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Abstract 

We present the design for the NYU 
Ultracomputer, a shared-memory MIMD parallel 
machine composed of thousands of autonomous 
processing elements. This machine uses an enhanced 
message switching network with the geometry of an 
Omega-network to approximate the ideal behavior of 
Schwartz's paracomputer model of computation and to 
implement efficiently the important fetch-and-add 
synchronization primitive. We outline the hardware 
that would be required to build a 4096 processor 
system using 1990's technology. We also discuss 
system software issues, and present analytic 
studies of the network performance. Finally, we 
include a sample of our effort to implement and 
simulate parallel variants of important scientific 
programs. 

The major thrust of this report is to outline 
and justify, in some detail, the proposed hardware 
and present the analytic and simulation results 
upon which parts of the design are based. We also 
discuss system software issues and describe some of 
our ongoing efforts to produce parallel versions of 
important scientific programs (but the reader 
should see Gottlieb et al. [81] and Kalos [81] 
respectively for a more detailed treatment of these 
last two topics). Section 2 of the present report 
reviews the idealized computation model upon which 
our design is based; section 3 presents the 
machine design; section 4 analyzes network 
performance; section 5 highlights a parallel 
scientific program; and section 6 summarizes our 
results. 

1.0 INTRODUCTION 

Within a few years advanced VLSI (very large 
scale integration) technology will produce a fast 
single-chip processor including high-speed 
floating-point arithmetic. This leads one to 
contemplate the level of computing power that would 
be attained if thousands of such processors 
cooperated effectively on the solution of 
large-scale computational problems. 

2.0 MACHINE MODEL 

In this section we first review the 
paracomputer model, upon which our machine design 
is based, and the fetch-and-add operation, which we 
use for interprocessor synchronization. After 
illustrating the power of this model, we examine 
alternates and justify our selection. Although the 
paracomputer model to be described is not 
physically realizable, we shall see in section 3 
that close approximations can be built. 

The NYU "Ultracomputer" group has been 
studying how such ensembles can be constructed for 
effective use and has produced a tentative design 
that includes some novel hardware and software 
components. The design may be broadly classified 
as a general purpose MIMD machine accessing a 
central shared memory via a message switching 
network with the geometry of an Omega-network. 
(For related designs see Burroughs [79], Siegel et 
al. [81], Smith [78], Sullivan etal. [77], and 
Swan et al. [77].) 

* Current address University of Illinois, Urbana. 

** Current address University of Toronto. 

This work was supported in part by the National 
Science Foundation and the Applied Mathematical 
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2.1 Paracomouters 

An idealized parallel processor, dubbed a 
"paraeomputer" by Schwartz [80] and classified as a 
WRAM by Borodin and Hopcroft [81], consists of 
autonomous processing elements (PEs) sharing a 
central memory. The model permits every PE to read 
or write a shared memory cell in one cycle. In 
particular, simultaneous reads and writes directed 
at the same memory cell are effected in a single 
cycle. 

We augment the paracomputer model with the 
"fetch-and-add" operation (described below) and 
make precise the effect of simultaneous access to 
the shared memory. To accomplish the latter we 
define the serialization DrlnciDle: The effect of 
simultaneous actions by the PEs is as if the 
actions occurred in some (unspecified) serial 
order. For example, consider the effect of one 
load and two stores simultaneously directed at the 
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same memory cell. The cell will come to contain 
some one of the quantities written into it. The 
load will return either the original value or one 
of the stored values, possibly different from the 
value the cell comes to contain. Note that 
simultaneous memory updates are in fact 
accomplished in one cycle; the serialization 
principle speaks only of the effect of simultaneous 
actions and not of their implementation. 

We stress that paracomputers must be regarded 
as idealized computational models since physical 
limitations, such as restricted fan-in, prevent 
their realization. In the next section we review 
the technique whereby a connection network may be 
used to construct a parallel processor closely 
approximating our enhanced paracomputer. 

2.2 The Fetch-And-Add Ooeration 

We now introduce a simple yet very effective 
interprocessor synchronization operation, called 
fetch-and-add, which permits highly concurrent 
execution of operating system primitives and 
application programs. The format of this operation 
is F&A(V,e), where V is an integer variable and e 
is an integer expression. This indivisible 
operation is defined to return the (old) value of V 
and to replace V by the sum V+e. Moreover, 
fetch-and-add must satisfy the serialization 
principle stated above: If V is a shared variable 
an~ many fetch-and-add operations simultaneously 
address V, the effect of these operations is 
exactly what it would be if they occurred in some 
(unspecified) serial order, i.e. V is modified by 
the appropriate total increment and each operation 
yields the intermediate value of V corresponding to 
its position in this order. The following example 
illustrates the semantics of fetch-and-add: 
Assuming V is a shared variable, if PEi executes 

ANSi <-- F&A(V,ei) , 
and if PEj simultaneously executes 

ANSj <-- F&A(V,eJ) , 
and if V is not simultaneously updated by yet 
another processor, then either 

ANSi <-- V or ANSi <-- V+ej 
ANSj <-- V+ei ANSj <-- V 

and, in either case, the value of V becomes 
V+ei+ej. 

For another example consider several PEs 
concurrently applying fetch-and-add, with an 
increment of I, to a shared array index. Each PE 
obtains an index to a distinct array element 
(although one does not know beforehand which 
element will be assigned to which PE). 
Furthermore, the shared index receives the 
appropriate total increment. 

Section 3 presents a hardware design that 
realizes fetch-and-add without significantly 
increasing the time required to access shared 
memory and that realizes simultaneous 
fetch-and-adds updating the same variable in a 
particularly efficient manner. 

2.3 The Power 9~ Fetch-And-A4d 

Since in a parallel processor the relative 
cost of serial bottlenecks rises with the number of 
PEs, users of future ultra-large-scale machines 
will be anxious to avoid the use of critical (and 
hence necessarily serial) code sections, even if 
these sections are small enough to be entirely 
acceptable in current practice. 

If the fetch-and-add operation is available, 
we can perform many important algorithms in a 
completely parallel manner, i.e. without using any 
critical sections. For example Gottlieb et al. 
[81]* presents a completely parallel solution to 
the readers-writers problem** and a highly 
concurrent queue management technique that can be 
used to implement a totally decentralized operating 
system scheduler. We are unaware of any other 
completely parallel solutions to these problems. 
To illustrate the nonserial behavior of these 
algorithms, we note that given a single queue that 
is neither empty nor full, the concurrent execution 
of thousands of inserts and thousands of deletes 
can all be accomplished in the time required for 
just one such operation. Other highly parallel 
fetch-and-add-based algorithms appear in Kalos 
[81], Kruskal [81], and Rudolph [82]. 

2.4 Generalizing Fetch-And-Add 

One can define a more general fetch-and-phi 
operation that fetches the value in V and replaces 
it with phi(V,e). Of course defining phi(a,b)=a+b 
gives fetch-and-add. If phi is both associative 
and commutative, the final value in V after the 
completion of concurrent fetch-and-phi's is 
independent of the serialization order chosen. 

