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Abstract

The need to reduce power and complexity will increase

the interest in Switch on Event multithreading (coarse

grained multithreading). Switch On Event multithreading

is a low power and low complexity mechanism to improve

processor throughput by switching threads on execution

stalls. Fairness may, however, become a problem in a mul-

tithreaded processor. Unless fairness is properly handled,

some threads may starve while others consume all of the

processor cycles. Heuristics that were devised in order to

improve fairness in Simultaneous Multithreading are not

applicable to Switch On Event multithreading. This paper

defines the fairness metric using the ratio of the individ-

ual threads’ speedups, and shows how it can be enforced

in Switch On Event multithreading. Fairness is controlled

by forcing additional thread switch points. These switch

points are determined dynamically by runtime estimation

of the single threaded performance of each of the individ-

ual threads. We analyze the impact of the fairness enforce-

ment mechanism on throughput. We present simulation re-

sults of the performance of Switch on Event multithread-

ing. Switch on Event multithreading achieves an average

speedup over single thread of 24% when no fairness is en-

forced. In this case, over a third of our runs achieved poor

fairness in which one thread ran extremely slowly (10 to 100

times slower than its single thread performance) while the

other thread’s performance was hardly affected. By using

the proposed mechanism we can guarantee fairness of 1/4,

1/2 and 1 for a small performance loss of 2.2%, 3.7% and

7.2% respectively.

1. Introduction

During the last two decades, different architectures were

introduced to support multiple threads on a single die (chip).

These architectures can be classified into three classes:

• Chip Multi-Processor (CMP) - multiple processors (on

die) that share some of the memory hierarchy; e.g.

IBM’s Power4 [42] and Intel Duo [16].

• Simultaneous Multi-Threading (SMT) in which in-

structions from multiple threads are fetched, executed

and retired on each cycle, sharing most of the resources

in the core [45, 46]; e.g. IBM’s Power5 [23] and Intel’s

P4 [30].

• Switch on Event (SOE, coarse grained multithreading)

in which instructions from a single thread are fetched,

executed and retired, while an event, such as a long

latency memory operation event is used to efficiently

switch between the different threads [13, 15, 43]; e.g.

IBM’s RS64 IV [6] and Intel’s Montecito[31].

A conclusive comparison of these architectures is by no

means a trivial task since it involves many design and im-

plementation details and therefore is out of the scope of this

paper. In general SOE is simple to implement, and can eas-

ily be extended to a high number of threads. Not only does

simpler implementation mean lower design effort [5], but it

usually also means lower power.

There is an ongoing trend towards lower power and com-

plexity of microprocessors. All major microprocessor ven-

dors are going to chip multiprocessors with simple cores

rather than complex superscalars [22, 23, 25, 26, 36]. In

order to improve throughput and power efficiency, more

cores and threads are squeezed into a single processor die

[7, 11, 40]. Asymmetric cores integration can further im-

prove power to performance ratio by integrating simple

cores with larger, more complex ones [4, 28]. SOE is ex-

tremely important to this ’simple-cores’ trend, as it can in-

crease number of threads at a relatively small power, area

and complexity costs. Given SOE’s importance, we feel it

deserves further research and study.

In all the current multi-threaded architectures fairness is

a major problem. Lack of fairness is usually caused when

resources are unfairly shared between the different threads.

Unfair execution can cause, for example, serious respon-

siveness problems, in which some threads run extremely

slowly. CMP based architectures are mainly exposed to

fairness in accessing the shared caches in the memory hi-

erarchy. SMT has to handle the fairness among most of the

resources of the machine. Handling fairness in CMP is lim-

ited to memory access while handling it in SMT is micro-
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Figure 1. Intuitive example of unfair execu-

tion in SOE. Ex1 marks execution of instruc-
tions from thread 1, Ex2 from thread 2, M

marks last level cache misses and Sw de-

notes thread switch overheads. When both
threads run together using SOE (bottom), the
2nd thread runs extremely slowly while the

1st thread’s performance is hardly affected
by the multithreading.

architectural dependent. Fairness in SOE, as will be shown

in this paper, can be handled at the architectural level, free-

ing the microarchitecture from having to deal with it.

