
Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot Stephen W. Keckler Onur Mutlu†

Department of Computer Sciences †Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{bgrot, skeckler@cs.utexas.edu} onur@cmu.edu

ABSTRACT

Future many-core chip multiprocessors (CMPs) and systems-
on-a-chip (SOCs) will have numerous processing elements
executing multiple applications concurrently. These applica-
tions and their respective threads will interfere at the on-chip
network level and compete for shared resources such as cache
banks, memory controllers, and specialized accelerators. Of-
ten, the communication and sharing patterns of these appli-
cations will be impossible to predict off-line, making fair-
ness guarantees and performance isolation difficult through
static thread and link scheduling. Prior techniques for pro-
viding network quality-of-service (QOS) have too much al-
gorithmic complexity, cost (area and/or energy) or perfor-
mance overhead to be attractive for on-chip implementation.
To better understand the preferred solution space, we de-
fine desirable features and evaluation metrics for QOS in a
network-on-a-chip (NOC). Our insights lead us to propose a
novel QOS system called Preemptive Virtual Clock (PVC).
PVC provides strong guarantees, reduces packet delay varia-
tion, and enables efficient reclamation of idle network band-
width without per-flow buffering at the routers and with
minimal buffering at the source nodes. PVC averts prior-
ity inversion through preemption of lower-priority packets.
By controlling preemption aggressiveness, PVC enables a
trade-off between the strength of the guarantees and overall
throughput. Finally, PVC simplifies network management
through a flexible allocation mechanism that enables per-
application bandwidth provisioning independent of thread
count and supports transparent bandwidth recycling among
an application’s threads.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiproces-
sors—Interconnection architectures

General Terms

Design, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION
Power limitations of aggressive monolithic cores, design

complexity considerations, and growing transistor budgets
have recently pushed the semiconductor industry toward
chip multiprocessors (CMPs) and complex Systems-On-a-
Chip (SOCs). These single-die systems integrate execution
cores, accelerators, custom IP blocks, and memories, pro-
viding an unprecedented degree of functionality on a sin-
gle piece of silicon. Current commercial offerings in this
space range from Intel’s 8-core superscalar CMP [18] to a
64-core network and media processor from Tilera [21] to a
256-element reconfigurable processor array from Rapport,
Inc. [16]. With continuing technology scaling, CMPs with
hundreds to thousands of general and special-purpose cores
are likely to appear in a variety of application domains in
the near future.

As the number of compute elements grows, so will the
number of intra- and inter-application threads executing con-
currently on a given substrate. These threads will compete
for shared resources, such as cache space, specialized accel-
erators, on-chip network bandwidth, and off-chip memory
bandwidth. As a result, ensuring application stability, scal-
ability, and isolation in the face of increased resource sharing
will become more important and more difficult.

Furthermore, a user or operating system may wish to in-
crease the performance of one application at the expense of
another by giving the former a greater share of some system
resource. Thus, to ensure fairness and provide differenti-
ated services, future CMP and SOC substrates will require
an integrated quality-of-service (QOS) mechanism.

Until recently, on-chip QOS research has focused on in-
dividual system end-points, such as cache banks or mem-
ory controllers, seeking to balance fairness, performance and
cost when these resources are shared among multiple threads
[12, 13, 11]. Unfortunately, such work ignores the shared
interconnect used to access the individual resources. By
ignoring the access medium, fairness at the end-points can-
not be guaranteed. QOS research in conventional networks,
on the other hand, has yielded elegant service disciplines
that provide hard guarantees and good performance, but
at high cost in terms of storage required at each routing
node, buffer access energy, and in some cases, a scheduling
algorithm’s computational complexity. These costs can be
prohibitive in area-, energy- and latency-sensitive on-chip
networks. Recent work on Globally Synchronized Frames
(GSF) introduced a method to move much of the complex-
ity from network routers into the source nodes [9]. Unfor-
tunately, GSF suffers from several shortcomings, including

268

reliance on large source buffers, low throughput under some
unstructured traffic patterns, and an inflexible bandwidth
allocation mechanism.

In this work, we seek to understand the qualities of an
ideal QOS solution for networks-on-a-chip (NOCs). We draw
on traditional QOS literature and supplement it with our
own observations to enumerate the attribute set of an ideal
NOC QOS scheme. We also consider the metrics for evalu-
ating the different approaches. Our insights lead us to pro-
pose Preemptive Virtual Clock (PVC), a novel QOS scheme
specifically designed for cost- and performance-sensitive on-
chip interconnects. Unlike all prior approaches for providing
network quality-of-service, PVC requires neither per-flow
buffering in the routers nor large queues in the source nodes.
Instead, PVC provides fairness guarantees by tracking each
flow’s bandwidth consumption over a time interval and pri-
oritizing packets based on the consumed bandwidth and es-
tablished rate of service. PVC avoids priority inversion by
preempting lower-priority messages. The system provides
guarantees and low latency for preempted messages via a
dedicated ACK/NACK network and a small window of out-
standing transactions at each node. Unique to this approach
is the ability to trade the strength of throughput guaran-
tees of individual flows for overall system throughput. Fi-
nally, PVC simplifies network management by enabling per-
thread, per-application, or per-user bandwidth allocation.

The rest of the paper is structured as follows. Section 2
motivates the work by outlining the requirements and the
metrics for NOC QOS techniques and presents an overview
of prior approaches for network quality-of-service. Section
3 introduces PVC and compares it to prior schemes based
on the attributes from Section 2. Section 4 covers the eval-
uation methodology, while Section 5 presents the results of
the evaluation. Section 6 concludes the paper.

2. MOTIVATION

2.1 NOC QOS Requirements
An ideal NOC QOS solution should possess a number of

attributes with regard to guarantees, performance and cost.
In this section, we draw on traditional QOS literature and
supplement it with our own observations to detail the desir-
able feature set. Items a, b, c, e, i, j are taken from or in-
spired by a similar list compiled by Stiliadis and Varma [20],
while f comes from Demers et al. [3].

a) Fairness: Link bandwidth must be divided among
requesting flows equitably based on individual reserved rates
for both guaranteed and excess service.

b) Isolation of flows: Rate-observing flows should en-
joy the illusion of a private network with bandwidth pro-
portional to the specified rate, regardless of the behavior of
other flows.

c) Efficient bandwidth utilization: Flows should be
free to claim idle network bandwidth regardless of their re-
served rate or bandwidth usage history.

d) Flexible bandwidth allocation: It should be possi-
ble to allocate bandwidth at granularity of a core, a multi-
core application, or a user. Coarser granularities simplify
provisioning and improve bandwidth utilization.

e) Low performance overhead: Compared to a sim-
ilarly provisioned network with no QOS support, a QOS-
enabled network should enjoy approximately equal latency
and overall throughput.

f) Delay proportional to bandwidth usage: Flows
that observe their bandwidth share should enjoy faster ser-
vice than bandwidth hogs.

g) Low area overhead: Per-flow buffering at each net-
work node may be too expensive for on-chip networks that
typically feature wormhole switching and a small number of
virtual channels.

h) Low energy overhead: Energy may be the biggest
constraint in future CMPs and SOCs [14]. Minimizing buffer-
ing is one way to reduce the energy overhead of a QOS sub-
system.

i) Good scalability: As the network is scaled up in
size, the QOS subsystem should be easy and cost-effective
to scale proportionately, without compromising performance
or guarantees.

j) Simplicity of implementation: Design and verifica-
tion time are important contributors to overall system cost,
and a simpler QOS solution is generally preferred to one
with greater complexity.

2.2 Metrics
In addition to the standard area and energy metrics used

for evaluating on-chip systems, QOS disciplines require ded-
icated metrics. Key among these are relative throughput,
latency, and jitter.