We now show that two important coordination 
primitives, swap and test-and-set, may also be 
obtained as special cases of fetch-and-phi. (It 
must be noted, however, that the fetch-and-add 
operation has proved to be a sufficient 
coordination primitive for all the highly 
concurrent algorithms developed to date.) We use 
the brackets { and } to group statements that must 
be executed indivisibly and define test-and-set to 
be a value-returning procedure operating on a 
shared Boolean variable: 

TestAndSet(V) 
{ Temp <-- V 

V <-- TRUE } 
RETURN Temp 

* As explained in Gottlieb and Kruskal [81], the 
replaee-add primitive defined in Gottlieb et al. 
[81] and used in several of our earlier reports is 
essentially equivalent to the fetch-and-add 
primitive used in the present paper. 
** Since writers are inherently serial, the 
solution cannot strictly speaking be considered 
completely parallel. However, the only critical 
section used is required by the problem 
specification. In particular, during periods when 
no writers are active, no serial code is executed. 
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The swap operation is defined as exchanging the 
values of a local variable L (which specifies a 
processor register or stack location) and a 
variable V stored in central memory 

Swap(L,V) 
{ Temp <-- L 
L<--V 
V <-- Temp ] 

It is easy to see that 
TestAndSet(V) is equivalent to Fetch~R(V,TRUE). 

Similarly, a swap operation can be effeeted by 
using the projection operator pi2, where pi2(a,b) = 
b; i.e. 

Swap(L,V) is equivalent to L <-- Fetch~i2(V,L). 

We conclude this discussion of fetch-and-phi 
by showing that this operation may be used as the 
sole primitive for accessing central memory. 
Specifically, we show how to obtain the familiar 
load and store operations as degenerate cases of 
fetch-and-phi. To load the local variable L from a 
variable V stored in central memory one simply 
executes 

L <-- Fetch~i1(V, •) 
where Pi1(a,b)=a and the value of • is immaterial 
(and thus need not be transmitted). Similarly, to 
store the value of L into V one executes 

. <__ Fetch~i2(V,L) where the • indicates that 
the value returned is not used (and thus again need 
not be transmitted). 

2.5 Alternate Machine Models 

In this subsection we discuss several other 
heavily researched models of parallel processors 
and explain our choice of a large-scale MIMD shared 
memory machine. 

One line of study pioneered by H. T. Kung (see 
e.g. Kung [80]), focuses on the great economic and 
speed advantages obtainable by designing parallel 
algorithms that conform well to the restrictions 
imposed by VLSI technology, in particular 
algorithms and architectures that lay out well in 
two dimensions. These "systolic" processor designs 
are already having a significant impact on signal 
processing, an impact that will doubtless increase 
dramatically over the next several years. However, 
for computations having complex control and data 
flow, the systolic architecture is less well 
suited. We do expect that VLSI systolic systems 
will be used for those subcomponents of our machine 
having regular control and data flow; the design 
of one such component, an enhanced systolic queue, 
is presented in section 3.5. 

The current generation of supercomputers may 
be roughly classified as SIMD shared memory 
machines by considering their vector pipelines to 
be multiple processors each executing the same 
instruction (cf. Stone [80]). Effective use of 
such machines is only attained by algorithms 
consisting primarily of vector operations. 
Although it is far from trivial to "vectorize" 
algorithms, such a program has been successfully 
undertaken at many supercomputer sites. Once 

again, however, some problems (especially those 
with many data dependent decisions) appear to 
resist effective vectorization. Rodrigue, Giroux, 
and Pratt [80] of Lawrence Livermore National 
Laboratory write: 

Vector and array processors were 
designed with the idea of solving 
fluid-type problems efficiently. In 
general these machines do not lend 
themselves well to particle tracking 
calculations. For a scientific 
laboratory such as LLNL, the computer 
should be able to handle both forms 
of calculation, but it remains to be 
seen whether this goal will ever be 
achieved. 

This goal is achieved by rejecting SIMD machines in 
favor of the MIMD paracomputer model, which our 
simulation studies have shown to be effective for 
both fluld-type (Rushfield [81]) and particle 
tracking calculations (Kales et al. [81]). 

Yet a third alternative model, specifically 
architectures derived from very general abstract 
"dataflow" models of parallel computation, have 
been pursued by other researchers (see the February 
1982 special issue of ComPuter and the references 
contained therein). Recent work in this area has 
stressed the advantages of a purely applicative, 
side-effect-free programming language for the 
description of parallel computation. Although such 
dataflow machines have been discussed for several 
years, no completely satisfactory physical design 
has yet emerged. Without commenting on the 
relative merits of applicative programming, we note 
that Gottlieb and Schwartz [81] show how a dataflow 
language may be executed with maximal parallelism 
on our machine. 

The final model we consider is a message 
passing alternative to shared memory. Except for 
very small systems, it is not possible to have 
every PE directly connected to every other PE. 
Thus it may be necessary to route messages via 
intermediate PEs. In the original ultracomputer 
design of Schwartz [80] the programmer specified 
the routing explicitly. By tailoring algorithms to 
the particular interconnection geometry, one can 
obtain very high performance. However, we found 
such a machine to be significantly more difficult 
to program than one in which the entire memory is 
available to each PE (see Schwartz [80], Gottlieb 
[80a, 80c], Gottlieb and Kruskal [80]). If the 
geometry is hidden from the programmer by having 
the individual PEs perform the necessary routing, a 
more loosely coupled machine results. In recent 
years such machines have been much studied for 
distributed computing applications. Although 
message passing architectures are indeed quite 
attractive for distributed computing, we believe 
that for the applications we have emphasized, 
thousands of processors cooperating to solve a 
single large-scale scientific problem, the more 
tightly coupled model featuring high speed 
concurrent access to shared memory is more 
effective. 

29 



3.0 MACHINE DESIGN 

In this section we sketch the design of the 
NYU Ultracomputer, a machine that appears to the 
user as a paracomputer, and we Justify our design 
decisions. As indicated above, no machine can 
provide the single-cycle access to shared memory 
postulated in the paracomputer model; our design 
approximates a paracomputer by using a message 
switching network with the geometry of the 
Omega-network of Lawrie* to connect N = 2TD 
autonomous PEs to a central shared memory composed 
of N memory modules (MMs). Thus, the direct single 
cycle access to shared memory characteristic of 
paracomputers is replaced by an indirect access via 
a multicycle connection network. Each PE is 
attached to the network via a processor network 
interface (PNI) and each MM is attached via a 
memory network interface (MNI). Figure I gives a 
block diagram of the machine. 
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Figure 1. Block Diagram 

After reviewing routing in the network, we 
show that an analogous network composed of enhanced 
switches provides efficient support for concurrent 
fetch-and-add operatlons. We then examine our 
choice of network and local memory implementation. 
To conclude this section we present a detailed 
design for the switches and deseribe the PEs, MMs, 
and network interfaces. As will be shown both the 
PEs and MMs are relatively standard components; 
the novelty of the design lies in the network and 
in particular in the constituent switches and 
interfaces. 

3.1 NetwoFk Design 

For machines with thousands of PEs the 
communication network is likely to be the dominant 

• Note that this network has the same topology as a 
rectangular SW banyan network (see Goke and 
Lipovsky). 

component with respect to both cost and 
performance. The design to be presented achieves 
the following objectives. 