Example 1

The following example demonstrates the fairness prob-

lem in SOE. Consider the simple two threads case illus-

trated in Figure 1. The example shows how each of the two

threads is executing by itself on the processor, as well as

how they run together, using SOE which switches threads

on last level cache misses. Let us assume one thread (thread

2) has many more last-level cache misses than the other

(thread 1). When executed alone on the processor, each of

the two threads will suffer from a certain stall for each miss,

as it has nothing to execute while the miss is being resolved

(external memory access latency). When executed together

in SOE, however, these thread stalls are used for execution

of instructions from the other thread. From each thread’s

perspective, each of these execution stalls ends when the

other thread encounters a miss. This means that although

in the case of single thread, miss latency is effectively con-

stant (memory access latency), in SOE each thread sees a

different miss latency whose length is determined by the

other thread’s execution. This causes, in our scenario, for

the slower thread to become much slower, while the faster

thread gets most of the execution cycles. In this example,

SOE improved throughput but caused unfair execution.

1.1. Related Work

Many studies were made on SOE and its variants (coarse

grained multithreading). Most of these studies dealt with

throughput improvements. Farrens and Pleszkun [15] in-

troduced Blocked Multithreading (BMT) as part of their

evaluation of techniques for improving processor through-

put. In BMT the active thread is switched off whenever it

is blocked. Gupta et al.[18] evaluated coarse grain mul-

tithreading as part of their latency reducing and tolerating

techniques. They evaluated it along with coherent caches,

relaxed memory consistency models and prefetching tech-

niques. Eickemeyer et al.[13] studied SOE throughput in

server workloads, and showed that SOE achieves its max-

imum throughput using three threads. Haskins et al.[20]

introduced differential multithreading (dMT), a variant of

BMT which also handles misses in instructions and data

caches. They showed that dMT can substantially reduce

the cost and complexity of microprocessors. A complexity

related study proposed to add SOE on top of SMT in order

to increase the number of threads with low complexity over-

head [47]. None of these studies dealt with fairness between

threads. Our approach can be applied to any SOE mecha-

nism, such as BMT or dMT, to improve execution fairness.

Coarse grained multithreading (or SOE) has been imple-

mented in several commercial processors, such as IBM’s

RS64 IV [6] and Intel’s Montecito[31]. Montecito preferred

SOE over SMT due to the already high IPC (instructions

per cycle) and execution units utilization achieved in single

thread runs, which implies low potential for SMT. In Mon-

tecito’s SOE scheme, each thread gets its fair share of the

memory hierarchy caches. There is, however, no guaran-

tee for fairness in its threads execution. Several research

projects studied SOE multithreading [1, 2, 17, 32], but none

of them dealt with the fairness problem. A survey of SOE

research projects and commercial machines can be found in

Ungerer et al.[48] explicit multithreading survey.

Fair cache sharing between multiple co-scheduled

threads has been shown to be a potential cause of serious

problems such as threads starvation. Cache sharing can be

extremely unfair, for example, when a thread with high miss

rate and poor locality constantly causes evictions of other

thread’s data that will be required soon after. Dynamic and

static resources partitioning schemes have been proposed

to improve fairness in caches and other resources sharing

[8, 24].

Simple time sharing is used at the operating system level

to ensure an equal share of time for each thread. Various

methods were suggested to manage the time sharing for fair-

ness with prioritization and real-time constraints [12, 21].

We deal with the applicability of time sharing to SOE in

Section 6.

Fairness of threads execution was studied in the context

of SMT [29, 34, 35, 44]. Raasch and Reinhardt [35] showed

that resource partitioning in SMT improves threads’ exe-

cution fairness. For example, statically partitioned ROB

improves fairness compared to competitive sharing. Luo

et al.[29] used fetch policy as a heuristic to prioritize the

different threads, in order to improve fairness. Both ap-

proaches are applicable to SMT but not to SOE. SOE main-

tains a single active thread in the pipeline. Hence, resource

partitioning will not improve fairness and fine grained fetch

prioritization will require frequent pipeline flushes in order

to switch threads (severely harming performance). Several
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attempts were made to suggest a single metric that com-

bines both fairness and throughput. Snavely et al.[39] used

weighted speedup in order to measure the goodness of their

operating system level job scheduling. Weighted speedup is

the sum of the individual threads’ speedups1. This metric

considers each instruction executed by a low IPC thread as

being worth more. It is useful for increasing throughput in

a fair manner when selecting a small number of jobs from

a larger pool (OS tasks scheduling). Luo et al.[29] defined

fairness as the harmonic mean of the speedups of the in-

dividual threads. The speedup they use is the throughput

(IPC) of each individual thread when run in multithreaded

mode, compared to its throughput when executed alone on

the processor. They attempt to capture both throughput and

fairness in a single metric. We further discuss these metrics

in Section 6.