Relative throughput: The fairness criterion dictates
that link bandwidth should be allotted equitably, in propor-
tion to the specified rate. Given the mean throughput of a
set of flows with the same reserved rate, request rate and
measurement interval, relative throughput can be measured
by assessing the minimum, maximum, and standard devia-
tion from the mean in the flow set. A system provides strong
throughput fairness when each node’s bandwidth consump-
tion is close to the mean.

Latency: The end-to-end latency of a flow should be
proportional to its hop count, reserved rate, and contention
from other flows. In the absence of contention, the delay im-
posed by the QOS mechanism should be minimal. On the
other hand, when two or more flows with the same specified
rate converge on an output link, the QOS mechanism must
ensure equal per-hop delay for the affected flows. As above,
the key metrics are minimum, maximum, and standard de-
viation from the mean hop latency for a set of flows sharing
a port.

Jitter: The variation in delay for a pair of packets in a
flow is commonly called jitter. Low jitter in the face of con-
tention provides a strong illusion of a private network for
each flow, desirable for performance stability and isolation.
QOS schemes that feature rate-proportional per-hop latency
guarantees, as opposed to just end-to-end delay bounds, may
naturally reduce jitter. The metric for jitter is termed packet
delay variation (pdv), defined for IP performance measure-
ment as “the difference in end-to-end delay between selected
packets in a flow with any lost packets being ignored” [17].
The maximum pdv and standard deviation from the mean
pdv within a flow, as well as across flows, are more impor-
tant than the minimum observed jitter value.

2.3 QOS Service Disciplines
A number of distinct disciplines have emerged over the

years for providing fair and differentiated services at the
network level. We partition these into three classes based on
their bandwidth allocation strategy – fixed, rate-based, and

269

frame-based – and cover the most important representatives
of each class.

2.3.1 Fixed bandwidth allocation

Approaches such as Weighted Round Robin use a static
packet schedule to deliver hard guarantees at low implemen-
tation complexity. The cost, however, is potentially poor
network utilization, as resources held by idle flows cannot
be rapidly redistributed to flows with excess demand.

2.3.2 Rate-based approaches

Rate-based service disciplines aim to allocate bandwidth
to contending packets based on the provisioned rate. Idle
bandwidth due to under-utilization by one or more flows is
instantaneously redistributed among the competing flows.
Service order is determined dynamically based on the set of
active flows and their respective reserved rates by computing
the service time for each flow and granting the flow with the
earliest deadline. In general, rate-based approaches excel at
maximizing throughput and providing strong isolation, but
necessitate per-flow queueing and may require computation-
ally expensive scheduling algorithms.

Fair Queueing (FQ) is a well-known rate-based approach
that emulates a bit-by-bit round-robin service order among
active flows on a packet basis [3]. Its generalized variant,
Weighted Fair Queueing (WFQ), enables differentiated ser-
vices by supporting different service rates among the flows.
Both schemes offer provably hard fairness guarantees at a
fine granularity and excellent bandwidth utilization. Un-
fortunately, computing the service time in FQ has O(N)
complexity, where N is the number of active flows at each
scheduling step, making the algorithm impractical for most
applications.

In contrast, Virtual Clock [22] offers a simple deadline
computation that emulates a Time Domain Multiple Access
(TDMA) scheduler but with ability to recycle idle slots.
Packets are scheduled using virtual time slots, computed
based on the assigned service rate. Packet service time is
simply its flow’s virtual clock value, which is incremented
every time the flow is serviced. In flows that respect the
reserved rate, termed rate-conformant flows, virtual time
tracks the service time under TDMA. Flows that exceed
the specified rate “run ahead” of schedule by incrementing
their virtual clock beyond the current round. Problemat-
ically, flows that run ahead are subject to starvation by
rate-conformant flows until the rate-scaled real time catches
up with their virtual clock. Both Fair Queueing and Vir-
tual Clock require per-flow queues and a sorting mecha-
nism to prioritize flows at each scheduling step, resulting
in high storage overhead and scheduling complexity in net-
works with a large number of flows.

2.3.3 Frame-based approaches

Whereas rate-based disciplines aim for tight guarantees at
a fine granularity by scheduling individual packets, frame-
based approaches seek to reduce hardware cost and schedul-
ing complexity by coarsening the bandwidth allocation gran-
ularity. The common feature of these schemes is the parti-
tioning of time into epochs, or frames, with each flow re-
serving some number of transmission slots within a frame.
A disadvantage of frame-based disciplines lies in their coarse
throughput and latency guarantees, which apply only at
the frame granularity. Coarse-grained bandwidth alloca-

tion can cause temporary starvation of some flows and high
service rate for others, making jitter guarantees impossible.
Frame-based approaches also require per-flow buffering at
each routing node, necessitating enough storage to buffer
each flow’s entire per-frame bandwidth allocation. Schemes
such as Rotating Combined Queueing (RCQ) [7] that sup-
port multiple in-flight frames to improve network bandwidth
utilization incur additional area and energy overheads in the
form of even greater buffer requirements.

Globally Synchronized Frames (GSF) is a frame-based
QOS approach recently proposed specifically for on-chip im-
plementation [9]. GSF also employs a coarse-grained band-
width reservation mechanism. However, it moves the buffer-
ing and much of the scheduling logic from the network routers
into the source nodes, thereby reducing the routers’ area and
energy overhead. Source nodes in GSF tag new packets with
a frame number and slot them into their source queue. GSF
supports bursts by allowing packets from future frames to
enter the network, up to a maximum allowed burst size. A
fast barrier network synchronizes the frames over the entire
chip by detecting when the head frame has been drained
and signaling a global frame roll-over. To ensure fast frame
recycling, injection of new packets into the head frame is
prohibited. Packets from multiple frames may be in the
network at the same time, and age-based arbitration on the
frame number is used to prioritize packets from older frames
over younger ones. GSF does not specify the service order
within a frame, preventing priority inversion by reserving a
single virtual channel (VC) at each input port for the head
frame; however, in-flight packets from future frames may be
blocked until their respective frames become the oldest.

Although GSF significantly reduces router complexity over
prior approaches, it suffers from three important shortcom-
ings that limit its appeal: performance, cost, and inflexible
bandwidth allocation.

The performance (throughput) limitations of GSF arise
due to its source-based bandwidth reservation mechanism.
With only limited support for excess service, bound by the
finite number of in-flight frames, GSF is inherently restricted
in its ability to efficiently utilize network bandwidth. Once a
source node has exhausted its burst quota, it is immediately
throttled and restricted to its reserved allocation in each
frame interval.

Figure 1 highlights a scenario that compromises a node’s
throughput despite idle network capacity. A set of nodes,
in grey, all send traffic to a common destination, colored
black. The combined traffic causes congestion around the
black node, exerting backpressure on the sources and imped-
ing global frame reclamation. As frame reclamation slows,
an unrelated node, striped in the figure, in a different region
of the network suffers a drop in throughput. The striped
node is only sending to its neighbor, yet is throttled upon
exhausting its burst quota, letting the requested link go idle.
We simulated this scenario on a 64-node network with an ag-
gressive GSF configuration (2000 cycle frame, 6-frame burst
window, and 8 cycle frame reclamation) and equal band-
width allocation among nodes, under the assumption that
the actual communication pattern is not known in advance.
We observed that throughput for the striped node saturates
at around 10%, meaning that the link is idle 90% of the time.
Increasing both the size of the frame and the burst window
ten-fold made no difference in actual throughput once the
striped node exhausted its burst capacity.

270

Figure 1: Scenario demonstrating poor bandwidth
utilization with GSF. The grey nodes congest the
center of the mesh, slowing down frame reclama-
tion and compromising striped node’s throughput.

