristics based on dynamic slack-based priorities. The initial attempt is to schedule the loop

with the II equal to the MIl. If unsuccessful, the II is incremented until a modulo schedule is

achieved.

Loops with arbitrary acyclic control flow in the loop body are dealt with by performing IF­

conversion [107] to replace all branching by predicated (guarded) operations. This

transformation, which assumes the hardware capability of predicated execution [51, 18], yields a

loop with a single basic block which is then amenable to the modulo scheduling algorithm [104].

A disadvantage of predicated modulo scheduling is that the ResMII must be computed as if all

the operations in the body of the loop are executed each iteration whereas, in reality, only those

along one of the control flow paths are actually executed. As a result, during execution, some

fraction of the operations in an instruction are wasted. Likewise, the RecMll is determined by the

worst-case dependence chain across all paths through the loop body. Both contribute to a degree

of sub-optimality that depends on the structure of the loop.
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Assuming the existence of hardware to support both predicated execution and speculative

execution [93], Cydrome's modulo scheduling algorithm has been further extended to handle

WHILE-loops and loops with conditional exits [169]. The problem that such loops pose is that it

is not known until late in one iteration whether the next one should be started. This eliminates

much of the overlap between successive iterations. The solution is to start iterations

speculatively, in effect, by moving operations from one iteration into a prior one. The hardware

support makes it possible to avoid observing exceptions from operations that should not have

been executed, without overlooking exceptions from non-speculative operations.

Independently of the Cydrome work, Hsu proposed a modulo scheduling algorithm for single

basic block loops with general recurrences that recognizes each strongly-connected class (SCC)

of nodes in the cyclic dependence graph as a distinct entity [167]. Once the nodes in all the SCCs

have been jointly scheduled at the smallest possible II using a combinatorial search, the nodes in

a given SCC may only be re-scheduled as a unit and at a time that is displaced by a multiple of

IT. This re-scheduling is performed to enable the remaining nodes, that are not part of any SCC,

to be inserted into the schedule. Hsu also described an II extension technique which can be used

to take a legal modulo schedule for one iteration and trivially convert it into a legal modulo

schedule for a larger II without performing any scheduling. This works with simple resource

usage patterns. With complex patterns, a certain amount of re-scheduling would be required, but

less than starting from scratch.

Lam's algorithm, too, utilizes the SCC structure but list schedules each SCC separately, ignoring

the inter-iteration dependences [168, 170]. Thereafter, an SCC is treated as a single pseudo­

operation with a complex resource usage pattern, employing the technique of hierarchical

reduction proposed by Wood [136]. After this hierarchical reduction has been performed, the

dependence graph of the computation is acyclic and can be scheduled using modulo scheduling.

With an initial value equal to the MIl, the II is iteratively increased until a legal modulo schedule

is obtained. By determining and fixing the schedule of each SCC in isolation, Lam's algorithm

can result in SCCs that cannot be scheduled together at the minimum achievable II.

On the other hand, the application of hierarchical reduction enables Lam's algorithm to cope with

loop bodies containing structured control flow graphs without any special hardware support such

as predicated execution. Just as with the SCCs, structured constructs such as IF-THEN-ELSE are

list scheduled and treated as atomic objects. Each leg of the IF-THEN-ELSE is list scheduled

separately and the union of the resource usages represents that of the reduced IF-THEN-ELSE
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construct. This permits loops with structured flow of control to be modulo scheduled. After

modulo scheduling, the hierarchically reduced IF-THEN-ELSE pseudo-operations must be

expanded. Each portion of the schedule in which m IF-THEN-ELSE pseudo-operations are

active must be expanded into 2m control flow paths with the appropriate branching and merging

between the paths.

Since Lam takes the union of the resource usages in a conditional construct while predicated

modulo scheduling takes the sum of the usages, the former approach should yield the smaller

MIl. However, since Lam separately list schedules each leg of the conditional creating pseudo­

operations with complex resource usage patterns, the II that she actually achieves should deviate

from the MIl to a greater extent. Warter, et aI., have implemented both techniques and have

observed that, on the average, Lam's approach results in smaller MIl's but larger II's [171]. This

effect increases for processors with higher issue rates. Warter, et al., go on to combine the best of

both approaches in their enhanced modulo scheduling algorithm. They derive the modulo

schedule as if predicated execution were available, except that two operations from the same

iteration are allowed to be scheduled on the same resource at the same time if their predicates are

mutually exclusive, i.e., they cannot both be true. This is equivalent to taking the union of the

resource usages. Furthermore, it is applicable to arbitrary, possibly unstructured, acyclic flow

graphs in the loop body. After modulo scheduling, the control flow graph is re-generated much

as in Lam's approach. Enhanced modulo scheduling results in MIl's that are as small as for

hierarchical reduction, but as with predicated modulo scheduling, the achieved II is rarely more

than the MIl.