1.2. Paper Overview

No attempt has been made so far in the relevant literature

to analyze or control fairness in SOE multithreading. This

paper fills this gap. We provide a mechanism for fairness

enforcement and analyze it. The suggested mechanism uses

hardware counters and a feedback loop that monitors fair-

ness by estimating the individual threads’ IPC, had each

of them been executed alone on the processor. Fairness

between threads is enforced by inducing additional thread

switches in order to balance threads execution. For simplic-

ity, the rest of the paper uses last-level cache misses as the

event that causes thread switches. The suggested approach

is applicable to any detectable long latency stall. This paper

makes the following contributions:

Analytical Model: we provide an analytical model and an-

alyze SOE fairness and throughput tradeoffs. The ana-

lytical model shows the effects of the induced thread

switches. It enables throughput calculation given

workload characteristics such as miss distribution and

threads performance when executed alone on the pro-

cessor. The main benefit of the model is the estimation

method, which is essential for enforcing fairness.

Fairness Enforcement in SOE: we present a low over-

head mechanism for fairness enforcement in SOE mul-

tithreading. The mechanism tracks run-time fairness

by estimating the individual threads’ performance, had

they been executed alone on the processor. Thread

switches are induced when necessary in order to en-

force the desired fairness level.

2. Model and Fairness Definition

This section presents an analytical model for SOE fair-

ness and throughput. The model provides a fairness estima-

1Weighted speedup is defined as WS =PN
i=1

(realized IPC jobi/single-threaded IPC jobi).

Symbol Description

IPC Average number of useful instructions executed per

cycle.

IPCno miss IPC of a thread excluding last-level misses (as if

the last level cache always hits).

IPCSOE IPC (of all threads) when executed using SOE.

IPCSOE
j IPC of thread j when executed using SOE with

other threads.

IPCST
j IPC of thread j when executed alone.

IPMj Instructions Per Miss in thread j.

Average number of instructions between two con-

secutive misses in thread j.

CPMj Cycles Per Miss in thread j.

Average number of cycles between two consecutive

misses in a thread j (excluding miss latency).

CPMmin Minimal CPMj of all threads (minj CPMj ).

IPSwj Instructions Per Switch in thread j.

Average number of instructions thread j executes

before it is switched out (in SOE).

CPSwj Cycles Per Switch in thread j.

Average number of cycles thread j executes before

it is switched out (in SOE).

F Fairness to be enforced (0 ≤ F ≤ 1).

λ Period of fairness enforcement parameters calcula-

tion (in cycles).

Table 1. Abbreviations and symbols.

tion method which is used by the mechanism for fairness

enforcement at run-time.

Sketching the mechanism roughly, we estimate the sin-

gle thread performance of the individual threads had each

of them been executed alone, while they are running in

SOE multithreading. The estimation is based on the mea-

surement of the throughput of each thread while it is run-

ning under SOE in addition to last level cache misses which

would have stalled the thread, had it been executed alone.

We can then estimate the speedup of each thread by divid-

ing its actual SOE throughput by the estimated single thread

throughput. Our proposed mechanism induces additional

thread switches in order to make sure that the speedups are

similar for all of the threads. We define fairness as the ratio

between the speedup of the individual threads. We compute

the necessary “instructions per switch” quota that needs to

be maintained in order to guarantee a minimum specified

level of fairness. This Instructions Quota is then maintained

using deficit counting (as explained in section 3.2).

