
SGI’s Spider chips—Scalable, Pipelined
Interconnect for Distributed Endpoint
Routing—create a scalable, short-range

network delivering hundreds of gigabytes
per second in bandwidth to large configu-
rations. Individual Spider chips sustain a 4.8-
Gbyte/s switching rate, connecting to each
other and to endpoints across cables up to
5 meters in length. By delivering very high
bandwidth—thousands of times higher than
standard Ethernet—at low latencies, Spider
is ideal for CPU interconnect applications,
high-end network switches, or high-perfor-
mance graphics interconnects.

The Spider chip design drew on the prin-
ciples of computer communications archi-
tecture. Isolation between the physical, data
link, and message layers led to a well-struc-
tured design that is transportable and more
easily verified than a nonlayered solution.
Because the chip implements all layers in
hardware, latency is very low. Thus, we
could realize the benefits of layering with-
out sacrificing performance.

The physical transmission layer for each
port is based on a pair of source synchro-
nous drivers and receivers. These SSDs and
SSRs transmit and receive 20 data bits and a
data-framing signal at 400 Mbps. The data
link level, which we call the link level pro-
tocol or LLP, guarantees reliable transmis-
sion using a CCITT-CRC (standard cyclic
redundancy-checking algorithm) code with
a go-back-n sliding-window protocol1 retry
mechanism. The message layer defines four
virtual channels and a credit-based flow con-
trol scheme to support arbitrary message
lengths. It also defines a header format to
specify message destination, priority, and
congestion control options.

The chip supports two distinct message
types, each with its own routing mechanism.
Network administrative messages use source
vector routing, while mainstream messages

use distributed routing tables that exist in
each chip. The routing tables define a static
route between every pair of destinations in
the network, programmed by software
whenever the network is reconfigured. This
allows hardware to take advantage of the
static route and optimize routing latency. On
the other hand, software can step in at any
time to define new routes that avoid detect-
ed faults or to change existing routes based
on new algorithms.

To avoid the blocked head-of-queue bot-
tleneck, a port’s receive buffers maintain a
separate linked list of messages for each of
the five possible output ports for each vir-
tual channel. Each arbitration cycle, the
arbiter chooses up to six winners from as
many as 120 arbitration candidates to max-
imize crossbar utilization. To avoid starva-
tion and promote network fairness,
messages accumulate a network age as they
are routed, increasing their priority.

Physical transmission layer
An SSD/SSR pair provides physical data

transmission for each of the six full-duplex
ports (see Figure 1 for the chip’s block dia-
gram). A single link consists of 20 data bits,
a frame bit, and a differential clock per direc-
tion. The 200-MHz differential clock is sam-
pled on both edges, making the effective
rate of data transmission 400 Mbps. The raw
data bandwidth of each link is 1 Gbyte/s per
direction.

The chip core operates at 100 MHz, requir-
ing a 4-to-1 serialization between the core
and the 400-MHz SSD data pins. At each 100-
MHz clock edge, the core provides 80 bits of
data, which the SSD serializes into a 20-bit
stream over four 400-MHz clocks. The SSD
and core use the same clock source with dif-
ferent divisors for synchronous transmission.

The SSR uses the received differential
clock to sample incoming data bits. We

34 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

The Spider chip, an

interconnect for high-

end networking

applications, sustains

a data transfer rate of

4.8 Gbytes/s, either

between chips in a

single chassis or

between remote

chassis over cables up

to 5 meters long.

SPIDER: A HIGH-SPEED
NETWORK INTERCONNECT

Mike Galles

Silicon Graphics Computer
Systems

.

delayed the differential clock on the board by 1.25 ns to
ensure that the clock edge is centered on the desired data
sample point across process variation. Once data is clocked
into the SSR, it is deserialized and placed into one of two 80-
bit registers that serve as the core’s receive buffer. The data-
framing bit is synchronized to the local core clock frequency,
and data is read from the receive buffer into the core.

To prevent receive buffer overruns, we inserted a dead
cycle to break up continuous data bursts that exceed a pro-
grammable maximum length. This maximum burst length is
a function of crystal frequency, and modern crystals have
close enough tolerances that burst lengths can be several
thousand clocks cycles long.