I. Bandwidth linear in N, the number of PEs. 

2. Latency, i.e. memory access time, 
logarithmic in N. 

3. Only O(N log N) identical components. 

4. Routing decisions local to each switch; 
thus routing is not a serial bottleneck 
and is efficient for short messages. 

5. Concurrent access b y  multiple PEs to the 
same memory cell suffers no performance 
penalty; thus interprocessor coordination 
is not serialized. 

We are unaware of any significantly different 
design that also attains these goals. 

3.1.1 Routing i/! an Omega-Network - The manner in 
which an Omega-network can be used to implement 
memory loads and stores is well known and is based 
on the existence of a (unique) path connecting each 
PE-MM pair. To describe the routing algorithm we 
use the notation in Figure 2: both the PEs and the 
MMs are numbered using D-bit identifiers whose 
values range from 0 to N-I; the binary 
representation of each identifier x is denoted 
xD...xl; upper ports on switches are numbered 0 
and lower ports I; messages from PEs to MMs 
traverse the switches from left to right; and 
returning messages traverse the switches from right 
to left. 

0 0 1 ~  
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Figure 2. Omega-network (N=8) 
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A message is transmitted from PE(pD...pl) to 
MM(mD...ml) by using output port mj when leaving 
the stage j switch. Similarly, to travel from 
MM(mD...ml) to PE(pD...pl) a message uses output 
port pj at a stage j switch. 

The routing algorithm just presented 
generalizes immediately to a D-stage network 
composed of k-input-k-output switches (instead of 
the 2x2 switches used above) connecting k~D PEs to 
k~D MMs: The ports of a switch are numbered 0 to 
k-1 and the identifiers are written in base k. 
Although the remainder of this section deals 
exclusively with 2x2 switches, all the results 
generalize to larger switches, which are considered 
in section 4. 

3.1.2 Omega-Network Enhancements - To prevent the 
network from becoming a bottleneck for machines 
comprising large numbers of PEs, an important 
design goal has been to attain a bandwidth 
proportional to the number of PEs. This has been 
achieved by a combination of three factors (see 
section 4 for an analysis of network bandwidth): 

I. 

2. 

3. 

The network is pipelined, l.e. the delay 
between messages equals the switch cycle 
tlme not the network transit time. (Since 
the latter grows logarithmically, 
nonplpelined networks can have bandwidth 
at most O(N/log N).) 

The network is message switched, l.e. the 
switch settings are not maintained while a 
reply is awaited. (The alternative, 
circuit switching, is incompatible wlth 
pipelining.) 

A queue is associated with each switch to 
enable concurrent processing of requests 
for the same port. (The alternative 
adopted by Burroughs [79] of killing one 
of the two conflicting requests also 
limits bandwidth to O(N/log N), see 
Kruskal and Snir.) 

Since we propose using a message switching 
network, it may appear that both the destination 
and return addresses must be transmitted with each 
message. We need, however, transmit only one D blt 
address, an amalgam of the origin and destination: 
When a message first enters the network, its origin 
is determined by the input port, so only the 
destination address is needed. Switches at the 
j-th stage route messages based on memory address 
blt mJ and then replace thls blt with the PE number 
bit pJ, which equals the number of the input port 
on which the message arrived. Thus, when the 
message reaches its destination, the return address 
is available. 

When concurrent loads and stores are directed 
at the same memory location and meet at a switch, 
they can be combined without introducing any delay 
by using the following procedure (see Klappholtz 
[81], Sullivan and Cohen [79], and Gottlleb et al. 
[81]) 

I. Load-Load: Forward one of the two 
(identical) loads and satisfy each by 
returning the value obtained from memory. 

2. Load-Store: Forward the store and return 
its value to satisfy the load. 

3. Store-Store: Forward either store and 
ignore the other. 

Combining requests reduces communication traffic 
and thus decreases the lengths of the queues 
mentioned above, leading to lower network latency 
(i.e. reduced memory access time). Since combined 
requests can themselves be combined, the network 
satisfies the key property that any number of 
concurrent memory references to the same location 
can be satisfied in the tlme required for just one 
central memory access. It is this property, when 
extended to include fetch-and-add operations as 
indicated below, that permits the bottleneck-free 
implementation of many coordination protocols. 

3.1.3 Imolementing~etoh-And-Add - By including 
adders in the MNI's, the fetch-and-add operation 
can be easily implemented: When F&A(X,e) is 
transmitted through the network and reaches the MNI 
associated with the MM containing X, the value of X 
and the transmitted e are brought to the MNI adder, 
the sum is stored in X, and the old value of X is 
returned through the network to the requesting PE. 
Since fetch-and-add is our sole synchronization 
primitive (and is also a key ingredient in many 
algorithms), concurrent fetch-and-add operations 
will often be directed at the same location. Thus, 
as indicated above, it is crucial in a design 
supporting large numbers of processors not to 
serialize this activity. 

Enhanced switches permit the network to 
combine fetch-and-adds with the same efficiency as 
it combines loads and stores: When two 
fetch-and-adds referencing the same shared 
variable, say F&A(X,e) and F&A(X,f), meet at a 
switch, the switch forms the sum e+f, transmits the 
combined request F&A(X,e+f), and stores the value e 
in its local memory (see Figure 3). When the value 
Y is returned to the switch in response to 
F&A(X,e+f), the switch transmits Y to satisfy the 
original request F&A(X,e) and transmits Y+e to 
satisfy the original request F&A(X,f). 
Assuming that the combined request was not further 
combined with yet another request, we would have Y 
= X; thus the values returned by the switch are X 
and X+e, thereby effecting the serialization order 
"F&A(X,e) followed immediately by F&A(X,f)". The 
memory location X is also properly incremented, 
becoming X+e+f. If other fetch-and-add operations 
updating X are encountered, the combined requests 
are themselves combined, and the associativity of 
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Figure 3. Combining Fetch-And-Adds 

addition guarantees that the procedure gives a 
result consistent with the serialization principle. 

Although the preceding description assumed 
that the requests to be combined arrive at a switch 
simultaneously, the actual design can also merge an 
incoming request with requests already queued for 
output to the next stage (see section 3.4). 

To combine a fetch-and-add operation with 
another reference to the same memory location we 
proceed as follows: 

I. FetchAdd-FetchAdd. As described above, a 
combined request is transmitted and the 
result is used to satisfy both 
fetch-and-adds. 

2. FetchAdd-Load. Treat Load(X) 
FetchAdd(X,0). 

as 

3. FetchAdd(X,e)-Store(X,f). Transmit 
Store(e+f) and satisfy the fetch-and-add 
by returning f. 

Finally, we note that a straightforward 
generalization of the above design yields a network 
implementing the fetch-and-phl primitive for any 
associative operator phi. 

3.1.4 Other Considerations - We now turn our 
attention to other issues concerning the proposed 
network design. 

Since the introduction of queues in each 
switch leads to stochastic delays and the network 
is pipelined, it is possible for memory references 
from a given PE to distinct MMs to be satisfied in 
an order different from the order in which they 
were issued. This reordering can violate the 
serialization principle specified in our model. A 
simple-minded solution to this problem is not to 
pipeline requests to read-write shared variables; 
however, this approach is overly conservative since 
most such request can be safely pipelined. 