��������������
� � � � � � � � 	 �� �� �� �� �� �� �� �� �� �	 ��
�������������������������� ������ !� "#�� $%&

'()*�+*�'()*�+*��'()*�+*�'()*�+*��'()*�+*�'()*�+*��,-*.-(
Figure 2: Performance of GSF with various frame
(first number in legend) and window (second num-
ber) sizes versus a similarly provisioned network
without QOS support.

Another drawback of GSF is the cost associated with the
source queues, where packets are slotted to reserve band-
width in future frames. Longer frames better amortize the
latency of barrier synchronization and support bursty traf-
fic, but necessitate larger source queues. Our experiments,
consistent with results in the original paper, show that in
a 64-node network, a frame size of 1000 flits or more is re-
quired to provide high throughput on many traffic patterns.
To support asymmetric bandwidth allocation, whereby any
node may reserve a large fraction of overall frame band-
width, source queues must have enough space to buffer at
least a full frame worth of flits. Assuming a frame size of
1000 flits and 16-byte links, GSF requires a 16 KB source
queue at each network terminal. Scaling to larger network
configurations requires increasing the frame size and source
queues in proportion to the network size.

Figure 2 shows the performance of GSF under the uniform
random traffic pattern on a 256 node network with different
frame lengths and window sizes (number of in-flight frames).
To reach a level of throughput within 10% of a generic NOC
network with no QOS support, GSF requires a frame size of
8000 flits, necessitating 128 KB of storage per source queue.

Finally, GSF is inflexible in its bandwidth allocation, as
bandwidth may only be assigned at the granularity of in-
dividual nodes, complicating network management. For in-
stance, a parallel application with a fluctuating thread count
running on multiple cores can cause a network to be reprovi-
sioned every time a thread starts or ends, placing a burden
on the OS or hypervisor.

3. PREEMPTIVE VIRTUAL CLOCK
Our motivation in designing a new QOS system is to pro-

vide a cost-effective mechanism for fairness and service dif-
ferentiation in on-chip networks. Primary objectives are to
minimize area and energy overhead, enable efficient band-
width utilization, and keep router complexity manageable to
minimize delay. Another goal is to simplify network manage-
ment through a flexible bandwidth reservation mechanism to
enable per-core, per-application, or per-user bandwidth allo-
cation that is independent of the actual core/thread count.
This section details the resulting scheme, which we term
Preemptive Virtual Clock (PVC).

3.1 Overview
Bandwidth allocation: As the name implies, PVC was

partly inspired by Virtual Clock due its rate-based nature
and low scheduling complexity. Each flow in PVC is assigned
a rate of service, which is translated into a certain amount of
reserved bandwidth over an interval of time. Routers track
each flow’s bandwidth utilization, computing a packet’s pri-
ority based on its respective flow’s bandwidth consumption
and assigned rate. The packet with the highest priority at
each arbitration cycle receives service. Similar to Virtual
Clock, flows may consume bandwidth beyond the reserved
amount, potentially subjecting them to subsequent starva-
tion from rate-conformant flows. This problem arises as a
result of relying on past bandwidth usage in priority com-
putation.

To reduce the history effect, PVC introduces a simple
framing strategy. At each frame roll-over, which occurs after
a fixed number of cycles, bandwidth counters for all flows
are reset. Thus, PVC provides bandwidth and latency guar-
antees at frame granularity but uses rate-based arbitration
within a frame. Note that because flows are free to con-
sume idle network bandwidth, PVC does not require multi-
ple in-flight frames or sophisticated frame completion detec-
tion to achieve good throughput. Figures 3 and 4 compare
the framing schemes of GSF and PVC, respectively. GSF
supports multiple in-flight frames whose completion time is
determined dynamically via a global barrier network that
detects when all packets belonging to a frame have been de-
livered. In contrast, PVC has only one fixed-duration frame
active at any time. Packets in PVC are not bound to frames,
and a given packet may enter the network in one frame in-
terval and arrive in the next.

Freedom from Priority Inversion: PVC uses rela-
tively simple routers with a small number of virtual channels
per input port. Without per-flow queueing, packets from
flows that exceed their bandwidth allocation in a frame may
block packets from rate-conformant flows. Similarly, flows
that greatly exceed their assigned rate may impede progress
for flows that surpass their allocation by a small margin.
Both situations constitute priority inversion. PVC uses
a preemptive strategy to deal with such scenarios, remov-
ing lower priority packets from the network, thus allowing
blocked packets of higher priority to make progress.

To support retransmission of dropped packets, PVC re-

271

/0123452630
789:

Figure 3: GSF framing strategy: multiple in-flight
frames; length determined dynamically via a global
barrier network.

;<=>?@A>B?<
C DEF

Figure 4: PVC framing strategy: single in-flight
frame; fixed frame length.

quires a preemption recovery strategy. One option for pre-
emption recovery is a timeout. Establishing a safe timeout
interval is often difficult, however. Additionally, timeouts
necessitate large source buffers to support a sufficient num-
ber of outstanding transactions to cover the timeout de-
lay. Instead, we choose to use a dedicated non-discarding
ACK network for signaling packet completion and preemp-
tion events. The cost of such a network is low as its width is
small compared to the wide on-chip data network. In addi-
tion, this cost may be amortized by integrating the network
with the chip’s fault-tolerance logic to provide end-to-end
data delivery guarantees, which may be required as sub-
strates get less reliable due to technology scaling.

As packets are subject to discard, they must be buffered
at the source until an acknowledgement from the destina-
tion is received. In the case of dropped packets, preemption
of the header flit generates a NACK message to the source
node. Once received at the source, the NACK triggers a re-
transmission of the dropped packets. Thus, PVC requires a
small source window to buffer outstanding transactions. Ad-
vantageously, a small window size acts as a natural throttle,
or rate-controller, preventing individual nodes from over-
flowing the network’s limited buffering. The window only
needs to be big enough to support high throughput when
the interconnect is congestion-free and allows for prompt
ACK return. In our experiments, a 64-node network sees
little benefit from source windows larger than 30 flits on
most traffic patterns. As the network size is scaled up, the
window size must increase in proportion to the network di-
ameter to cover the longer ACK round-trip time. In a mesh
topology, the diameter is proportional to the square root of
the mesh size; thus, quadrupling a PVC network from 64 to
256 nodes requires doubling the source window to 60 flits.

Researchers have previously studied the use of preemption
to overcome priority inversion in interconnection networks.
Knauber and Chen suggest its use in wormhole networks for
supporting real-time traffic [8]. Their work, however, does
not consider impact on fairness, overall throughput, and re-
covery mechanisms. Song et al. also propose using preemp-
tion for real-time traffic [19]. Their scheme requires a ded-
icated FIFO at each router node where preempted packets
are stored. The FIFO must have enough buffering to store a
full-sized packet for each supported priority level, except the
highest, requiring a significant storage overhead in systems
with a large number of priority levels. Their work also does
not consider fairness and other QOS-related issues.

Flow Tracking and Provisioning: Finally, PVC routers
must track each flow’s bandwidth utilization for scheduling
and preemption purposes. While this requires additional
storage, the presence of per-flow state at each router offers

important advantages in network provisioning and band-
width utilization. For instance, several threads from an ap-
plication running on multiple cores can share the same flow
identifier. The ability to combine multiple flows into one en-
ables per-application bandwidth allocation, reducing man-
agement overhead when the thread count changes over the
lifetime of the application. In addition, coarser bandwidth
allocation granularity enables better bandwidth utilization
by allowing communication-intensive threads of an applica-
tion to recover idle bandwidth from less active threads.