Data link layer
The data link layer guarantees reliable data transfer

between chips and provides a clean interface to the chip
core, hiding the physical transmission layer’s control details.
The interface to the LLP receives and sends data in
micropacket quantities (Figure 2), which consist of 128 bits
of data plus 8 bits of sideband. Sideband provides an out-of-
band channel on the data link to send flow control infor-
mation, so that sustainable data rates will not be affected by
buffer administration. The LLP does not use the 8 bits of side-
band for its own protocol layer, but passes them up for mes-
sage layer flow control.

We chose this relatively small micropacket size because a
large class of network transactions are short, fitting into one or
two micropackets. Also, we know that data received from a
Spider chip is error-free in 16-byte quantities. Thus, endpoints
can use partial data from larger transfers immediately, without
waiting for a full-message CRC. This is especially important for
interprocessor networks, which can implement early pipeline

restart on a partial cache fill. Data protection on a single-link
basis instead of end-to-end tolerates message header modifi-
cation as it flows through the network, allowing such features
as message aging and virtual-channel adaption.

Once the LLP receives the data and sideband from the chip
core, it assigns a sequence number to the micropacket and
stores it in a retransmit buffer. The LLP also appends an
acknowledge sequence number to the micropacket and cal-
culates a 16-bit check code using CCITT-CRC. It then trans-
mits the entire micropacket over the link.

If no errors occur, the remote peer acknowledges the
sequence number of the transmitted micropacket(s), which
the LLP then removes from the retransmit buffer. If an error
does occur, the chip uses a go-back-n sliding-window pro-
tocol for recovery. A go-back-n sliding window protocol
manages a circular buffer, storing to the head of the buffer
during data transmission and freeing from the tail of the
buffer when the remote peer acknowledges receipt. If there
is no receipt acknowledged, the buffer rewinds its transmit
pointer to the tail pointer and retransmits the entire window
of unacknowledged data. Any error condition causes the
packet to go unacknowledged, and the LLP retransmits all
micropackets in the retransmit buffer until it receives a pos-
itive acknowledgment. The combination of the CCITT-CRC
and the sliding-window protocol protects the link from all
single, double, and odd number of bit errors, all burst errors
up to 16 bits long, dropped and duplicate micropackets, and
clock and data-framing glitches.

The LLP uses transparent link negotiation during reset to
support multiple port widths. It can negotiate with chips hav-
ing 10-, 20-bit, or wider interfaces. At reset, the peer LLPs
negotiate using a narrow port width to arrive at the widest
common port width. The interface to the chip core is iden-
tical in all bit modes, but the data rate reflects the port width.
This is useful for interfacing to devices with varying data rate
needs. In addition, if a Spider-to-Spider link is damaged in
any of the upper 10 bits it can negotiate to use the lower 10
bits and operate at half bandwidth.

Message layer
The message layer defines four virtual channels2 and pro-

vides independent flow control, header identification, and
error notification on a micropacket basis. Flow control is
credit based. After reset, all links credit their peers based on
the size of their virtual-channel receive buffers. This size can
vary between interface chips, but Spider implements 256-
byte buffers for each virtual channel on each port. This size
is sufficient to maintain full bandwidth over 5-meter cables
and includes some extra buffering to absorb momentary con-
gestion without degrading bandwidth.

The message layer transmits virtual channel tagging and

January/February 1997 35

SSD/SSR
LLP

Crossbar

ArbiterTables/
administration

S
S

D
/S

S
R

LL
P

2
3

1
0

S
S

D
/S

S
R

LL
P

S
S

D
/S

S
R

LL
P

2
3

1
0

S
S

D
/S

S
R

LL
P

2
3

1
0

M
es

sa
ge

co
nt

ro
l

2
3

1
0

M
es

sa
ge

co
nt

ro
l

2
3

1
0

M
essage

control
2

3
1

0
M

essage
control

2310
Message
control

23 10
Message
control

S
S

D
/S

S
R

LLP
S

S
D

/S
S

R
LLP

S
S

D
/S

S
R

LLP
S

S
D

/S
S

R
LLP

SSD/SSR
LLP

Figure 1. Spider chip block diagram. Each port achieves
2.0-Gbytes/s raw bandwidth link and 1.6 Gbytes/s sus-
tained data transfer. SSD: source synchronous driver; SSR:
source synchronous receiver; LLP: link layer protocol.