Since the analyses thus far obtained require 
the introduction of simplifying assumptions (see 
section 4), and we are unable to perform faithful 
simulations of full 4096 PE networks, we cannot 
confidently predict the expected network latency. 
Our preliminary analyses and partial simulations 

have yielded encouraging results. 

A potential serial bottleneck is the memory 
module itself. If every PE simultaneously requests 
a distinct word from the same MM, these N requests 
are serviced one at a time. However, introducing a 
hashing function when translating the virtual 
address to a physical address, assures that this 
unfavorable situation occurs with probability 
approaching zero as N increases. 

The hardware complexity due to the decision to 
adopt a queued message switching network introduces 
significant processing at each stage. Although the 
internal cycle time of the switches may be 
important for today's technology, we expect that by 
the end of the decade any on-chip delay will be 
dominated by the chip-to-chip transmission delays. 
(Since the switch bandwidth will be pin limited, 
the added internal complexity will not increase the 
component count.) 

3.2 Local Memory 

The negative impact of the large network 
latency can be partially mitigated by providing 
each PE with a local memory in which private 
variables reside and into which read-only shared 
data (in particular, program text) may be copied. 
Storing shared read-write data in the local memory 
of multiple PEs must, in general, be prohibited: 
The resulting memory incoherence would otherwise 
lead to violations of the serialization principle. 
We shall show in section 3.4 that in certain 
special cases, this restriction may be relaxed. 

One common design for parallel machines is to 
implement a separately addressable local memory at 
each PE, imposing upon compilers and loaders the 
onus of managing the two level store. The 
alternative approach, which we intend to implement, 
is the one conventionally used on uniprocessors: 
The local memory is implemented as a cache. 
Experience with uniprocessor systems shows that a 
large cache can capture up to 95% of the references 
to cacheable variables, effectively shifting the 
burden of managing a two level store from the 
software to the hardware (see Kaplan and Winder 
[73]). 

3.3 The Switches 

We now detail an individual network switch, 
which is essentially a 2x2 bidirectional routing 
device transmitting a message from its input ports 
to the appropriate output port on the opposite 
side. The PE side sends and receives messages to 
and from the PEs via input ports, called FromPEi, 
where i=0,I, and output ports, called ToPEi. 
Similarly, the MM side communicates with the MMs 
via ports FromMMi and ToMMi. (Note that in our 
figures the To and From ports are coalesced into 
bidirectional ports.) 
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As indicated above, we associate a queue with 
each output port. The head entry is transmitted 
when the switch at the adjacent stage is ready to 
receive it (the message might be delayed if the 
queue this message is due to enter is already 
full). 

To describe the process whereby requests are 
combined in a switch, we view a request as 
consisting of several components: function 
indicator (i.e. load, store, or fetch-and-add), 
address, and data. The address itself consists of 
the amalgamation of part of the PE number and part 
of the MM number, and the internal address within 
the specified MM. For ease of exposition, we 
consider only combining homogeneous requests (i.e. 
requests with like function fields); it is not 
hard to extend the design to permit combining 
heterogeneous requests. For each request, E-new, 
that enters a ToMM queue*, we search the requests 
already in this queue using as key the function, MM 
number, and internal address from R-new.** If no 
request matches R-new, then no combining is 
possible and R-new simply remains the tail entry of 
the output queue. Otherwise, let R-old denote the 
message in the ToMM queue that matches R-new. 
Then, to effect the serialization R-old followed 
immediately by R-new, the switch performs the 
following actions: The addresses of R-new and 
R-old are placed into a Wait Buffer (to await the 
return of R-old from memory) and R-new is deleted 
from the ToMM queue. If the request is a store 
then the datum of R-old (in the toMM queue) is 
replaced by the datum of R-new. If the request is 
a fetch-and-add then the datum of R-old is replaced 
by the sum of the two data. In addition, for 
fetch-and-adds, the datum of R-old is sent to the 
Wait Buffer. Thus, each entry sent to the wait 
buffer consists of the address of R-old (the entry 
key); the address of R-new; and, in the case of a 
combined fetch-and-add, a datum. (Note that stores 
and fetch-and-adds can both be implemented by using 
an ALU that receives the data of R-old and R-new 
ana returns either the sum of the two numbers or 
just R-new.) 

Before presenting the actions that occur when 
a request returns to a switch from a MM, we make 
two remarks. First, we would use two Wait Buffers 
(one associated with each ToMM queue) if access to 
a single wait buffer is rate limiting. Second, the 
key of each entry in the Wait Buffer uniquely 
identifies the message for which it is waiting 
since the PNI is to prohibit a PE from having more 
than one outstanding reference to the same memory 
location. 

After arriving at a FromMM port, a returning 
request, E-rat, is both routed to the appropriate 
ToPE queue and used to search associatively the 
relevant Wait Buffer. If a match occurs, the entry 

* Although we use the term queue, entries within 
the middle of the queue may also be accessed. 

** The design of the ToMM queue, permitting this 
search and subsequent actions to be performed with 

minimal delay, is detailed in setion 3.3.1. 

found, R-wait, is removed from the buffer and its 
function indicator, PE and MM numbers, and address 
are routed to the appropriate ToPE queue. If the 
request was a load, the data field is taken from 
R-rat; if a fetch-and-add, the R-wait data field 
is added to the R-rat data field. 

To summarize the necessary hardware, w e  note 
that in addition to adders, registers, and routing 
logic, each switch requires two instances of each 
of the following memory units. For each unit we 
have indicated the operations it must support. 

I. ToMM-queue: Entries are inserted and 
deleted in a queue-like fashion, 
associative searches may be performed, and 
matched entries may be updated. 

2. ToPE-queue: Entries may be inserted and 
deleted in a queue-like fashion. 

3. Wait-Buffer: Entries may be inserted and 
associative searches may be performed with 
matched entries removed. 

Note that it is possible for more than two 
requests to be combined at a switch. However, the 
structure of the switch is simplified if it 
supports only combinations of pairs since a request 
returning from memory could then match at most one 
request in the Wait Buffer, eliminating the need 
for contention logic. Another advantage of not 
supporting multiple combinations within one switch 
is that it permits the pipelined implementation of 
the ToMM queue described below. 

The switch can be partitioned into two 
essentially independent components, each 
implementing a unidirectional switch. The 
communication between the two components is 
restricted to the information pertaining to 
combined messages, that is, the information sent 
from the ToMM queues to the Wait Buffers. Since 
requests are combined relatively infrequently, the 
link between the two components can have a small 
bandwidth. We are currently investigating other 
possible partitions for a switch while noting that 
the its increased functionality impedes a bit-slice 
implementation. 

3.3.1 ~_eToMM Oueue - As illustrated in Figure 4 
our ToMM queue is an enhancement of the VLSI 
systolic queue of Guibas and Liang. We first 
describe the queue-like behavior of this structure 
and then explain how the necessary searching is 
accomplished. 