3.2 QOS Particulars

3.2.1 Preemption Throttling

A common definition of priority inversion in a network
is the presence of one or more packets of lower priority
at a downstream node, impeding a higher priority packet’s
progress. A PVC system based on this definition experiences
very high preemption rates under congestion, considerably
degrading throughput as a result. To address this problem,
we use an alternative definition that potentially sacrifices
some degree of fairness in exchange for improved through-
put. Specifically, priority inversion in a PVC network occurs
when a packet cannot advance because all buffers (virtual
channels) at the downstream port are held by packets of
lower priority. Thus, as long as one or more downstream
VCs belong to a packet of same or higher priority as the
current one, preemption is inhibited. In addition, PVC em-
ploys three mechanisms for further controlling preemption
aggressiveness and balancing fairness with throughput.

The first mechanism is the allocation of some reserved
bandwidth per flow per each frame interval. The amount of
reserved bandwidth, in flits, is a function of the frame size
and the flow’s reserved rate. Any flit within the reserved
envelope is not subject to preemption, forming the basis for
PVC’s bandwidth guarantee.

The second mechanism for preemption throttling is based
on reducing the resolution of bandwidth counters by mask-
ing out some number of lower-order bits via a programmable
coarsening mask. Doing so reduces the resolution of the
computed priority values, effectively forming coarser prior-
ity classes. Packets that map to the same priority class may
not preempt each other.

The final preemption control technique built into PVC
addresses a pathological case in which multiple retransmis-
sions of a packet reduce a flow’s priority by incrementing
the bandwidth counters up to the preemption point. With
each unsuccessful transmission attempt, the flow’s priority
is further reduced, compromising throughput. To avoid this
pathology, PVC transmits the hop count up to the preemp-

272

tion point as part of the NACK sent back to the source node.
In turn, the source embeds the count in a dedicated field of
the retransmitted packet. This counter is decremented at
each hop until it reaches zero and inhibits the update of the
flow’s bandwidth counter as long as it is non-zero.

3.2.2 Guarantees

PVC is able to make four important guarantees: minimum
bandwidth, fairness, worst-case latency, and non-preemption
within a flow. By combining the last guarantee with a de-
terministic routing function, the system can provide in-order
delivery within a flow. In order for these guarantees to be
met, a PVC system must comply with the following require-
ments:

1. No link in the system is overbooked. Thus, for every
link, the sum of provisioned rates across all flows does
not exceed 100%.

2. The number of reserved flits for each flow is no less
than the size of the source window used for buffering
outstanding transactions.

3. Resource arbitration collisions (multiple requesters with
the same priority) are broken fairly (e.g., randomly).
Similarly, when multiple packets at an input port have
the same priority and one must be preempted, the se-
lection mechanism is fair.

The OS or hypervisor must satisfy the first two require-
ments whenever the network is configured and rates are
assigned to flows. The last requirement is ensured at de-
sign time. Note that the first requirement does not prevent
flows from exceeding the assigned rate whenever idle net-
work bandwidth is available, as rate enforcement occurs only
under contention.

Minimum bandwidth: Each PVC flow gets a certain
number of reserved flits, computed as a fraction of the frame
size based on the flow’s negotiated rate. These flits are not
preemptable. They also cannot be blocked by packets from
other flows that have exhausted their bandwidth reserve in
the current frame, as preemption guarantees freedom from
priority inversion. Finally, per the first requirement above,
no link in the system is overbooked. Thus, all reserved flits
that enter the system by the start of the frame are guaran-
teed to be delivered by the end.

Fairness: A PVC network distributes excess bandwidth
in a fair, rate-proportional manner, choosing the flow with
the lowest relative throughput (rate-adjusted bandwidth uti-
lization) at each arbitration event. To resolve resource con-
flicts, PVC uses fair (per requirement 3) priority arbiters,
described in Section 3.3. Note that the strength of this
guarantee is a function of the resolution of the bandwidth
counters used in priority computation.

Worst-case Latency: Once a packet enters a source
window, PVC guarantees its delivery by the end of the fol-
lowing frame interval. The guarantee is a direct outcome of
requirement 2 and the minimum bandwidth guarantee. Ba-
sically, any packet in the source window will be within the
reserved bandwidth cap in the new frame, thus assuring its
delivery in that frame.

Non-preemption within a flow: In PVC, two packets
belonging to the same flow may never preempt each other.
Monotonicity of the priority function guarantees freedom
from priority inversion within a flow. Priority is computed

GHIJKLM NLKJOP Q RRHSTJHUVW Q RRHSTJHUXY ZXY [\]^_]^`ab_cde`f`^_gh_i^bjklmnlopnqrsktuvotwvx \]yycd`^_gh_i^b z{|}~{�~{��z��}~{�~{�� �mnlmnlopnq���� �������h_� ��h_� ��h_� �� � � � � ��
��������

��� ¡¢£ ¤¢¥¦§¨©¡¥ª«¬®ª« ¨©¥®©¥¯°ª¬ª«±ª¢ ° ¥ª ²°ª¬ª«±ª¢ � ¡¢£ ¤¢¥¦«ª³¤¬¥ª«¬
´µ¶·¸¹º» ¼½¾½µ

¿ÀÁÂ
Figure 5: PVC router microarchitecture. High-
lighted structures are new; crosshatched structures
are modified relative to the baseline. Italics indicate
a register name.

by rate-scaling the flow’s bandwidth utilization, a monoton-
ically increasing function within a frame over a given link.
Priorities, which are inversely related to bandwidth utiliza-
tion, are thus monotonically decreasing. Therefore, for any
pair of packets within a flow at a common arbitration point,
the younger packet’s priority is guaranteed to be no greater
than that of the older packet, inhibiting preemption. The
relation holds across frame boundaries, since clearing the
bandwidth counters does not violate the monotonicity prop-
erty, as long as the counters are cleared synchronously across
the chip.

3.3 Microarchitecture
As a baseline, we adopt a generic NOC router architec-

ture detailed by Peh and Dally [15] that has no QOS sup-
port. The router has a three-stage pipeline consisting of vir-
tual channel allocation (VA), crossbar allocation (XA), and
crossbar traversal (XT). The router uses route-lookahead to
remove route computation from the critical path by per-
forming it in parallel with virtual channel allocation [4].

Figure 5 shows the modifications to the baseline NOC
router required to support PVC. Compared to the baseline,
a PVC router needs priority computation logic, which in-
cludes the per-flow bandwidth counters and reserved rate
registers. It also requires priority arbiters for virtual chan-
nel and switch arbitration instead of priority-oblivious ma-
trix arbiters in the baseline router. Finally, a PVC router
needs a preemption mechanism.

Priority computation logic: To support per-flow band-
width tracking and rate-based arbitration, PVC routers must
maintain per-flow bandwidth counters for each output port.
In addition, each flow needs a reserved bandwidth register
and a rate register, which can be shared across the ports.
Finally, one mask register per router stores the bandwidth
counter coarsening mask.

When a packet header arrives at a router’s input port,
priority computation logic uses the packet’s flow identifier
to access the bandwidth counter at the requested output
port (computed at the previous hop). The access is a read-
modify-write operation that increments the counter by the
size of the packet, in flits. Concurrent with the update, the
pre-incremented counter value is masked using the band-
width counter coarsening mask and scaled by the flow’s rate

273

register. The resulting priority value is used for virtual chan-
nel and crossbar arbitration in subsequent cycles.

Unfortunately, the above approach adds a new pipeline
stage for priority computation, increasing router delay. To
remove priority calculation from the critical path, we pro-
pose using the priority value computed at the previous hop
for virtual channel arbitration in the first cycle at a given
node. Concurrent with VA, the flow updates its bandwidth
counter and priority, using the updated priority for any sub-
sequent VA retries and switch arbitration requests.