Data

DataCheck bits

644

AckSeq. no.Sideband

48

Figure 2. LLP micropacket format.

.

credit information in the micropacket sideband field (Figure
3), leaving the remaining 128 bits for data transfer. The total
overhead cost (in bandwidth) of providing reliable links,
assigning virtual channels, and managing flow control is 32
bits out of 160—or 20%. This leaves the effective link band-
width available for data transfer at 800 Mbytes/s per direc-
tion per link.

Message format
Each message contains a header micropacket (Figure 4)

followed by zero or more data micropackets. Each header
micropacket reserves 23 bits to specify destination and rout-
ing information. The header packet’s remaining bits func-
tion as data and may be used in any way by a higher level
protocol. A tail bit set on a message’s last micropacket delin-
eates the message boundary. Message headers always fol-
low micropackets with the tail bit set.

A 9-bit destination identifier specifies one of 512 possible
network destinations. These identifiers map into the routing
tables, described later. The header direction field, which is
4 bits, specifies an exit port on the next Spider chip. This
direction format supports up to 15 ports, as direction 0 is
always reserved for communication with the Spider’s local
administration control block. There are 256 levels of mes-
sage age, which the chip uses in arbitration. Finally, the head-
er provides 2 bits of congestion control. The CC field’s
least-significant bit specifies that an individual message may
adapt between two virtual channels, always choosing the
least-used virtual channel at each port. This increases per-
formance in heavily loaded networks, but allows messages
to arrive out of order.

Routing
To route messages, the Spider chip uses programmable,

distributed tables. Programming the tables establishes a sta-
tic route between every two endpoints in the network. This
allows hardware to make routing decisions in minimal time,
while software is free to reconfigure the network to avoid
faults or establish a new route map for performance or
resource reasons. This scheme relieves the endpoints from
storing global network knowledge and cumbersome source-
routing hardware in the endpoint interface chips.

Each message header specifies a unique destination ID.
When a message enters a port, the chip uses the destination
ID to look up routing instructions in the tables. The table
returns a direction, or exit port, which the next Spider chip
uses for crossbar arbitration. We pipelined table lookup in
this fashion to reduce latency.

We organized the routing tables into a hierarchy of two
levels (Figure 5). This reduces the number of entries required
in each table from 512 to 48, but also places some restrictions
on routing possibilities. The destination ID’s 4 least signifi-
cant bits specify the local address, while the upper 5 bits
specify the meta-address. Each Spider chip has a meta-ID
register, which it compares to the message’s meta-ID. If meta-
IDs match, the message is in the correct metadomain, and the
chip uses the local table to route the message to the precise
destination. If meta-IDs do not match, the chip uses its metat-
able to specify the route to the correct metadomain.

It is possible to send messages without using the tables
via a source-routing protocol called vector routing. Users
employ this mechanism for network configuration and
administration. Vector-routed packets contain a source-rela-
tive, step-by-step series of direction fields, which define a
message’s exact route. Users can send vector-routed mes-
sages while standard table-routed messages are in flight.

Spider’s programmable tables support a variety of topolo-
gies. Different topologies trade off cost, network bandwidth,

36 IEEE Micro

Spider chip

Vcr 10 Vcr 0 Cr 1 Cr 0 Vch1 Vch00No
Vcr 11 Vcr 0 Cr 1 Cr 0 Vch1 Vch00Yes

TailEr-

No

00 Vcr 1 Vcr 0 Cr 0 Vch1 Vch01No
10 Vcr 1 Vcr 0 Cr 0 Vch1 Vch01YesYesC

re
di

t

01 0 0 R Vch1 Vch01No
01 0 1 R Vch1 Vch01Yes

No

01 1 0 R Vch1 Vch01No
01 1 1 R Vch1 Vch01Yes

Yes

N
o

cr
ed

it

11 Vcr 1 Vcr 0 Cr 2 Cr 1 Cr 01Credit only

Vcr 1
Vcr 0
Cr 1

Vch 1
R

Virtual channel no. to credit most significant bit
Virtual channel no. to credit least significant bit
Credit value most significant bit
Virtual channel no. of this packet
Reserved

Sideband bits

7 6 5 4 3 2 1 0

Figure 3. Message layer definition of sideband.