Items added to the queue enter the middle 
column, check the adjacent slot in the right 
column, and move into this slot if it is empty. If 
the slot is full, the item moves up one position in 
the middle column and the process is repeated. 
(Should the item reach the top of the middle column 
and still be unable to shift right, the queue is 
full.) Meanwhile, items in the right column shift 

down, exiting the queue at the bottom. Before 
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Figure 4. Systolic ToMM Queue 

giving the enhancements needed for searching, we 
make four observations: the entries proceed in a 
FIFO order; as long as the queue is not empty and 
the switch in the next stage can receive an item, 
one item exits the queue at each cycle; as long as 
the queue is not full a new item can be entered at 
each cycle*; items are not delayed if the queue is 
empty and the next switch can receive them. 

The queue is enhanced by adding comparison 
logic between adjacent slots in the right two 
columns, permitting a new entry moving up the 
middle column to be matched successively against 
all the previous entries as they move down the 
right column**. If a match is found, the matched 
entry moves (from the middle column) to the left 
column, called the "match column". Entries in the 
match column shift down at the same rate as entries 
on the right column of the queue. A pair of 
requests to be combined will therefore exit their 
respective columns at the same time and will thus 
enter the combining unit simultaneously. 

Note that it is possible to reduce the width 
of the ToMM queue by having each request split into 
several successive entries. If requests are 
transmitted between switches as a series of 
successive packets, a ToMM queue with a width 

*The number of cycles between successive insertions 
must, however, be even (zero included). 

**Actually, an item is matched against half of the 
entries moving down the rigth column. This does 
not create any problem if a request consists of an 
even number of successive packets. If an entire 
request is contained in one packet then one needs 
either twice as many comparators or two cycles for 
each movement. 

matching the size of these packets would avoid the 
assembly and disassembly of messages, resulting in 
a complete pipelining of the message processing. 
The smaller size of oomparators and adders may also 
result in faster logic. A detailed description of 
the VLSI switch logic appears in Snir and Solworth 
[82]. 

3.4 The Network Interfaces 

The PNI (processor-network interface) performs 
four functions: virtual to physical address 
translation, assembly/disassembly of memory 
requests, enforcement of the network pipeline 
policy, and cache management. The MNI 
(memory-network interface) is much simpler, 
performing only request assembly/disassembly and 
the additions operation necessary to support 
fetch-and-add. Since the MNI operations as well as 
the first two PNI functions are straightforward, we 
discuss only pipelining policy and cache 
management. 

Before detailing these two functions, we note 
two restrictions on pipelining memory requests 
(i.e. issuing a request before the previous one is 
acknowledged). As indicated above, pipelining 
requests indisciminately can violate the 
serialization principle (section 3.1.4), and 
furthermore, pipelining requests to the same memory 
location is not supported by our current+switch 
design (3.3). 

Since accessing central memory involves 
traversing a multistage network, effective cache 
management is very important. To reduce network 
traffic a write-back update policy was chosen: 
Writes to the cache are not written through to 
central memory; instead, when a cache miss occurs 
and eviction is necessary, updated words within the 
evicted block are written to central memory. Note 
that cache generated traffic can always be 
pipelined. 

In addition to the usual operations described 
above, which are invisible to the PE, our cache 
provides two functions, release and flush, that 
must be specifically requested and can be performed 
on a segment level or for the entire cache. We now 
show that judicious use of release and flush 
further reduces network traffic. 

The release command marks a cache entry as 
available without performing a central memory 
update. This enables a task to free cache space 
allocated to virtual addresses that will no longer 
be referenced. For example, private variables 
declared within a begln-end block can be released 
at block exit. Thus, the release operation reduces 
network traffic by lowering the quantity of data 
written back to central memory during a task 
switch. Moreover, if (prior to a task switch) 
another virtual address maps to a released cache 
address, no central memory update is necessary. 
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Release also facilitates caching shared 
read-write data during periods of read-only access: 
If a set of tasks sharing read-write data can 
guarantee that during a period of time no updates 
will occur, then the data is eligable for caching 
for the duration of this period. Subsequently, the 
data must be released and marked uncacheable to 
insure that no task uses stale data. 

The flush facility, which enables the PE to 
force a write-back of cached values, is needed for 
task switching since a blocked task may be 
rescheduled on a different PE. To illustrate 
another use of flush and release, consider a 
variable V that is declared in task T and is shared 
with T's subtasks. Prior to spawning these 
subtasks, T may treat V as private (and thus 
eligible to be cached and pipelined) providing that 
V is flushed, released, and marked shared 
immediately before the subtasks are spawned. The 
flush updates main memory, the release insures that 
the parent task will not use stale data, and 
marking V shared enables T's subtasks to reference 
V. Once the subtasks have completed T may again 
consider V as private and eligable for caching. 
Coherence is maintained since V is cached only 
during periods of exclusive use by one task. 

3.5 The Processors and Memory Modules 

The MMs are standard components consisting of 
off the shelf memory chips. The PEs, however, need 
to be a (slightly) custom design since we require 
the fetch-and-add operation. Moreover, to fully 
utilize the high bandwidth connection network, a PE 
must continue execution of the instruction stream 
immediately after issuing a request to fetch a 
value from central memory. The target register 
would be marked "locked" until the requested value 
is returned from memory; an attempt to use a 
blocked register would suspend execution. Note 
that this policy is currently supported on large 
scale computers and is becoming available on one 
chip processors (Radin [82]). Software designed 
for such processors attempts to prefetch data 
sufficiently early to permit uninterrupted 
execution. 

If the latency remains an impediment to 
performance, we would hardware-multiprogram the PEs 
(as in the CHOPP design (Sullivan [77]) and the 
Denelcor HEP machine (Denelcor [81]). Note that 
k-fold multiprogr~mming is equivalent to using k 
times as many PEs -- each having relative 
performance I/k. Since, to attain a given 
efficiency, such a configuration requires larger 
problems, we view multiprogramming as a last 
resort. 

Although we have not given sufficient 
attention to I/O, we have noticed that I/O 
processors can be substituted for arbitrary PEs in 
the system. More generally, since the design does 
not require homogeneous PEs, a variety of special 
purpose processors (e.g. FFT chips, matrix 
multipliers, voice generators, etc.) can be 
attached to the network. 

3.6 Machine Packa~in~ 

We conservatively estimate that a machine 
built in 1990 would require four chips for each 
PE-PNI pair, nine chips for each MM-MNI pair 
(assuming a I megabyte MM built out of I megablt 
chips), and two chips for each 4-input-4-output 
switch (which replaces four of the 2x2 switches 
described above). Thus, a 4096 processor machine 
would require roughly 65,000 chips, not counting 
the I/O interfaces. Note that the chip count is 
still dominated, as in present day machines, by the 
memory chips, and that only 19% of the chips are 
used for the network. Nevertheless, most of the 
machine volume will be occupied by the network, and 
its assembly will be the dominant system cost, due 
to the nonlocal wiring required. 

It is possible to partition an N input, N 
output Omega network built from 2x2 switches into 
sqrt(N) "input modules" and sqrt(N) "output 
modules". An input module consists of sqrt(N) 
network inputs and the sqrt(N)(log N)/4 switches 
that can be accessed from these inputs in the first 
(log N)/2 stages of the network. An output module 
consists of sqrt(N) network outputs and the 
sqrt(N)(log N)/4 switches that can be accessed from 
these outputs in the last half of the network. 
Moreover, it is possible to arrange the switches of 
each module so that, between any two successive 
stages, all lines have the same length (Figure 5). 