Yet another independent stream of activity has been the work of Su and his colleagues [138,

172]. When limited to loops with a single basic block, Su's URPR algorithm is an ad hoc

approximation to modulo scheduling and is susceptible to significant sub-optimality when

confronted by non-unit latencies and complex resource usage patterns. The essence of the URPR

algorithm is to unroll and schedule successive iterations until the first iteration has completed.

Next the smallest contiguous set of instructions, that contain at least one instance of each

operation in the original loop, is identified. After deleting multiple instances of all operations,

this constitutes the software pipelined schedule. This deletion process introduces "holes" in the

schedule and the attendant sub-optimality. Also, for non-unit latencies, there is no guarantee that

the schedule, as constructed, can loop back on itself without padding the schedule out with no-op

cycles. This introduces further degradation.
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Subsequently, Su extended URPR to the GURPR* algorithm for software pipelining loops

containing control flow [173-175]. GURPR* consists of first performing global scheduling on

the body of the loop and then using a URPR-like procedure, as if each iteration was IF­

converted, to derive the repeating pattern. Finally, as with enhanced modulo scheduling, a

control flow graph is regenerated. The shortcomings of URPR are inherited by GURPR*.

Wharter, et al., who have implemented GURPR* within the IMPACT compiler, have found that

GURPR* performs significantly worse than hierarchical reduction, predicated modulo

scheduling or enhanced modulo scheduling [171].

The idea proposed by Fisher, et al., of incrementally unrolling and scheduling a loop until the

pattern repeats [153] was pursued by Nicolau and his co-workers, assuming unbounded

resources, initially for single basic block loops [176] and then, under the title of perfect

pipelining, for multiple basic block loops [177, 148]. The latter was subsequently extended to

yield a more realistic algorithm assuming finite resources [178]. For single basic block loops, the

incremental unrolling yields a growing linear trace, the expansion of which is terminated once a

repeating pattern is observed. In practice, there are complications since the various SCCs might

proceed at different rates, never yielding a repeating pattern. For multiple basic block loops, the

unrolling yields a growing tree of schedules, each leaf of which spawns two further leaves when

a conditional branch is scheduled. A new leaf is not spawned if the (infinite) tree, of which it is a

root, is identical to another (infinite) tree (of which it might be a sub-tree) whose root has already

been generated.

This approach addresses a shortcoming of all the previously mentioned approaches to software

pipelining multiple basic block loops. In general, both RecMIT and ResMIT are dependent upon

the specific control flow path followed in each iteration. Whereas the previous approaches had to

use a single, constant, conservative value for each one of these lower bounds, the unrolling

approach is able to take advantage of the branch history of previous iterations in deriving the

schedule for the current one. However, there are some drawbacks as well. One handicap that

such unrolling schemes have is a lack of control over the greediness of the process of initiating

iterations. Starting successive iterations as soon as possible, rather than at a measured rate that is

in balance with the completion rate, cannot reduce the average initiation interval but can increase

the time to enter the repeating pattern and the length of the repeating pattern. Both contribute to

longer compilation times and larger code size. A second problem with unrolling schemes lies in

their implementation; recognizing that one has arrived at a previously visited state, to which one
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can wrap back instead of further expanding the search tree, is quite complicated, especially in the

context of finite resources, non-unit latencies and complex resource usage patterns.

The cyclic scheduling algorithm developed by the IBM VLIW research project [179-181, 150]

might represent a good compromise between the ideal and the practical. Stripped to the

essentials, this algorithm defines applies a cut-set, termed a fence, to the cyclic graph which

yields an acyclic graph. This reduces the problem to that of scheduling a general, acyclic graph-­

a simpler problem. Once this is done, the fence is moved and the acyclic scheduling is repeated.