Data

Data

42 9 4 8 2

Dest. ID Dir. Age CC

Figure 4. Message layer header format. CC: congestion
control.

000 011

000 100

111 000
111 101

00000 010

00001 101

11110 010

11111 011

Destination ID from header

Meta: 5 Local: 4

Exit port

My meta-ID =?

Local table
Programmable

registers

Force local

Metatable

0 1

Figure 5. Programmable table format.

.

and route redundancy. To avoid deadlock, tables must be
programmed in a cycle-free manner. We describe two pos-
sible topologies here.

Hierarchical fat hypercube. To achieve scalable bisec-
tion bandwidth with minimal average distance between end-
points, users can choose a hierarchical fat hypercube as shown
in Figure 6a (hypercube examples: a 0-dimension hypercube
is a point; a 1D hypercube is a line; a 2D hypercube is a
square; a 3D hypercube is a cube; a 4D hypercube is a tesser-
act). This topology grows as a standard hypercube for two to
32 endpoints, then expands to a series of metahypercubes for
larger systems (Figure 6b). We call the metahypercubes fat
hypercubes, because there is actually a full hypercube con-
necting each vertex of every local hypercube. The two levels
of hypercube need not be of the same dimension.

The hierarchical fat hypercube topology maintains a con-
stant bisection bandwidth of 800 Mbytes/s per endpoint for
all configurations up to 512 endpoints. Networks can be
sparsely populated, and the number of endpoints or Spider
chips need not be powers of 2. This topology can sustain
multiple faults in both the metahypercubes and the local
hypercubes without losing connectivity.

To reduce cost, it is also possible to place two or more end-
points on each Spider chip, which is called bristling.
Increasing a network’s bristling factor will reduce the Spider
chip count, but will also reduce network bisection bandwidth.

Nonblocking N×N switch. Another possible network
topology is a nonblocking N×N switch (see Figure 7). The
topology uses O[(N×N)/4] Spider chips to build a full cross-
bar between N ports for large N. This topology has a guar-
anteed bandwidth of 1.6 Gbytes/s between every endpoint
pair simultaneously, but is expensive for large configurations
because it uses many Spider chips.

Crossbar arbitration
The central crossbar arbitration algorithm is crucial to per-

formance. The goal is to maximize bandwidth through the
crossbar while guaranteeing starvation avoidance and favor-
ing higher priority messages. To minimize latency, when
there is no output port contention, the arbiter falls into a
bypass mode that uses fixed priority evaluation for minimal
arbitration time.

To maximize bandwidth through the crossbar without
using unreasonable buffering, we organized each virtual
channel buffer as a set of linked lists. There is one linked list
for each possible output port for each virtual channel. This
solution avoids head-of-queue blockage, since a blocked
message targeting one output port will not prevent a subse-
quent message in that same buffer from exiting on a differ-
ent output port.

Using the linked-list-based virtual-channel buffers, the cen-
tral arbiter attempts to maximize the number of assigned
ports for each arbitration. This type of arbiter, with organi-
zation similar to that of the wavefront arbiter described by
Tamir and Chi,3 improves as the number of arbitration can-
didates increases. To maximize crossbar efficiency, each vir-
tual channel from each port can request arbitration for every
possible destination, providing up to 120 arbitration candi-
dates each cycle.

To avoid starvation and encourage network fairness, the
chip rotates the arbiter each arbitration cycle to favor the
highest priority requester. Priority is based on the age field
of a message header. Once a message enters a Spider chip,
it ages at a programmable rate until it exits, taking its new age
in the message header as it enters the next Spider.

This concept of network age promotes fairness as a func-
tion of network flight time rather than just across a single
chip. It tends to reduce starvation problems brought on by
network hot spots, because endpoints distant from the hot
spot will have a higher priority when they arrive at the hot
spot.

January/February 1997 37

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Endpoints

Every vertex connects

(a)

(b)

Figure 6. Hypercube topologies: 4D hypercube network
with 16 endpoints (a) and 4D local, 1D fat metahypercube
network with 64 endpoints (b).