Figure 5. Layout of Network on Boards 

Finally, if the input boards are stacked vertically 
on one rack, the output boards are stacked 
vertically on another rack, and the two racks are 
stacked one atop another, such that the boards on 
one rack are orthogonal to the boards on the other 
rack, then all off board lines will run nearly 
vertically between the two sets of boards as 
illustrated in Figure 6 (Figures 5 and 6 are 
reprinted from Wise [81]). 
The same strategy can be used for networks built of 
kxk switches. 

We propose using this layout for a 4K 
processor machine constructed from the chips 
described at the beginning of this section. This 
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Figure 6. Packaging of Network Boards 

machine would include two types of boards: "PE 
boards" that contain the PEs, the PNIs, and the 
first half of the network stages and "MM boards" 
that contain the MMs, the MNIs and the last half of 
the network stages. Using the chip counts given 
above, a 4K PE machine built from two chip 4x4 
switches would need 64 PE boards and 64 MM boards, 
with each PE board containing 352 chips and each MM 
board containing 672 chips. Since the PE chips 
will be near the free edge of the PE board and the 
MM chips will be near the free edge of the MM 
board, I/O interfaces can be connected along these 
edges. 

4.0 COMMUNICATION NETWORK PERFORMANCE 

Since the overall ultracomputer performance is 
critically dependent on the communication network 
and this network is likely to be the most expensive 
component of the completed machine, it is essential 
to evaluate the network performance carefully so as 
to choose a favorable configuration. 

4.1 Performance Analysis 

Although each switch in the network requires a 
significant amount of hardware it appears feasible 
to implement a 2x2 switch on one chip, using 
today's technology. Further, we assume it will be 
feasible in 1990 technology to implement 4x4, or 
even 8x8 switches on one chip. It seems, however, 
that the main restriction on the switch performance 
will be the rate at which information can be fed 

into and carried from the chip, rather than the 
rate at which that information can be processed 
within the chip. The basic hardware constraint 
will be, therefore, the number of bits that can be 
carried on or off the chip in one unit of time (one 
cycle). 

Suppose that 400 bits can be transferred on or 
off the chip in one cycle (which we estimate, for 
1990 technology, to be on the order of 25 nsec). 
If each message transmitted through the network 
consists of approximately 100 bits (64 bits data, 
30 bits address), then a 2x2 switch needs two 
cycles for the transfer of the 800 bits involved in 
the relaying of two messages in each direction. It 
is, however, possible to pipeline the transmission 
of each message, so that the delay at each switch 
is only one cycle if the queues are empty. 

The chip bandwidth constraint does not 
determine a unique design for the network. It is 
possible to replace 2x2 switches by kxk switches, 
time multiplexing each line by a factor of k/2. It 
is also possible to use several copies of the same 
network, thereby reducing the effective load on 
each one of them and enhancing network reliability. 
We present performance analyses of various networks 
in order to indicate the tradeoffs involved. 

A particular configuration is characterized by 
the values of the following three parameters: 

I. k - the size of the switch. Recall that a 
kxk switch requires 4k lines. 

2. m - the time multiplexing factor, i.e. the 
number of switch cycles required to input 
a message (to simplify the analysis we 
assume that all the messages have the same 
length). 

3. d - the number of copies of the network 
that are used. 

The chip bandwidth constraint yields an upper 
bound on the k/m ratio. We shall assume therefore 
that this ratio is a constant B for all designs. 
Note that for any k a network with n inputs and n 
outputs can be built from (n ign)/(k lgk) kxk 
switches and a proportional number of wires. Since 
our network contains a large number of identical 
switches, the network's cost is essentially 
proportional to the number of switches and 
independent of their complexity. We thus define 
the cost of a configuration to be C*(n ign), where 
the cost factor C = d/(k lgk) (we are neglecting 
the small cost of interfacing several copies of the 
network). 

In order to obtain a tractible mathematical 
model of the network we have made the following 
simplifying assumptions: 

I. Requests are not combined. 

2. Requests have the same length. 
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3. Queues are of infinite size. 

4. Requests are generated at each PE by 
independent identically distributed 
time-invariant random processes. 

5. MMs are equally likely to be referenced. 

Let p be the average number of messages 
entered into the network by each PE per network 
cycle. If the queues at each switch are large 
enough ("infinite queues") then the average switch 
delay is approximately I + mT2*p(1-1/k)/2(1-mp) 
cycles (see Kruskal and Snir; similar results can 
be found in Jacobsen and Misunas [77], and in Dias 
and Jump [81]). The average network traversal time 
(in one direction) is the number of stages times 
the switch delay plus the setting time for the 
pipe. Thus the number of cycles is: 

T = (lgn/igk)(1 + mT2*p(1-1/k)/2(1-mp) + m - I. 
Let us note, however, the following facts: 

I. The average number of messages per cycle 
entered into the network by each PE, p, 
must be smaller than I/m, as it takes m 
cycles to input a message. Conversely, 
the network has a capacity of I/m messages 
per cycle per PE, that is it can 
accommodate any traffic below this 
threshold. Thus, the global bandwidth of 
the network is indeed proportional to the 
number of PEs connected to it. 

2. The initial I in the expression for the 
switch delay corresponds to the time 
required for a message to be transmitted 
through a switch without being queued (the 
switch service time). The second term 
corresponds to the average queueing delay. 
This term decreases to zero when the 
traffic intensity p decreases to zero and 
increases to infinity when traffic 
intensity p increases to the I/m 
threshold. The surprising feature of this 
formula is the mT2 facCor, which is 
explained by noting that the queueing 
delay for a switch with a multiplexing 
factor of m is roughly the same as the 
queueing delay for a switch with a 
multiplexing factor of one, a cycle m 
times longer, and m times as much traffic 
per cycle. 

We now use these formulae to compare the 
performance of different configurations. Let us 
assume that, using kxk switches, a time 
multiplexing factor m = k, that is, the bandwidth 
constant B = I. Using d copies of the network 
reduces the effective load on each copy by a factor 
of d. Thus the average transit time for a network 
consisting of d Omega-networks composed of kxk 
switches is 

T = (I + k(k-1)p/2(d-kp))ign/igk + k-1 cycles, 
where p is, as before, the average number of 
messages sent to the network by each PE per cycle. 
As expected, delays decrease when d increases. The 
dependency on k is more subtle. Increasing k 

decreases the number of stages in the network, but 
increases the pipelining factor, and therefore 
increases the queuing delays and the pipe setting 
delay. 

We have plotted in Figure 7 the graphs of T as 
a function of the traffic intensity, p, for 
different values of k and d. We see that for 
reasonable traffic intensities (see next paragraph) 
a duplexed network composed of 4x4 switches yields 
the best performance. 
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Figure 7. 
Transit Times for Different Configurations 

A network with 8x8 switches and d=6 also yields an 
acceptable performance, at approximately the same 
cost as the previous network. Since the bandwidth 
of the first network is d/k=.5 and the bandwidth of 
the second is .75, we see that for a given traffic 
level the second network is less heavily loaded and 
thus should provide better performance for traffic 
with high variance. 