As this process is repeated, all the cycles in the control flow graph acquire increasingly tight

schedules. The acyclic scheduling algorithm used by Ebcioglu, et al., is a resource-constrained

version of percolation scheduling [149, 150].

Software pipelining was also implemented in the compiler for the product line marketed by

another mini-supercomputer company, Culler Scientific. Unfortunately, we do not believe that

any publication exists, describing their implementation of software pipelining. Quite recently,

software pipe1ining has been implemented in the compilers for HP's PA-RISC line of computers

[182].

Scheduling for RISe and superscalar processors

Seemingly conventional scalar processors can sometimes benefit from scheduling techniques.

This is due to small amounts of ILP in the form of, for instance, branch delay slots and shallow

pipelines. Scheduling for such processors, whether RISC or CISC, has generally been less

ambitious and more ad hoc than that for VLIW processors [183-185,98, 186]. This was a direct

consequence of the lack of parallelism in those machines and the corresponding lack of

opportunity for the scheduler to make a big difference. Furthermore, the limited number of

registers in those architectures made the use of aggressive scheduling rather unattractive. As a

result, scheduling was viewed as rather peripheral to the compilation process, in contrast to the

central position it occupied for VLIW processors and, to a lesser extent, for more highly

pipelined processors [187, 188, 166]. Now, with superscalar processors growing in popularity,

the importance of scheduling, as a core part of the compiler, is better appreciated and a good deal

of activity has begun in this area [189-193], unfortunately, sometimes unaware of the large body

of literature that already exists.
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3.2.2 Register Allocation

In conventional, sequential processors, instruction scheduling is not an issue. The program's

execution time is barely affected by the order of the instruction, only by the number of

instructions. Accordingly, the emphasis of the code generator is on generating the minimum

number of instructions and using as few registers as possible [194-199]. However, in the context

of pipelined or multiple-issue processors, where instruction scheduling is important, the issue of

the phase-ordering between it and register allocation has been a topic of much debate. There are

advocates both for performing register allocation before scheduling [185,200, 192] as well as for

performing it after scheduling [183, 201-203]. Each phase-ordering has its advantages and

neither one is completely satisfactory.

The most important argument in favor of performing register allocation first is that whereas a

better schedule may be desirable, code that requires more registers than are available is just

unacceptable. Clearly, achieving a successful register allocation must supersede the objective of

constructing a better schedule. The drawback of performing scheduling first, oblivious of the

register allocation, is that shorter schedules tend to yield greater register pressure. In the event

that a viable allocation cannot be found, spill code must be inserted. At this point, in the case of a

statically scheduled processor, the schedule just constructed may no longer be correct. Even if it

is, it may be far from the best one possible, for either a VLIW or superscalar machine, since the

schedule was built without the spill code in mind. In machines whose load latency is far greater

than that of the other operations, the time penalty of the spill code may far exceed the benefits of

the better schedule obtained by performing scheduling first.

Historically, the merit of performing register allocation first was that processors had little

instruction-level parallelism and few registers. So, whereas there was much to be lost by a poor

register allocation, there was little to be gained by good scheduling. It was customary, therefore,

to first perform register allocation first, for instance using graph coloring [204-206] followed by

a post-pass scheduling step that considered individual basic blocks [185, 200].

From the viewpoint of instruction-level parallel machines, the major problem with performing

register allocation first is that it introduces anti-dependences and output dependences that can

constrain parallelism and the ability to construct a good schedule. To some extent this is

inevitable; the theoretically optimal combination of schedule and allocation might contain

additional arcs due to the allocation. The real concern is that, when allocation is done first, an
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excessive number of ill-advised and unnecessary arcs might be introduced due to the insensitivity

of the register allocator to the scheduling task. On pipelined machines, whose cache access time

is as short as or shorter than the functional unit latencies, the benefits of a schedule unconstrained

by register allocation may out-weigh the penalties of the resulting spill code.

Scheduling prior to register allocation, known as pre-pass scheduling, was used in the PL.8

compiler [183]. In evolving this compiler to become the compiler for the superscalar ffiM RISC

Systeml6000, the sub-optimality of inserting spill code after the creation of the schedule became

clear and a second, post-pass scheduling step was added after the register allocation [202].