2.1. Program Behavior Model

In order to present a simple and meaningful analytical

model of the fairness problem, let us assume that the exe-

cution of single thread applications can be viewed as a se-

quence of instructions delimited by long latency last-level

cache misses. Let IPM (Instructions Per Miss) be the av-

erage number of useful instructions executed between two

consecutive misses, and CPM (Cycles Per Miss) be the

average number of cycles between those misses. When a

thread executes alone on the processor, each miss causes
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Figure 2. Representation of single thread
runs for two threads (top) and SOE run of the
same two threads (bottom).

an execution stall of Misslat cycles (Misslat is the aver-

age memory access time in processor cycles). IPMj and

CPMj (IPM and CPM of thread j) are illustrated in Fig-

ure 2 for two threads both when running together (using

SOE), and when executed alone.

Let IPCST
j be the average number of useful instructions

executed per cycle (retired instructions per cycle) in thread

j when executed alone on the processor. As shown in Equa-

tion 1, IPCST
j can be calculated by dividing IPMj , by the

average of the total number of cycles corresponding to these

instructions2, which is CPMj + Misslat.

IPCST
j =

IPMj

CPMj + Misslat
(1)

Let IPCSOE
j be the average number of useful instruc-

tions executed per cycle in thread j when running together

with other threads using SOE. As shown in Equation 2,

IPCSOE
j can be calculated by dividing IPMj by the av-

erage total number of cycles of a whole switch-on-event

round (until thread j gains execution again). A whole round

is calculated by summing the CPM of all the threads to-

gether with their corresponding Switchlat cycles (the aver-

age overhead per thread switch).

IPCSOE
j =

IPMj
∑

k(CPMk + Switchlat)
(2)

It should be noted that Equation 2 holds as long as misses

that cause thread switches are resolved by the time their

threads are running again. This is obviously true if there

are sufficient threads available.

2We deliberately ignore out-of-order issues such as useful work done

while cache misses are being resolved or the fact that several cache misses

may be pending (overlapping of cache misses). This is done in order to

simplify the model. It should be noted that our empirical results indicate

that the analytical model gives adequate approximation. It should also be

noted that our implementation only counts the first miss in a each group of

overlapped misses (see Section 3.1).

2.2. Fairness Metric

A system is fair if all the threads experience an equal

slowdown compared to their performance had they been ex-

ecuted alone [29]. We define a perfectly fair system as:

∀j, k
IPCSOE

j

IPCST
j

=
IPCSOE

k

IPCST
k

(3)

Following Equation 3, a fairness metric can be defined

as the minimum ratio between the slowdowns of any two

threads running in the system:

Fairness ≡ min
j,k









(

IPCSOE
j

IPCST
j

)

(

IPCSOE
k

IPCST
k

)









= min
j,k

(

IPCSOE
j · IPCST

k

IPCST
j · IPCSOE

k

)

(4)

It should be noted that this definition of fairness is more

strict than the harmonic mean used by Luo et al.[29]. It uses

the maximum and minimum speedups for fairness calcula-

tion, which guarantees that these values will not have re-

duced impact on fairness due to averaging. In other words,

enforcing fairness using our definition is guaranteed to im-

prove harmonic mean based fairness, but not vice versa.

2.3. Fairness Enforcement

According to the definition in Equation 4, 0 ≤

Fairness ≤ 1. Perfect fairness is achieved when

Fairness = 1. Fairness decreases with the metric value,

until it reaches 0 which is complete unfairness (one of the

threads is completely starved - not running at all).

Substituting Equation 1 and Equation 2 into Equation 4

results in Equation 5:

Fairness ≡ min
j,k

(

CPMj + Misslat

CPMk + Misslat

)

(5)

Equation 5 shows that unless we modify our SOE

scheme, fairness will be defined by CPM , which is a char-

acteristic of the running threads.

In order to control fairness in SOE, we must define

forced switch points, not necessarily caused by last-level

cache misses. Let IPSwj be the average number of in-

structions executed from thread j, before it is switched

out. Similarly, let CPSwj be the average number of cycles

thread j has executed before it is switched out (if thread

j switches out only due to last level cache misses then

IPSwj = IPMj and CPSwj = CPMj). Using IPSwj

and CPSwj modifies Equation 2:

IPCSOE
j =

IPSwj
∑

k(CPSwk + Switchlat)
(6)
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Substituting Equation 6 and Equation 1 into equation 4

we get:

Fairness ≡ min
j,k

(

IPSwj

IPSwk

IPMk(CPMj + Misslat)

IPMj(CPMk + Misslat)

)

(7)

We define the parameter F to be the target fairness that

we wish to achieve from the system (0 ≤ F ≤ 1). Based

on our definition of fairness from Equation 7, a system

achieves the required fairness F if it satisfies Equation 8.