The resulting approach is safe if each source node has a
unique flow identifier, as the flow’s bandwidth utilization at
the previous node is guaranteed to be no less than its usage
through any output port at the current node. Thus, the
new priority can never be lower than that of the previous
hop. However, this technique is not safe if multiple sources
share the same flow identifier, as the guarantee breaks down
under a convergent traffic pattern. Fortunately, we can still
use this approach with a minor modification: if a flow wins
virtual channel arbitration in its first cycle but the com-
puted priority is lower than the value used for arbitration,
the winning request is not granted and must rearbitrate with
the updated priority.

Priority arbiter: Allocation delay frequently determines
the router’s clock frequency in conventional networks, ne-
cessitating fast arbiters. PVC benefits from not requiring
per-flow buffering, which keeps arbitration complexity mod-
est even as the network size is scaled up. At the core of our
arbiter is a low-latency comparator design proposed by Har-
teros and Katevenis, which uses a binary comparison tree
with several acceleration techniques based on fast adder cir-
cuits [5]. We anticipate that a single-cycle priority arbiter
based on this comparator design can be realized for NOC
networks that have up to 64 virtual channels per router.

Preemption mechanism: To support preemption, PVC
requires a modification to the virtual channel allocator that
enables it to assign a VC to a requester even when none of
the VCs at a downstream port are free. For that purpose,
PVC maintains Min priority and Max priority registers at
each output port, corresponding to the downstream virtual
channel with the minimum and maximum priority value,
respectively. In parallel with virtual channel arbitration,
each requester’s priority is compared to the value of the
Max priority register. If the requester’s priority exceeds Max
priority, the virtual channel corresponding to Min priority
is tentatively marked for preemption. VA logic assigns this
virtual channel to the winning requester if none of the legal
VCs are free. Of course, any packet within the reserved
bandwidth envelope is not eligible for preemption.

In the next cycle, while the winning VC arbitrates for
crossbar access, the resources associated with the preempted
packet are released at the current node. If some part of the
preempted packet has already been transferred, preemption
logic sends a kill signal to the downstream node over a ded-
icated wire. The process of releasing resources held by the
packet is repeated at each downstream hop until the header
flit is encountered. Preemption of the header flit generates
a NACK message to the source, which triggers a retransmis-
sion of the message.

3.4 Comparison to Prior Approaches
Table 1 compares three QOS schemes – WFQ, GSF, and

PVC – on the feature set presented in Section 2.1. WFQ has

Table 1: Feature comparison of QOS schemes. ’+’
indicates good, ’o’ is fair, and ’-’ is poor.

Feature WFQ GSF PVC

a) Fairness + + +
b) Isolation + o o
c) Bandwidth utilization + o +
d) Flexible bandwidth + - +

allocation granularity
e) Performance overhead - + +
f) Delay proportional + - +

to bandwidth usage
g) Area overhead - - +
h) Energy overhead - o o
i) Performance scalability + o o
j) Implementation complexity o + o

excellent fairness guarantees and strong performance isola-
tion that scale well with network size. However, it requires
per-flow queueing and complex scheduling, resulting in large
area and energy cost, with potentially high per-hop latency.

GSF, on the other hand, has simple routers and modest
frame management hardware, yielding low router delay and
low implementation complexity. However, by pushing much
of the scheduling responsibility into the terminals, GSF sac-
rifices throughput and has no flexibility in its bandwidth al-
location. GSF’s other shortfall lies in its poor suitability to
fine-grained communication, as our experimental evaluation
in Section 5 confirms. Because injection into the head frame
is disallowed, this scheme introduces additional latency un-
der contention. Thus, delay is unrelated to bandwidth usage.
In fact, aggressive senders can temporarily block network ac-
cess to sources with low injection rates, making the scheme
susceptible to a denial-of-service attack.

PVC has good bandwidth efficiency, modest router com-
plexity and low area overhead. A shortcoming of PVC com-
pared to GSF is PVC’s higher implementation complexity,
which stems from the distributed protocols associated with
preemption and ACK/NACK handling, as well as the logic
for per-flow bandwidth tracking at each router node.

Both PVC and GSF provide only fair isolation of flows,
which stems from their lack of per-flow buffering at each
router node. They also have some undesirable energy over-
heads. In PVC, the overhead results from re-transmission
of packets, flow table lookups, and the ACK network; in
GSF, it is from source queue accesses. Finally, both ap-
proaches leave room for improvement with regard to perfor-
mance scalability. As the network size is scaled up, GSF be-
comes increasingly prone to bandwidth coupling and other
efficiency overheads that reduce its throughput. In PVC,
more nodes increase the likelihood of contention which can
cause preemptions and reduce throughput as a consequence.

4. METHODOLOGY
We use a custom cycle-precise simulator to evaluate three

QOS schemes – WFQ, GSF, and PVC – on performance and
fairness using the metrics from Section 2.2. As a baseline,
we use a generic NOC with no QOS support. Details of the
simulation infrastructure are summarized in Table 2.

Experiments: To evaluate the ability of different schemes
to meet fairness guarantees while maximizing throughput,
we use hotspot and uniform random synthetic traffic pat-

274

Table 2: Simulation methodology details; 64-node network (256 nodes).
Network 64 and 256 nodes, 16 byte link width, dimension order routing
Synthetic benchmarks hotspot and uniform random. 1- and 4-flit packets, stochastically generated
PARSEC traces blackscholes, bodytrack, ferret, fluidanimate, vips, x264: sim-medium datasets.
Baseline network 6 VCs per network port, 5 flits per VC; 1 injection VC, 2 ejection VCs
WFQ network Per-flow queueing at each router node: 64 (256) queues, 5 flits per queue
GSF network 2K (8K) frame size, 6 (24) frames in-flight, 8 cycle frame reclamation delay;

6 VCs per network port with 1 reserved VC, 5 flits per VC; 1 injection VC, 2 ejection VCs
PVC network 50K cycle frame, 30 (60) flit source window

6 VCs per network port with 1 reserved VC, 5 flits per VC; 1 injection VC, 2 ejection VCs

terns whose network behavior is easy to understand, sim-
plifying analysis. The uniform random pattern is also used
to understand how well the different approaches scale when
the network size is increased from 64 to 256 nodes.

Additionally, we assess the ability of GSF and PVC, the
two schemes without per-flow buffering, to provide efficient
fine-grained communication and performance isolation in the
face of a denial-of-service attack. For this experiment, we
dynamically combine traffic from PARSEC [1] application
traces with synthetic “attack” traffic. The traces were col-
lected using the M5 full-system simulator [2] executing PAR-
SEC benchmarks in their entirety. Our infrastructure sup-
ports the six applications in Table 2; of these, we present
results for blackscholes, fluidanimate and vips as a represen-
tative subset.

We also demonstrate PVC’s ability to provide differenti-
ated services by specifying a custom bandwidth allocation
on a hotspot traffic pattern. Finally, we evaluate energy and
storage overheads of different schemes. For energy analysis,
we use modified versions of CACTI 6 [10] and ORION 2 [6].

For all configurations except PVC’s differentiated services
experiment, we assume that the actual traffic pattern is not
known ahead of time and allocate all flows an equal share of
network bandwidth.

WFQ configuration: Weighted Fair Queueing repre-
sents our ideal QOS solution with respect to fairness, per-
formance isolation, and bandwidth utilization efficiency. Al-
though we believe that WFQ is a poor fit for most NOC sub-
strates due its high buffer requirements and complex sched-
ule computation, we use it as a yard-stick for evaluating the
two other QOS schemes. We idealize the WFQ routers by
endowing them with an unrealistically low 3-cycle pipeline
latency in the contention-free case – the same latency en-
joyed by GSF and PVC routers that have simple schedule
computation and no per-flow queueing.