The above discussion indicates the type of 
considerations involved in the choice of an optimal 
configuration. An actual choice requires more 
accurate assessments of the technological 
constraints and the traffic distribution. The 
pipelining delays incurred for large multiplexing 
factors, the complexity of large switches, and the 
heretofore ignored cost and performance penalty 
incurred with interfacing many network copies, will 
probably make the use of switches larger than 8x8 
impractical for a 4K PE parallel machine. 

The previous discussion assumed a one chip 
implementation of each switch. By using the two 
chip implementation described at the end of section 
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3.3, one can nearly double the bandwidth of each 
switch while doubling the chip count. As delays 
are highly sensitive to the multiplexing factor m, 
this implementation would yield a better 
performance than that obtained by taking two copies 
of a network built of one chip switches. (It would 
also have the extra advantage of decreasing the 
gate count on each chip.) Thus, the ultimate choice 
may well be one network built of 4x4 switches, each 
switch consisting of two chips. 

We now return to the five assumptions listed 
above, all of which may not be satisfied by actual 
hardware implementations. Our first two 
assumptions, that all messages are of equal 
(maximal) length and traverse the entire network, 
are clearly conservative: In practice, messages 
that do not carry data (load requests and store 
acknowledgements) would be shorter and merged 
messages do not each traverse the entire network. 

Simulations have shown that queues of modest 
size (18) gives essentially the same performance as 
infinite queues. Although the requests generated 
by PEs cooperating on a single problem are not 
independent, the presence of a large number of PEs 
and a number of different problems will tend to 
smooth the data. On the other hand, even in a 
large system the pattern of requests by a Single PE 
will be time dependent and further analytic and 
simulation studies are needed to determine the 
effect of this deviation from our assumed model. 

Finally, by applying a hashing function when 
translating from virtual to physical addresses, the 
system can ensure that each MM is equally likely to 
be referenced. 

4.2 Network Simulations 

Our discussion of the possible configurations 
for the communication network still lacks two 
essential ingredients: an assessment of the 
traffic intensity we expect to encounter in 
practical applications, and an assessment of the 
impact of the network delay on the overall 
performance. 

We routinely run parallel scientific programs 
under a paracomputer simulator (see Gottlieb [80c]) 
to measure the speedup obtained by parallelism and 
to Judge the difficulty involved in creating 
parallel programs (see section 5). A recent 
modification allows us to simulate an approximation 
to the proposed network design rather than an ideal 
paracomputer: Since an accurate simulation would 
be very expensive, we used instead a multi-stage 
queuing system model with stochastic service time 
at each stage (see Snir [81]), parameterized to 
correspond to a network with six stages of 4x4 
switches, connecting 4096 PEs to 4096 MMs. A 
message was modeled as one packet if it did not 
contain data and as three packets otherwise. Each 
queue was limited to fifteen packets and both the 
PE instruction time and the MM access time were 

assumed to equal twice the network cycle time. 
Thus the minimum central memory access time, which 

consists of the MM access time plus twice the the 
minimum network transit time, equals eight times 
the PE instruction time. 

We have monitored the amount of network 
traffic generated by several scientific programs 
under the pessimistic assumptions that no shared 
data is cached and the optimistic assumption that 
all references to program text and private data are 
satisfied by the cache. The programs studied were: 

I. A parallel version of part of a NASA 
weather program (solving a two dimensional 
PDE), with 16 PEs. 

2. The same program, with 48 PEs. 

3. The TRED2 program described in section 5, 
with 16 PEs. 

4. A multigrid Poisson PDE solver, with 16 
PEs. 

Table 1 summarizes simulations of the four 
previously mentioned programs. The time unit is 
the PE instruction time. 

÷------~ ...... ÷ ...... ÷ .......... + ....... ÷ ....... + 

I lavg. CMI idle I idle ~memory Ishared f 
laccess Icycleslcycles perlref perlref perl 

I I time ~ ~ CM load linstr I instr 
+------÷ ....... + ...... ÷ .......... ÷ ....... ÷ ....... + 

I 1 I 8 .94  I 37% 5 .3  0.21 t .08  
I 2 I 8 .83  I 39% 4 .5  0 .19  l .08 
I 3 I 8.81 I 22% 4.9  0 .25  I .05 
I 4 I 8 .85  J 19% 3 .5  0 .24  I .06 
+----.+ ....... ÷ ................. + ....... + ....... ÷ 

Table I. Network Traffic and Performance 

In these simulations the number of requests to 
central memory (CM) are comfortably below the 
maximal number that the network can support and 
indeed the average access time is close to the 
minimum. (Since each PE was a CDC 6600-type CPU, 
most instructions involved register-to-register 
transfers.) Specifically, only one instruction 
every five cycles for the first two programs (and 
one every four for the last two) generated a data 
memory reference.* Moreover only one data memory 
reference out of 2.6 in the first two programs, and 
one reference out of five for the last two programs 
were for shared data. We note that the last two 
programs were designed to minimize the number of 
accesses to shared data. As a result the number of 
idle cycles was significantly higher for the first 
two programs. Since the code generated by the CDC 
compiler often prefetched operands from memory, the 
average number of idle cycles per load from average 
central memory was significantly lower than the 
central memory access time. 

* Since for the first two programs, the PEs were 
idle (waiting for a memory reference to be 
satisfied) approximately 40% of the time, five 
cycles corresponds to approximately three 

instructions. 
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We conclude that were these studies repeated 
on actual hardware the traffic intensity would be 
low (p<.04), and prefetching would mitigate the 
problem of large memory latency. The first 
conclusion, however, must be strongly qualified. 
The simulator we used is much less sensitive to 
fluctuations in the network traffic than an actual 
network would be. Moreover, we have ignored both 
cache generated traffic and the effect of operating 
system programs. 

5.0 SIMULATION AND SCIENTIFIC PROGRAMMING 

As indicated above we use an instruction level 
paracomputer simulator to study parallel variants 
of scientific programs. Applications already 
studied include radiation transport, incompressible 
fluid flow within an elastic boundary, atmospheric 
modeling, and Monte Carlo simulation of fluid 
structure. Current efforts include both extending 
the simulator to model the connection network more 
faithfully and running programs under a parallel 
operating system scheduler. 

The goals of our paraeomputer simulation 
studies are, first, to develop methodologies for 
writing and debugging parallel programs and second, 
to predict the efficiency that future large scale 
parallel systems can attain. As an example of the 
approach taken, and of the results thus far 
obtained, we report on experiments with a 
parallelized variant of the program TRED2 (taken 
from Argonne's EISPACK library), which uses 
Householder's method to reduce a real symmetric 
matrix to tridiagonal form (see Korn [81] for 
details). 

An analysis of the parallel variant of this 
program shows that the time required to reduce an N 
by N matrix using P processors is well approximated 
by 

T(P,N) = aN + dN~3/P + W(P,N) 
where the first term represents "overhead" 
instructions that must be executed by all PEs (e.g. 
loop initializations), the second term represents 
work that is divided among the PEs, and W(P,N), the 
waiting time, is of order max(N,P~.5). We 
determined the constants experimentally by 
simulating TRED2 for several (P,N) pairs and 
measuring both the total time T and the waiting 
time W. (Subsequent runs with other (P,N) pairs 
have always yielded results within I% of the 
predicted value.) Table 2 summarizes our 
experimental results and supplies predictions for 
problems and machines too large to simulate (these 
values appear with an asterisk). In examining this 
table, recall that the efficiency of a parallel 
computation is defined as 

E(P,N) = T(I,N)/(P*T(P,N)) . 