1

2

3

4

Spider

Spider

Spider

Spider

5

6

7

8

Figure 7. A nonblocking switch. Circled numbers repre-
sent endpoints.

.

Users can inject messages considered high priority into
the network with an artificially high age. We have reserved
the top 16 age levels for the highest priority messages, as
standard messages do not age beyond a value of 239 (see
Figure 8).

Travel through the network may introduce gaps between
data packets of the same message. This occurs when a high-
er priority message on a different virtual channel cuts through
a lower priority message in progress or when port contention
causes gaps due to buffer underflow. Users can program the
Spider chip, however, to discourage such message gaps.
Register settings allow a message above a threshold age to
cut through other message in progress to minimize high-pri-
ority message latency. If users increase or disable the high-
priority threshold for message cut-through, fewer gaps will
appear in messages as they cross the network.

Network administration and error handling
The Spider chip core contains an administrative module

that provides control functions and tracks error conditions
and performance data. Registers in this module control func-
tions such as aging rates, message cut-through thresholds,
table access, error state, performance metrics, port protec-
tion, and port shutdown, as well as scratch registers with
value exchange access. Protection registers control access to
the administrative module, and users can set reset fences to
prevent reset from propagating through network partitions.

Although the LLP layer ensures reliable transmission, it is
important to track transient errors, because they affect per-
formance and may indicate a failing part. The administrative
module counts and stores checkbit errors and sequence
numbers errors on a per port basis. If a chip retries a single
packet several times without success, the administrative mod-
ule shuts the link down. The system accepts no new data
from the link until software examines the error state and
resets the link.

Users can also set timers to watch for a tail time-out con-
dition, which occurs when a message remains in progress
over a certain virtual channel with no data flowing for a time-
out period. When a tail time-out occurs, the Spider chip fab-
ricates a tail micropacket, setting an error indicator, and sends
it along the open channel. Another timer can check for dead-
lock conditions. If a given virtual channel remains full with
no progress for a time-out period, the chip sets a deadlock
time-out bit and resets the port. This condition should only
occur due to misprogrammed tables or endpoint loops.

The Spider chip also provides a real-time clock network
for applications that require tight synchronization between
endpoints. Two additional physical wires per port distribute
a clock signal throughout the network. Control registers
select the source clock port, and all other endpoints receive
the clock with minimal skew.

Physical design
The Spider chip is built in CMOS 5L, a 0.5-micron process

from IBM. The 850,000 gates comprise a combination of stan-
dard cells, memory arrays, hand-laid data path macros, and
custom I/O cells to handle high-speed off-chip signaling.
The 160-mm2 die with five metal layers connects to a cus-
tom 624-pin, 18-layer ceramic column grid array (CCGA)
package using flip-chip C4-style die attach. The core oper-
ates at 3.3 V and dissipates up to 29 watts when all ports are
in operation.

Three of the six ports provide a proprietary single-ended,
open-drain, low-voltage interface. These ports can commu-
nicate with other chips in the same chassis and can tolerate
multiple connector crossings. The other three ports drive
complementary PECL output pairs. Differential signaling
allows communication between chassis over cables up to 5
meters long, provided the ground shift between chassis is
less than 500 mV. The differential ports also provide dri-
ver/receiver shutdown features that can function in concert
with remote power sensing to provide hot plugging of cable
connections. An external chip is also available to provide
translation between single-ended and differential signaling
levels.

Performance
One of the Spider chip’s important applications is inter-

processor communication, which is very sensitive to laten-
cy. To address this, we spent a great deal of design effort
minimizing latency. The chips perform operations in paral-
lel whenever possible and speculate arbitration before error
status is known. We used custom cell layout to speed chip
transit.

After data reaches the SSR and is synchronized, it enters
the chip core and begins several operations in parallel. Table
lookup and crossbar arbitration is normally serialized, as the
exit port must be known before arbitration begins. To par-
allelize these operations, we pipelined table lookup across
Spider chips. The direction field in the message header refers
to the exit port targeted for the next hop, so crossbar arbi-
tration can begin immediately. While arbitration progresses,
so does table lookup for the next Spider chip, which depends
on the destination ID and the direction field. This does

38 IEEE Micro

Spider chip

255

254

240

239

238

237

0

Maximum age, priority

16 levels of high priority

Aging cap at 239

Standard packet aging range

Youngest age; new message injected here

Figure 8. Message priority levels.