GSF configuration: The baseline GSF configuration in
the 64-node network features a 2000-cycle frame, 6 in-flight
frames and an 8-cycle frame reclamation delay. The routers
have 6 VCs per input port, with one reserved VC for the
head frame. This configuration is similar to the default setup
in the original paper by Lee et al. [9], except that we use a
shorter frame reclamation delay and larger frame size, both
of which improve GSF’s performance. For the scalability
experiment, we quadruple both the frame and window size
to 8000 cycles/frame and 24 frames, ensuring good perfor-
mance (as shown in Figure 2).

PVC configuration: In a PVC network, the choice of
the frame size has important implications for both through-
put and fairness. Larger frames are desirable to amortize
various protocol overheads and minimize the effect of gently

relaxed fairness settings. On the other hand, longer frames
may result in greater drift among the different flows’ band-
width consumption, increasing the likelihood of preemption
for flows with high bandwidth utilization. Empirically, we
found 50,000 cycles to be a good frame length for balancing
these conflicting requirements. We compute each flow’s re-
served bandwidth quota by multiplying its rate by 95% of
the frame size. Five percent of frame bandwidth is uncom-
mitted, allowing PVC to tolerate various overheads, such as
router delays and ACK return latencies, without compro-
mising bandwidth guarantees.

Our PVC baseline is configured to maximize fairness, po-
tentially at the expense of throughput, using unmasked band-
width counter values for priority computation. We also show
the effect of relaxed fairness settings on select experiments
by increasing the bandwidth counter coarsening mask to 8
and 16 bits. The latter configuration completely eliminates
all preemptions by effectively masking out the full value of
the bandwidth counter.

PVC’s router configuration is similar to that of GSF with
6 VCs per port, including one for reserved flits. Unlike GSF,
PVC does not require a reserved VC, since preemption guar-
antees freedom from priority inversion. However, we found
that reserving a VC can eliminate some preemptions, reduc-
ing energy and latency cost of retransmissions. PVC uses
30-flit source windows for buffering outstanding packets for
possible retransmission. In the 256-node network, we double
the source window to 60 flits.

For the ACK network, we assume a simple design with
single-flit messages and a single 10-flit buffer per input port.
Message size is 16 bits in the 64 node network (20 bits with
256 nodes), which is sufficient to cover the address, index
of the acknowledged packet, hop count to the preemption
point (if applicable), and status (ACK or NACK).

5. EVALUATION

5.1 Quality-of-Service Results
First, we evaluate the QOS schemes on their ability to pro-

vide fair bandwidth allocation in a highly congested network
and compare them to a system without QOS support. We
use a hotspot traffic pattern with a corner node as the epicen-
ter, and simulate 5 million cycles after the warm-up interval.
Per Section 2.2, we are interested in relative throughput of
different nodes. A tight distribution of throughput values
across all flows is desirable, indicating a fair allocation of
bandwidth to all nodes.

Table 3 shows the mean, minimum, and maximum through-
put across the flows for each configuration. Both absolute
throughput, in flits, and relative, as a percentage of the

275

Table 3: Relative throughput of different QOS schemes, in flits. Maximum aggregate throughput in the
measurement interval is 5 million flits.

total throughput (% of max) mean min (% of mean) max (% of mean) std dev (% of mean)

No QOS 4,999,972 (100%) 79,364 1,645 (2.1%) 100,966 (127.2%) 36,237 (45.7%)
WFQ 4,999,907 (100%) 79,363 79,333 (100.0%) 79,379 (100.0%) 10 (0.01%)
GSF 4,763,217 (95.3%) 75,607 75,433 (99.8%) 75,737 (100.2%) 56 (0.07%)
PVC 4,916,383 (98.3%) 78,038 77,042 (98.7%) 79,351 (101.7%) 607 (0.78%)

Table 4: Packet delay variation (jitter).
mean (cycles) max (cycles) std dev

No QOS 264 20,675 214
WFQ 63 63 0
GSF 63 1,949 239
PVC 63 1,645 30

mean, are depicted. We also include the standard deviation
from the mean as well as aggregate system throughput (first
column). The latter is useful for assessing the efficiency of
different schemes in utilizing available bandwidth.

In general, we see that all three QOS schemes are capa-
ble of fair bandwidth allocation. WFQ achieves the tightest
distribution of bandwidth to nodes, benefiting from per-flow
queueing and a sophisticated scheduling policy. GSF also
performs very well, as source-based bandwidth reservation
ensures equitable bandwidth allocation within each frame.
However, GSF has the lowest aggregate throughput of any
scheme, exposing inefficiencies in its bandwidth allocation.
PVC has the most slack in its bandwidth distribution, but
still offers good fairness with little deviation among nodes
and standard deviation of just 0.8% of the mean throughput.
Finally, a network with no QOS support offers high aggre-
gate throughput but no fairness, with the node farthest from
the hotspot receiving just 2.1% of the mean bandwidth.

Slack in PVC’s throughput fairness has two primary causes.
The first is due to fixed frame length, which allows some
flows to be slightly ahead of their peers in bandwidth con-
sumption by frame rollover. This favors nodes closer to the
hotspot, as flits from different nodes progress in wavefronts.
We attribute the second source of diminished fairness to our
definition of priority inversion, described in Section 3.2.1,
which inhibits preemptions whenever a downstream VC is
held by a packet of same or higher priority as that of a re-
quester upstream. Thus, multiple packets of lower priority
can occupy other VCs at a given downstream port and make
progress whenever the VC held by the higher priority packet
experiences a stall.

We also measure the packet delay variation, or jitter, as-
sociated with different QOS approaches. We modify our
experimental setup to generate only single-flit packets, thus
simplifying analysis. During the measurement phase, we
compute the delay difference for each pair of consecutive
packets within a flow. We record all such differences, and
use them to compute the metrics for each flow. The aggre-
gate mean, max and standard deviation across all flows is
presented in Table 4.

As expected, WFQ has the tightest distribution of jitter
values, with virtually no variation across the flows or within
any flow, benefiting from per-flow queueing coupled with
a powerful scheduling function. GSF, on the other hand,
shows the worst distribution of jitter values among QOS

schemes due to unordered packet service within a frame. In
contrast, PVC’s standard deviation of jitter values is nearly
eight times lower than GSF’s, thanks to PVC’s rate-based
scheduling within a frame. Like GSF, PVC does not pro-
vide any jitter guarantees, as it is ultimately a frame-based
approach. However, PVC’s rate-based features can reduce
packet delay variation in many cases, as this example shows.

5.2 Throughput and Performance Scalability
We use a uniform random traffic pattern to assess the

performance of the different QOS approaches in terms of la-
tency and maximum throughput. This all-to-all workload
is self-balancing, loading all bisection links uniformly and
not favoring any particular node. In fact, no fairness mech-
anism is necessary to achieve equal bandwidth distribution
among the network nodes. Thus, this pattern is effective
at exposing the performance overheads associated with the
respective QOS approaches.

Figure 6(a) shows the latency-throughput curves for the
various schemes. Three PVC curves show the difference in
throughput between our baseline (conservative) fairness set-
ting and two relaxed configurations. Labels on the baseline
PVC curve show the number of wasted hops due to dropped
flits as a percentage of all hop traversals at 20%, 25%, and
30% injection rates. The drop rate peaks at 35% injection
rate with 5.9% of all hop traversals resulting in a preemption
(not shown in the figure).

The best throughput is achieved by the generic NOC due
to high VC buffer utilization. In comparison, our WFQ im-
plementation binds each flow to a dedicated queue, causing
head-of-line blocking within each flow. GSF and the most
lax PVC configuration (PVC LAX16) have similar perfor-
mance, but fall short of a QOS-oblivious network on through-
put due to restrictions on VC utilization. In both of these
schemes, multiple packets are not allowed to share a given
virtual channel to avoid priority inversion. The NO QOS
configuration is not hampered by this restriction, allowing
multiple packets to queue up behind each other in a VC,
thereby improving buffer utilization and boosting through-
put. The PVC network with the strictest fairness setting
(PVC BASE) degrades throughput by 10% relative to the
laxest configuration (PVC LAX16) due to preemptions.