During the post-pass, the scheduler honors all the dependences caused by the register allocation

which, in tum, was aware of the preferred instruction schedule provided by the pre-pass

scheduler. The IMPACT project at the University of Illinois has demonstrated the effectiveness

of this strategy for multiple-issue processors [203]. Instead of employing the graph coloring

paradigm, Hendren, et al., make use of the richer information present in interval graphs, which

are a direct temporal representation of the span of the lifetimes [207]. This assumes that the

schedule or, at least, the instruction order has already been determined and that a post-pass

scheduling step will follow.

Irrespective of which one goes first, a shortcoming of all strategies discussed so far is that the

first phase makes its decisions with no consideration of their impact on the subsequent phase.

Goodman and Hsu have addressed this problem by developing two algorithms--one, a scheduler

that attempts to keep the register pressure below a limit provided to it, and the second, a register

allocation algorithm that is sensitive to its effect on the critical path length of the DAG and, thus,

to the effect on the eventual schedule [201].

For any piece of code on a given processor, there is some optimal schedule for which register

allocation is possible. Scheduling twice, once before and then after register allocation, is an

approximation to achieving this ideal. Simultaneous scheduling and register allocation is another

strategy for attempting to find a near-optimal schedule and register allocation. Simultaneous

scheduling and register allocation is currently understood only in the context of acyclic code,

specifically, a single basic block or a linear trace of basic blocks. The essence of the idea is that

each time an operation is scheduled, an available register is allocated to hold the result. Also, if

this operation constitutes the last use of the contents of one of the source registers, that register is

made available once again for subsequent allocation. When no register is available to receive the

result of the operation being scheduled, a register must be spilled. The register holding the datum
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whose use is furthest away in the future is spilled. This approach was used in the FPS-164

compiler at the level of individual basic blocks [165] as well as across entire traces [92, 141,

142]. An important concept developed by the ELI project at Yale and by Multiflow was that of

performing hierarchical, profile-driven, global integrated scheduling and register allocation.

Traces are picked in decreasing order of frequency and integrated scheduling and allocation is

performed on each. The scheduling and allocation decisions made for traces that have been

processed form constraints on the corresponding decisions for the remaining code. This is a far

more systematic approach than other ad hoc, priority-based schemes with the same objective. A

syntax-based hierarchical approach to global register allocation has been suggested by Callahan

and Koblenz [208].

If a loop is unrolled some number of times and then treated as a linear trace of basic blocks

[153], simultaneous trace scheduling and register allocation can be accomplished, but with some

loss of performance due to the emptying of pipelines across the back-edge. In the case of modulo

scheduling, which avoids this performance penalty, no approach has yet been advanced for

simultaneous register allocation. Since doing register allocation in advance is unacceptably

constraining on the schedule, it must be performed following modulo scheduling. A unique

situation encountered with modulo scheduled loops is that the lifetimes are often much longer

than the initiation interval. Normally, this would result in a value being over-written before its

last use has occurred. One solution is to unroll the kernel of modulo scheduled loop a sufficient

number of times to ensure that no lifetime is longer than the length of the replicated kernel [168,

170]. This is known as modulo variable expansion. In addition to techniques such as graph

coloring, the heuristics proposed by Hendren, et aI., [207] and by Rau, et al., [209] may be

applied after modulo variable expansion. The other solution for register allocation is to assume

the dynamic register renaming provided by the rotating register capability of the Cydra 5. The

entity that the register allocator works with are vector lifetimes, i.e., the entire sequence of

(scalar) lifetimes defined by a particular operation over the execution of the loop [104, 105,209].

Lower bounds on the number of registers needed for a modulo scheduled loop have been

developed by Mangione-Smith, et al. [210]. The strategy for recovering from a situation, in

which no allocation can be found for the software pipelined loop, is not well understood. Some

options have been outlined [209], but their detailed implementation, effectiveness and relative

merits have as yet to be investigated.
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3.2.3 Other ILP Compiler Topics

Although scheduling and register allocation are at the heart of ILP compilation, a number of

other analyses, optimizations and transformations are crucial to the generation of high quality

code. Currently, schedulers treat a procedure call as a barrier to code motion. Thus, inlining of

intrinsics and user procedures is very important in the high frequency portions of the program

[105, 142,211].