.

increase table size, as a chip requires a full table for each
neighboring Spider chip, but it reduces latency by a full clock
cycle. Pipelined tables also add flexibility to possible routes,
as the chips can assign different exit ports depending on
where a message came from as well as where it is going.

During arbitration and table lookup, the LLP checks the
CRC code and sequence numbers; it signals bad data two
cycles later with a squash signal. When a squash occurs, all
states affected by the squashed micropacket rewind. In the
event that the chip has already routed the bad micropacket,
the LLP appends a stomp code to the CRC on the outgoing
micropacket.

If a message wins arbitration, it flows through the central
crossbar and is joined by precomputed flow control infor-
mation at the sender block. Finally, the LLP computes the
CRC algorithm, and the SSD transmits the micropacket. The
crossbar consists of hand-placed multiplexer cells, and we
optimized the CRC generation by using wide parity cells.

In the absence of congestion, the Spider chip’s pin-to-pin
latency is 40 ns (see Figure 9). After adding interchip prop-
agation delays such as circuit board trace and cables, uncon-
gested delay is approximately 50 ns per Spider chip. Table
1 shows the average latency for uniform accesses between
endpoints for the nonbristled, hierarchical, fat hypercube
topology discussed earlier.

THE FIRST APPLICATION of the Spider chip is provid-
ing an interconnect for the SGI Origin product line. The
Origin 2000 is a shared-memory multiprocessor that scales
from two to hundreds of processors. Origin uses Spider to
achieve systemwide cache miss latencies under 1 microsec-
ond while scaling up linearly in bisection bandwidth. The
Spider will also appear as the interconnect building block
for the Stanford FLASH multiprocessor project, a distributed
shared-memory system with a programmable protocol
engine. The wide variety of programmable features incor-
porated in Spider will allow these systems to further study the
benefit of each mechanism.

Acknowledgments
A small but inspired team of SGI engineers made the

Spider chip possible. We met all design and performance
goals at speed and on time. Special thanks to the hardware
team: Yuval Koren, Bob Newhall, and David Parry, with Ron

Nikel on high-speed signaling. Thanks also to Dan Lenoski
and Jim Laudon for architecture feedback, and to Dick Hessel
and Yen-Wen Lu for performance simulation and feedback.

References
1. W. Stallings, Data and Computer Communications, Macmillan

Publishing Co., Riverside, N.J., 1988, pp. 137-144.
2. W.J. Dally, “Virtual Channel Flow Control,” Proc. IEEE 17th Int’l

Symp. Computer Architecture, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1990, pp. 60-68.

3. Y. Tamir and H.-C. Chi, “Symmetric Crossbar Arbiters for VLSI
Communication Switches,” IEEE Trans. Parallel and Distributed
Systems, Vol. 4, No. 1, 1993, pp. 13-27.

Mike Galles is a principal engineer at
Silicon Graphics Computer Systems, spe-
cializing in multiprocessor computer
architectures. Since joining SGI, he has
worked on the R4000 processor, the
Challenge series bus-based symmetric
multiprocessor (SMP), and, most recent-

ly, the Origin scalable shared-memory multiprocessor
(S2MP).

Galles received a BSEE and an MSEE from Stanford
University. He is a member of the IEEE Computer Society.

Direct questions concerning this article to Mike Galles,
Silicon Graphics Computer Systems, 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311; galles@sgi.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 162 Medium 163 High 164

January/February 1997 39

Synchronizer Arbitration

Table route

Transmit

17.5 ns (average) 2.5 ns

Xbar and CRC

10 ns10 ns

40 ns

CRC check

Flow control

Figure 9. Pin-to-pin latency. The CRC needs to run twice
per chip for each micropacket: once when the micropack-
et is received, once when the micropacket is sent.

Table 1. Average latency.

No. of Average Bisection bandwidth
endpoints latency (ns) (Gbytes/s)

8 118 6.4
16 156 12.8
64 274 51.2

256 344 205.0
512 371 410.0

.