Figure 6(b) shows the effects of scaling the network size
to 256 nodes. The relative performance of different schemes
remains unchanged. The fairest PVC configuration again
exhibits some throughput loss due to dropped packets, which
result in 3.4% of hops wasted at a 15% injection rate and
saturate near 30% injection rate (not shown in figure) with
9.5% of all hop traversals leading to a preemption. One
way to combat the performance overhead of packet drop is
through relaxed fairness settings, which the figure confirms
to be an effective way to improve throughput.

276

ÃÄÃÅÃÆÃÇÃÈÃÃ
È Å É ÈÃ ÈÊ ÈÆ ÈË ÄÄ ÄÌ ÄÇ ÊÈ ÊÅÍÎÏÐÑÒÏÓÑÔÕÏÖ×ÑÖÏØ

ÔÙÚÔÙÔ×ÏÛÜ
ÝÞßàáâãäÞ åæâà çèé

êëìíëîïðíñîðìòóìôõö÷ì øùîúõö÷ì ûùüýõö÷ì ûùüþôÿ�����������
(a) 64-node mesh

������
	�
��
��

 � � �

�
�

��������������������
���������

� !"#$�% &'$" ()*
+,-.,/01.2/1-	3-��456-78/9456-:8;	456-:8;
�<=>?@=A?@=@?

(b) 256-node mesh

Figure 6: Performance of WFQ, GSF and PVC on uniform random traffic. Labels on the PVC BASE curve
show the number of retried hops as a percentage of total hop traversals.

5.3 Performance Isolation
To test the ability of NOC QOS schemes to provide perfor-

mance isolation without per-flow queueing, we orchestrate a
denial of service (DOS) attack against multi-threaded appli-
cations from the PARSEC suite. Figure 7 shows the con-
figuration for this experiment. Black nodes in the left-most
column are “aggressors” which send packets to the striped
node in the lower-right corner of the mesh at an average
rate of 20%. The rest of the nodes, including the striped
node, belong to PARSEC threads. The aggressors may be a
virus intentionally trying to disrupt network performance or
may be benign threads accessing a shared cache bank at the
noted location. We compare the average latency of PAR-
SEC packets in this configuration to their latency executing
alone on a substrate without any interference.

Our PVC baseline maps each core to a different flow with
a distinct bandwidth allocation. However, PVC offers the
capability to map all threads of an application to a common
flow, allowing idle bandwidth from one application thread to
be transparently used by another. This feature maximizes
bandwidth utilization and reduces the likelihood of preemp-
tions for communication-intensive threads. To evaluate the
performance of PVC that maps all PARSEC threads to a sin-
gle flow, we provisioned the flow with 7/8-ths of the network
capacity, which is the sum of rates of individual PARSEC
threads in our PVC baseline.

The results of the evaluation are presented in Figure 8.
Five bars for each of the three benchmarks show the average
latency of PARSEC packets. The first bar corresponds to a
network with no QOS support; the second and third are for
GSF and PVC baselines, respectively; the fourth bar shows
the PVC configuration with PARSEC threads aggregated
into a single flow; the last bar marks the performance of
each PARSEC application executing with no attack traffic.

Without QOS support,“aggressor”threads overwhelm net-
work’s limited buffering, effectively preventing PARSEC pack-
ets from entering the network. The rate at which PARSEC
packets are able to acquire network resources is lower than
their injection rate; as a result, their delays grow very large
due to our open-loop simulation methodology.

By comparison, both GSF and PVC offer some degree of
performance isolation. In a PVC network, the maximum
latency increase for an average PARSEC packet over an iso-

Table 5: Differential bandwidth allocation in PVC.

min max standard
throughput throughput deviation

10% allocation 98.8% 101.2% 1.6%
1% allocation 98.0% 104.5% 1.3%

lated execution is 22%. This is significantly better than the
protection that GSF is able to offer, which increases the
latency over 500% in the worst case. The reason for GSF’s
poor performance is its scheduling mechanism. Because GSF
does not allow injection into the head (oldest) frame to ac-
celerate frame reclamation, new packets are assigned to a
future frame. This forces newly generated PARSEC pack-
ets to compete for buffer space with packets from aggressor
threads that may belong to a more future frame, expos-
ing PARSEC traffic to priority inversion. Importantly, GSF
violates property (f) from Section 2.1, which states that de-
lay should be proportional to bandwidth usage and explains
GSF’s poor performance in this scenario.

Finally, we note that the aggregated PVC configuration
(PVC 1FLOW) shows even better resilience to the attack
than the PVC baseline, increasing PARSEC’s average packet
latency by just 6-7% over stand-alone execution. The im-
provement comes as a result of improved bandwidth uti-
lization among PARSEC threads, as bandwidth reserved for
threads that rarely communicate can be recycled among re-
maining threads.

5.4 Differentiated Services
To better support concurrent execution of multiple appli-

cations on a single substrate, PVC allows for differential
bandwidth allocation to satisfy applications’ diverse run-
time requirements. To demonstrate PVC’s ability to enforce
a differential bandwidth allocation, we modify our hotspot
configuration by provisioning each of four nodes with 10% of
the bandwidth. These well-provisioned nodes are the three
corners other than the hotspot, as well as a node in the cen-
ter of the network at location 〈3, 3〉. The rest of the nodes
each get 1% of the bandwidth. The packet generators at the
nodes exceed the provisioned rate, ensuring the relevance of
the QOS mechanism.

277

Figure 7: PARSEC setup

BCDDECBFG BCBHGCIJD KCIDLCBHG
BEB BBB HEEJ EL ELED EI EDEGMB EKMJ EGMINNONOONOOONOOOONOOOOONOOOOOONOOOOOOO

PQRSTUSVWQXU YQZ[\R][^R_X `[aUbcdefgdhbijklmf
nodpqfpdrns tnsnqduv

wx yz{|{}~�����{�~����}�z�~��{�� ��x��
Figure 8: PARSEC results

����������������
� �� �� �� �� �� �� �� �� ���������������

�������
 ¡¢£¤¥¦§¡ ¨©¥£ ª«¬

®¯°±²³´µ̄ ¶· ¹̧º¶·¸ »¼½¾ ¿½½ÀÁÂ Ã½Á°Ä® ÅÁ®Á®

Figure 9: PVC Energy Overhead over a Generic
NOC with no QOS support.

Table 5 shows the standard deviation, minimum, and max-
imum throughput relative to the provisioned bandwidth for
the two allocations. PVC is successful in differentiated band-
width provisioning with a standard deviation of under 2%
for both allocations. The 6.5% difference between the min-
imum and maximum throughput among nodes with a 1%
allocation is a result of preemptions that arise due to cer-
tain nodes in the path of flows with high provisioned band-
width. The fewer hops a flow with the low allocation shares
with a high-allocation flow, the less likely it is to experience
preemptions, resulting in higher throughput.

5.5 Energy
Figure 9 shows the energy expended in a 64-node PVC

network relative to a baseline NOC with no QOS support on
a uniform random traffic pattern. Four primary components
of PVC’s energy overhead are the source buffers, flow table
lookups, ACK network, and retransmission of preempted
messages.

Prior to saturation, PVC expends 13% more energy than
the baseline due to source queue writes, flow table look-ups
and updates, and ACK message overhead. As few preemp-
tions occur before saturation, retransmissions incur very lit-
tle energy overhead. As discussed in Section 5.2, the pre-
emption rate peaks when the injection rate reaches 35% and
holds steads thereafter, which Figure 9 confirms. In satura-
tion, retransmissions are responsible for an additional 6% of
the energy consumed. Other components of PVC’s energy

Table 6: Per-node storage requirements. Absolute
values and relative to a generic NOC without QOS.