Certain loop-oriented analyses and optimizations are specific to modulo scheduling. IF­

conv~rsion and the appropriate placement of predicate-setting operations is needed to modulo

schedule loops with control flow [107, 104, 152, 105]. The elimination of subscripted loads and

stores that are redundant across multiple iterations of a loop can have a significant effect upon

both the ResMII and the RecMII [212, 213, 105]. This is important for trace scheduling unrolled

loops as well [142]. Recurrence back-substitution and other transformations that reduce the

RecMII have a major effect on the performance of all software pipelined loops [105]. Most of

these transformations and analyses are facilitated by the dynamic single assignment

representation for inner loops [213, 105].

On machines with multiple, identical clusters, such as the Multiflow TRACE machines, it is

necessary to decide which part of the computation will go on each cluster. This is a non-trivial

task; whereas increased parallelism argues in favor of spreading the computation over the

clusters, this also introduces inter-cluster move operations into the computation, whose latency

can degrade performance if the partitioning of the computation across clusters is not done

carefully. An algorithm for performing this partitioning was developed by Ellis [92] and was

incorporated into the Multiflow compiler [142].

An issue of central importance to all ILP compilation is the disambiguation of memory

references., i.e., deciding whether two memory references definitely are to the same memory

location or definitely are not. Known as dependence analysis, this has become a very well

developed topic in the area of vector computing over the past twenty years [214]. For vector

computers, the compiler is attempting to prove that two references in different iterations are not

to the same location. No benefit is derived if it is determined that they are to the same location

since such loops cannot be vectorized. Consequently, the nature of the analysis, especially in the

context of loops containing conditional branching, has been approximate. This is a shortcoming

from the point of view of ILP processors which can benefit both if the two references are or are
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not to the same location. A more precise analysis than dependence analysis, involving data flow

analysis, is required. Also, with ILP processors, memory disambiguation is important outside of

loops as well as within them. Memory disambiguation within traces was studied in the ELI

project [215, 92] and was implemented in the Multiflow compiler [142]. Memory

disambiguation, in the context of innermost loops was implemented in the Cydra 5 compiler

[213, 105] and was studied by Callahan and Koblenz [212].

4 Available ILP

4.1 Limit Studies and Their Shortcomings

Many experimenters have attempted to measure the maximum parallelism available in programs.

The goal of such limit studies is to:

Throwaway all considerations of hardware and compiler practicality and

measure the greatest possible amount ofILP inherent in a program.

Limit studies are simple enough to describe: take an execution trace of the program, and build a

data precedence graph on the operations, eliminating false anti-dependences caused by the write­

after-read usage of a register or other piece of hardware storage. The length in cycles of the

serial execution of the trace gives the serial execution time on hardware with the given latencies.

The length in cycles of the critical path though the data dependence graph gives the shortest

possible execution time. The quotient of these two is the available speedup. (In practice, an

execution trace is not always gathered. Instead, the executed stream is processed as the code

runs, greatly reducing the computation and/or storage required.)

These are indeed maximum parallelism measures in some sense, but they have a critical

shortcoming that causes them to miss accomplishing their stated goal; they do not consider

transformations that a compiler might make to enhance ILP. Although we mostly mean

transformations of a yet-unknown nature that researchers may develop in the future, even current

state-of-the-art transformations are rarely reflected in limit studies. Thus we have had, in recent

years, the anomalies of researchers stating an "upper limit" on available parallelism in programs

that is lower than what has already been accomplished with those same programs, or of new

results that show the maximum available parallelism to be significantly higher than it was a few

years ago, before a new set of code transformations was considered.
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There is a somewhat fatuous argument that demonstrates just how imprecise limit studies must

be; recalling that infinite hardware is available, we can replace computations in the code with

table look-ups. In each case, we will replace a longer--perhaps very long--computation with one

that takes a single step. While this is obviously impractical for most computations with operands

that span the (finite, but large) range of integers or floating point numbers representable on a

system, it is only impractical in the very sense in which practicality is to be discarded in limit

studies. And even on practicality grounds, one cannot dismiss this argument completely; in a

sense it really does capture what is wrong with these experiments. There are many instances of

transformations, some done by hand, others automatically, that reduce to this concept.

Arithmetic and transcendental functions are often sped up significantly by the carefully selected

use of table lookups at critical parts of the computation. Modern compilers can often replace a

nested set of IF-THEN tests with a single lookup in which hardware does an indirect jump

through a lookup table. Limit studies have no way of capturing these transformations, the effect

of which could be a large improvement in available ILP.