I\ I Reduction of Matrices to Tridiagonal Form 
I\ I 
I \PE I 16 64 256 1024 4096 
IN\I 

+-- . . . .  + . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  

1 16 
1 32 
1 64 
I 128 
I 256 
I 512 
11024 

62% 26% 7% I%* 0%* 
87% 60% 25% 6%* I%* 
96% 86% 59% 27%* 7%* 
99%* 96%* 86%* 59%* 24%* 

100%* 99%* 96%* 86%* 58%* 
100%* 100%* 99%* 96%* 85%* 
100%* 100%* 100%* 99%* 96%* 

Table 2. Measured and Projected Efficiencies. 

Although we consider these measured 
efficiencies encouraging, we note that system 
performance can probably be improved even more by 
sharing PEs among multiple tasks. (Currently the 
simulated PEs perform no useful work while 
waiting.) If we make the optimistic assumption 
that all the waiting time can be recovered, the 
efficiencies rise to the values given in Table 3. 

\ I Reduction of Matrices to Tridiagonal Form 
\ I 
\PE I 16 64 256 1024 4096 

N \ I (without waiting time) 

32 
64 

128 
256 
512 

1024 

16 71% 
90% 
97% 
99% 

100% 
100% 
100% 

37% 12% 3% o% 
69% 35% 12% 3% 
90% 68% 35% 12% 
97% 90% 68% 35% 
99% 97% 90% 68% 

100% 99% 97% 90% 
100% 100% 99% 97% 

Table 3. Projected Efficiencies. 

6.0 CONCLUSION 

Our simulations have conclusively shown that a 
ParacomPuter containing thousands of processors 
would be an extremely powerful computing engine for 
large scientific programs. But such ideal machines 
cannot be built. In this report we have described 
a realizable approximation, the NYU Ultracomputer. 
We believe that, within the decade, a 4096 PE 
Ultracomputer can be constructed with roughly the 
same component count as found in today's large 
machines. Although our Ultracomputer simulations 
are still fragmentary, the preliminary results thus 
far obtained are encouraging. 

To demonstrate further the feasibility of the 
hardware and software design, we plan to construct 
an 8 PE and subsequently a 64 PE prototype using 
the switches and interfaces described above to 
connect commercial microprocessors and memories. 
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APPENDIX 

Management of Highly Parallel Queues 

Since queues are a central data structure for 
many algorithms, a concurrent queue access method 
can be an important tool for constructing parallel 
programs. In analyzing one of their parallel 
shortest path algorithms, Dec etal. [80] dramatize 
the need for this tool: 

"However, regardless of the number 
of processors used, we expect that 
algorithm PPDM has a constant upper 
bound on its speedup, because every 
processor demands private use of 
the Q." 

Refuting this pessimistic conclusion, we show 
in this appendix that, although at first glance the 
important problem of queue management may appear to 
require use of at least a few inherently serial 
operations, a queue can be shared among processors 
without using any code that could create serial 
bottlenecks. The procedures to be shown maintain 
the basic first-in first-out property of a queue, 
whose proper formulation in the assumed environment 
of large numbers of simultaneous insertions and 
deletions is as follows: If insertion of a data 
item p is completed before insertion of another 
data item q is started, then it must not be 
possible for a deletion yielding q to complete 
before a deletion yielding p has started. 

In the algorithm below we represent a queue of 
length Size by a public circular array Q[0:Size-1] 
with public variables I and D pointing to the 
locations of the items last inserted and deleted 
(these correspond to the rear and front of the 
queue respectively). Thus MOD(I+1,Size) and 
MOD(D+I,Size) yield the locations for the next 
insertion and deletion, respectively. Initially 
I=D=0 (corresponding to an empty queue). 

We maintain two additional counters, ~Qi and 
#Qu, which hold lower and upper bounds respectively 
for the number of items in the queue, and which 
never differ by more than the number of active 
insertions and deletions. Initially #Qi=#Qu=0, 
indicating no activity and an empty queue. The 
parameters QueueOverflow and QueueUnderflow 
appearing in the program shown below are flags 
denoting the exceptional conditions that occur when 
a processor attempts to insert into a full queue or 
delete from an empty queue. (Since a queue is 
considered full when #Qu ~ Size and since deletions 
do not decrement #Qu until after they have removed 
their data, a full queue may actually have cells 
that could be used by another insertion.) The 
actions appropriate for the QueueOverflow and 
QueueUnderflow conditions are application 
dependent: One possibility is simply to retry an 
offending insert or delete; another possibility is 
to proceed to some other task. 

Critical-section-free Insert and Delete 
Drograms are given below. The insert operation 
proceeds as follows: First a test-increment-retest 
(TIR) sequence is used to guarantee the existence 

of space for the insertion, and to increment the 
upper bound #Qu. If the TIR fails, a QueueOverflow 
occurs. If it succeeds, the expression 
Mod(FetchAdd(I,1),Size) gives the appropriate 
location for the insertion, and the insert 
procedure waits its turn to overwrite this cell 
(see Gottlieb et al. [81]). Finally, the lower 
bound #Qi is incremented. The delete operation is 
performed in a symmetrical fashion; the deletion 
of data can be viewed as the insertion of vacant 
space. 

Procedure Insert(Data,Q,QueueOverflow) 
If TIR(#Qu, l,Size) Then { 

MyI <-- Mod(FetchAdd(I,1),Size) 
Wait turn at MyI 
Q[MyI] <-- Data 
Fetch~dd(#Ql,1) 
QueueOverflow <-- False } 

Else QueueOverflow <-- True 
End Procedure 

Procedure Delete(Data,Q,QueueUnderflow) 
If TDR(#Qi,I) Then { 

MyD <-- Mod(FetchAdd(D,1),Size) 
Wait turn at MyD 
Data <-- Q[MyD] 
FetchAdd(#Qu,-1) 
QueueUnderflow <-- False } 

Else QueueUnderflow <-- True 
End Procedure 

Boolean Procedure TIR(S,Delta,Bound) 
If S+Delta i Bound Then 

If FetchAdd(S,Delta) ~ Bound Then 
TIR <-- true 

Else { FetchAdd(S,-Delta) 
TIR <-- false } 

End Procedure 

Boolean Procedure TDR(S,Delta) 
If S-Delta ~ 0 Then 

If FetchAdd(S,-Delta) ~ 0 Then 
TDR <-- True 

Else { FetchAdd(S,Delta) 
TDR <-- false } 

End Procedure 

Although the initial test in both TIR and TDR 
may appear to be redundant, a closer inspection 
shows that their removal permits unacceptable race 
conditions. This point is also expanded in 
Gottlieb et al. [81] where other fetch-and-add 
based software primatives are presented as well. 

It is important to note that when a queue is 
neither full nor empty our program allows many 
insertions and many deletions to proceed completely 
in parallel with no serial code executed. This 
should be contrasted with current parallel queue 
algorithms, which use small critical sections to 
update the insert and delete pointers. 
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