64 nodes 256 nodes
bytes relative bytes relative

No QOS 1,920 1 1,920 1
WFQ 5,120 2.7 20,480 10.7
GSF 33,920 17.7 129,920 67.7
PVC 3,376 1.8 6,564 3.4

overhead also increase by 5-8% in saturation, contributing
an insignificant amount to the overall energy budget.

WFQ, GSF, and PVC each have energy advantages and
disadvantages. WFQ requires large per-flow buffers within
each router, and a message must be written into and read
from each of these as it traverses the network. GSF elimi-
nates these buffers, but instead requires large source queues.
Additionally, the large buffer capacity in both WFQ and
GSF incur a non-trivial leakage energy penalty. PVC re-
quires only small source buffers and also eliminates the per-
flow buffers, giving it a potential storage energy advantage
relative to the other two schemes.

5.6 Storage Overhead
We compare the storage requirements of different QOS

schemes in 64- and 256-node networks in Table 6. For each
configuration, both the absolute amount of storage, in bytes,
and relative increase over a generic baseline with no QOS
support is specified. For simplicity, we ignore the area over-
head of the packet scheduling and buffer management logic,
as well as the buffering at the local interfaces.

In WFQ, the primary source of storage overhead are the
per-flow queues at each routing node. In contrast, GSF does
not require per-flow buffering at the routers, instead neces-
sitating large queues at the source nodes. PVC has three
primary sources of area overhead: per-flow state in each
router, buffering for outstanding transactions at each source
interface, and flit buffers in the ACK network.

To store per-flow state, PVC needs bandwidth counters
(one per flow) for each output port, as well as a reserved
rate register and a reserved bandwidth register that may be
shared across the ports, for a total of seven registers per
flow. With a frame duration of 50,000 cycles or less, PVC
requires 16 bits of storage per register.

278

In the 64-node network, PVC has 1.5 times less buffer-
ing than WFQ and 10 times less than GSF. In the larger
network, PVC’s storage footprint is 3 times smaller than
WFQ’s and 20 times smaller than GSF. Although the dif-
ference between WFQ and PVC may not appear significant,
WFQ’s scheduling and buffering overheads are in the criti-
cal path of each router node, which is undesirable in latency
and energy sensitive on-chip interconnects.

6. CONCLUSION
Future CMP and SOC substrates will integrate hundreds

or thousands of compute and memory elements on a sin-
gle die. These elements will be connected by an on-chip
network, which will shoulder the responsibility of providing
fair access to shared resources while meeting performance,
area, and energy targets. Prior network QOS schemes suffer
from high buffer overheads, complex scheduling functions
or poor bandwidth utilization, motivating us to propose
Preemptive Virtual Clock, a novel QOS scheme specifically
designed for on-chip interconnects. By combining features
of frame-based and rate-based approaches, PVC provides
strong guarantees, enforces flow isolation, and enables effi-
cient bandwidth utilization with modest hardware cost and
complexity. PVC does not require per-flow buffering, re-
ducing router area and energy footprint. Priority inversion
in a PVC network is averted through preemption of lower-
priority packets. To support preemption, PVC requires a
dedicated low-bandwidth ACK network and a small win-
dow of outstanding transactions at each node. Finally, PVC
enables flexibility in network provisioning by allowing band-
width to be allocated at any granularity from a single thread
to an application to a user.

An evaluation of PVC in a 64-node network shows that
it can guarantee fairness and provide differentiated services
with low latency and good throughput. PVC also delivers
strong performance isolation, demonstrated in a denial-of-
service scenario against three PARSEC benchmarks. Re-
sults confirm that the average latency of PARSEC packets
increases by less than 22% with PVC over their execution in
isolation. In comparison, a previously proposed NOC QOS
scheme called GSF causes latency to increase by up to 500%.

Acknowledgments

This research is supported by NSF CISE Infrastructure grant
EIA-0303609 and NSF grant CCF-0811056.

7. REFERENCES

[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. In International Conference on Parallel
Architectures and Compilation Techniques, October 2008.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 Simulator: Modeling
Networked Systems. IEEE Micro, 26(4):52–60, 2006.

[3] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In SIGCOMM
’89: Symposium proceedings on Communications
architectures & protocols, pages 1–12, New York, NY, USA,
1989. ACM.

[4] M. Galles. Scalable Pipelined Interconnect for Distributed
Endpoint Routing: The SGI Spider Chip. In HOT
Interconnects IV, pages 141–146, 1996.

[5] K. Harteros and M. Katevenis. Fast Parallel Comparison
Circuits for Scheduling. Technical Report TR-304,
FORTH-ICS, March 2002.

[6] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A
fast and accurate noc power and area model for early-stage
design space exploration. In Design, Automation, and Test
in Europe, pages 423–428, April 2009.

[7] J. H. Kim and A. A. Chien. Rotating Combined Queueing
(RCQ): Bandwidth and Latency Guarantees in Low-Cost,
High-Performance Networks. In International Symposium
on Computer Architecture, pages 226–236, 1996.

[8] K. Knauber and B. Chen. Supporting Preemption in
Wormhole Networks. In COMPSAC ’99: 23rd
International Computer Software and Applications
Conference, pages 232–238, 1999.

[9] J. W. Lee, M. C. Ng, and K. Asanovic.
Globally-Synchronized Frames for Guaranteed
Quality-of-Service in On-Chip Networks. In International
Symposium on Computer Architecture, pages 89–100, 2008.

[10] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA Organizations and Wiring Alternatives
for Large Caches with CACTI 6.0. International
Symposium on Microarchitecture, pages 3–14, December
2007.

[11] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In MICRO,
pages 146–160, 2007.

[12] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.
Fair Queuing Memory Systems. In MICRO, pages 208–222,
2006.

[13] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private
caches. In International Symposium on Computer
Architecture, pages 57–68, 2007.

[14] J. D. Owens, W. J. Dally, R. Ho, D. J. Jayasimha, S. W.
Keckler, and L.-S. Peh. Research challenges for on-chip
interconnection networks. IEEE Micro, 27(5):96–108, 2007.

[15] L.-S. Peh and W. J. Dally. A Delay Model and Speculative
Architecture for Pipelined Routers. In International
Symposium on High-Performance Computer Architecture,
pages 255–266, January 2001.

[16] KC256. http://en.wikipedia.org/wiki/Kilocore.

[17] IP Packet Delay Variation Metric for IP Performance
Metrics. RFC 3393. http://www.ietf.org/rfc/rfc3393.txt.

[18] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers,
J. Chang, R. Varada, M. Ratta, and S. Kottapalli. A 45nm
8-Core Enterprise Xeon Processor. In International
Solid-State Circuits Conference, pages 98–99, February
2009.

[19] H. Song, B. Kwon, and H. Yoon. Throttle and Preempt: A
New Flow Control for Real-Time Communications in
Wormhole Networks. In International Conference on
Parallel Processing, pages 198–202, 1997.

[20] D. Stiliadis and A. Varma. Design and Analysis of
Frame-Based Fair Queuing: A New Traffic Scheduling
Algorithm for Packet Switched Networks. In
SIGMETRICS, pages 104–115, 1996.

[21] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and
A. Agarwal. On-Chip Interconnection Architecture of the
Tile Processor. IEEE Micro, 27(5):15–31,
September/October 2007.

[22] L. Zhang. Virtual Clock: A New Traffic Control Algorithm
for Packet Switching Networks. In SIGCOMM, pages
19–29, 1990.

279