Even in current practice, the effect of ignoring sophisticated compiling is extreme.

Transformations such as tree height reduction, loop conditioning, loop exchange, etc. can have a

huge effect on the parallelism available in code. A greater unknown is the research future of data

structure selection to improve ILP. A simple example can show this effect. The following code

finds the maximum element of a linked list of data.

this-ptr = head-ptr;
max-so-far = most-neg-number;
while this-ptr {

if this-ptr.data > max-so-far
then max-so-far = this-ptr.data;

this-ptr = this-ptr.next }

From simple observation, the list of elements chained from head-ptr cannot be circular. If the

compiler had judged it worthwhile, it could have stored these elements in an array and done the

comparisons pairwise, in parallel, without having to chase the pointers linearly. This example is

not as far-fetched as it might seem. Vectorization took 20 years to go from the ability to

recognize the simplest loop to the sophisticated vectorizers we have today. There has been

virtually no work done on compiler transformations to enhance ILP.
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Limit studies, then, are in some sense finding the maximum parallelism available, but in other

ways are finding the minimum. In these senses, they find the maximum parallelism:

o Disambiguation can be done perfectly, well beyond what is practical.

o There are infinitely many functional units available.

o There are infinitely many registers available.

o Rejoins can be completely unwound.

In other senses, they represent a minimum, or an existence proof that at least a certain amount of

parallelism exists, since potentially important processes have been left out:

o Compiler transformations to enhance ILP have not been done.

o Intermediate code generation techniques which boost ILP have not been done.

Perhaps it is more accurate to say that a limit study shows that the maximum parallelism

available, in the absence of practicality considerations, is at least the amount measured.

Early Experiments

The very first ILP limit studies demonstrated the effect we wrote of above: the experimenters'

view of the techniques by which one could find parallelism was limited to the current state of the

art, and they missed a technique that is now known to provide most of the available ILP: the

motion of operations between basic blocks of code. Experiments done by Tjaden and Flynn [76]

and by Foster and Riseman [216] (and, anecdotally, elsewhere) found that there was only a small

amount (about of factor of 2-3) of improvement due to ILP available in real programs. This was

dubbed the Flynn bottleneck. By all accounts, these pessimistic and, in a sense, erroneous

experiments had a tremendous damping effect on the progress of ILP research. The experiments

were only erroneous in the sense of missing improvements; certainly they did correctly what they

said they did.

Interestingly, one of the research teams doing these experiments saw that under the hypothesis of

free and infinite hardware, one wouldn't necessarily have to stop finding ILP at basic block

boundaries. In a companion paper to the one mentioned above, Riseman and Foster [217] put

forward a hardware-intensive solution to the problem of doing operations speculatively: they
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measured what would happen if one used duplicate hardware at conditional jumps, and

disregarded the one that went in the wrong direction. They found a far larger amount of

parallelism: indeed, they found more than an order of magnitude more than they could when

branches were a barrier. Some of the programs they measured could achieve arbitrarily large

amounts of parallelism, depending only on data set size. But in an otherwise insightful and

visionary piece of work, the researchers lost sight of the fact that they were doing a limit study,

and in their tone and abstract emphasized how impractical it would be to implement the hardware

scheme they had suggested. (They found that to get a factor of 10 ILP speedup, one had to be

prepared to cope with 16 unresolved branches at the worst point of a typical program. Their

scheme would require, then, 216 sets of hardware to do so. Today, as described in most of the

papers in this issue, we try to get much of the benefit of the same parallelism without the

hardware cost by doing code motions that move operations between blocks and having the code

generator make sure that the correct computation is ultimately done once the branches settle.)

Contemporary Experiments

We know of no other ILP limit studies published between then and the 1980s. In 1981, Nicolau

and Fisher [218, 219] used some of the apparatus being developed for the Yale Bulldog

Compiler to repeat the experiment done by Riseman and Foster, and found virtually the same

results.

In the late 1980s, architects began to look at superscalar microprocessors and again started a

series of limit studies. Interestingly, the most notorious of these [220] again neglected the

possibility of code motions between blocks. Unsurprisingly, the Flynn bottleneck appeared

again, and only the factor of 2-3 parallelism found earlier was found. Two years later, Wall

[221] did the most thorough limit study to date, and accounted for speculative execution,

memory disambiguation, and other factors. He built an elaborate model, and published available

ILP speedup under a great many scenarios, yielding a wealth of valuable data, but no simple

answers. The various scenarios allow one to try to bracket what really might be practical in the

near future, but are subject to quite a bit of interpretation. In examining the various scenarios

presented, we find that settings that a sophisticated compiler might approach during the coming

decade could yield speedups ranging from 7-60 on the sample programs, which are taken from

the SPEC suite and other standard benchmarks. (It's worth noting that Wall himself is much

more pessimistic. In the same results he sees an average ceiling of about 5, and the near

impossibility of attaining even that much.) Lam and Wilson [222] did an experiment to measure
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the effects of different methods of eliminating control flow barriers to parallelism. When their

model agreed with Wall's, their results were similar. Butler and Patt [223] considered models

with a large variety of numbers of functional units, and found that with good branch prediction

schemes and speculative execution, a wide range of speedup was available.

4.2 Experiments That Measure Attained Parallelism

In contrast to the limit studies, some people have built real or simulated ILP systems, and have

measured their speedup against real or simulated non-parallel systems. When simulated systems

have been involved, they have been relatively realistic systems, or systems that the researchers

have argued would abstract the essence of realistic systems in such a way that the system

realities should not lower the attained parallelism. Thus these experiments represent something

closer to true lower bounds on available parallelism.

Ellis [92] used the Bulldog Compiler to generate code for a hypothetical machine. His model

was unrealistic in several aspects, most notably the memory system, but realistic

implementations should have little difficulty exploiting the parallelism he found. Ellis measured

the speedups obtained on 12 small scientific programs for both a "realistic" machine

(corresponding to one under design at Yale), and an "ideal" machine, with limitless hardware and

single-cycle functional units. He found speedups ranging from no speedup to 7.6 times speedup

for the real model, and a range of 2.7 to 48.3 for the ideal model.

In this issue there are three papers that add to our understanding of the performance of ILP

systems. The paper by Hwu, et al. [lGl}, considers the effect of a realistic compiler which uses

superblock scheduling. Lowney, et al. [142] and Schuette and Shen [224] compare the

performance of the Multiflow Trace 14/300 with current microprocessors from MIPs and IBM,

respectively.

Fewer studies have been done to measure the attained performance of software pipelining.

Wharter et al. [171] consider a set of 30 doallioops with branches found in the Perfect and SPEC

benchmark sets. Relative to a single-issue machine without modulo scheduling, they find a 6

times speedup on a hypothetical 4-issue machine, 10 times speedup on a hypothetical 8-issue

machine. Lee, et al. [225], combined superblock scheduling and software pipelining for a

machine capable of issuing up to 7 operations per cycle. On a mix of loop-intensive (e.g.,
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LINPACK) and "scalar" (e.g., Spice) codes, they found an average of 1-4 operations issued per

cycle, with 2-7 operations in flight.

5 An introduction to this Special Issue

In this Special Double Issue of The Journal of Supercomputing we have attempted to capture the

most significant work, that took place during the 1980s, in the area of instruction-level parallel

processing. The intent is to document both the theory and the practice of ILP computing.

Consequently, our emphasis is on projects that resulted in implementations of serious scope,

since it is this reduction to practice that exposes the true merit and the real problems of ideas that

sound good on paper.

During the 1980s, the bulk of the advances in ILP occurred in the form of VLIW processing and

this special issue reflects it with papers on Multiflow's TRACE family and on Cydrome's

Cydra 5. The paper by Lowney, et al., [142] provides an overview of the TRACE hardware and

an in-depth discussion of the compiler. The paper by Schuette and Shen [224] reports on an

evaluation performed by the authors of the TRACE 14/300 and a comparison of it to the

superscalar IBM RS/6000. The Cydra 5 effort is documented by two papers: one by Beck, Yen

and Anderson [52] on the Cydra 5 architecture and hardware implementation, and the other by

Dehnert and Towle [105] on the Cydra 5 compiler. (While reading the descriptions of these large

and bulky mini-supercomputers, it is worthwhile to bear in mind that they could easily fit on a

single chip in the near future!) The only important superscalar product of the 1980s was

Astronautics' ZS-l mini-supercomputer. Although we wanted to include a paper on it in this

special issue, that did not come to pass. The final paper in this special issue reports on IMPACT

[101], the most thorough implementation of an ILP compiler that has occurred in academia.
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