F ≤ min
j,k

(

IPSwj

IPSwk

IPMk(CPMj + Misslat)

IPMj(CPMk + Misslat)

)

(8)

Let CPMmin be the minimal value of CPM of all

threads, CPMmin = minj CPMj . Setting IPSwj for

each thread as shown in Equation 9 is guaranteed to satisfy

Equation 83.

IPSwj = min

(

IPMj ,
IPCST

j

F
(CPMmin + Misslat)

)

(9)

Equation 9 is the main result of the analytical model. It

is used by the fairness enforcement mechanism in order to

calculate IPSwj for each thread that, when enforced, will

achieve the required fairness.

Our SOE scheme switches threads in order to achieve an

average of IPSwj instructions per switch. It switches on

last-level cache misses in addition to forced switches due to

IPSwj . Hence, there is no way to increase IPSwj to a

value greater than IPMj (that is why we use min in Equa-

tion 9).

As shown in Equation 4, fairness is the minimum ratio

of speedups between any two threads in the system. When

used as a parameter F, it sets the allowed speedup ratio. For

example, calculating IPSwj for all threads using F = 1/2
will guarantee a maximum speedup ratio of 2. This means

that the ratio of speedups between the threads that have the

highest and lowest speedup will be at most 2.

2.4. Fairness and Throughput

Using IPSwj to control fairness sets new thread

switches. These switches are defined by the IPSwj quota

and not necessarily by last-level cache misses. In other

words, there are forced thread switches, that cause some

execution stall (thread switch latency), which are not hid-

ing any other long latency stall (such as the last-level cache

miss). This means that fairness enforcement will affect the

throughput.

We can measure throughput as the IPCSOE , which is

the IPC of all of the threads when executed together using

SOE. As shown in Equation 10, IPCSOE can be calcu-

lated by dividing the total average number of instructions

3This can be proven algebraically.

F = 0 F = 1 F = 1/2

j (thread num) 1 2 1 2 1 2

IPMj 15,000 1,000 15,000 1,000 15,000 1,000

IPCno miss 2.5 2.5 2.5 2.5 2.5 2.5

IPSwj 15,000 1,000 1,667 1,000 3,333 1,000

CPSwj 6,000 400 667 400 1,333 400

IPCST
j 2.381 1.429 2.381 1.429 2.381 1.429

IPCSOE
j 2.326 0.155 1.493 0.896 1.869 0.561

IP CST
j

IP CSOE
j

1.02 9.22 1.59 1.59 1.27 2.55

IPCSOE

2.48 2.39 2.43
(Throughput)

Achieved
0.11 1.00 0.50

Fairness

Table 2. Example of two threads SOE with and
without fairness enforcement.

executed by all threads in a single SOE threads round, by

the respective number of cycles. Finally, Equation 6 can be

used to show that IPCSOE =
∑

k IPCSOE
k :

IPCSOE =

∑

k IPSwk
∑

k(CPSwk + Switchlat)
=
∑

k

IPCSOE
k

(10)

Example 2

This example demonstrates the use of fairness enforce-

ment using the method described in Section 2.3. Consider

the case of two threads sharing a processor using SOE,

switching on last-level cache miss events. Let us assume

that instructions run at a rate of 2.5 instructions per cycle

on both threads excluding miss stalls (IPCno miss = 2.5).

Memory access latency on a last level cache miss is 300

cycles. Thread switch latency is 25 cycles. The first

thread has a miss every 15,000 instructions (6,000 cycles),

the second every 1,000 instructions (400 cycles). Table 2

shows the performance of the two threads when running

alone (IPCST
j ) and when running together in SOE mode

(IPCSOE
j ). As shown, in the latter case, the first thread’s

IPC drops by a factor of 1.02, while the other thread’s

IPC drops by 9.2. This is clearly unfair, as the faster thread

(thread 1), whose performance is hardly affected, causes the

other thread to slow down by a factor of 9. This gives a fair-

ness metric of 0.11. However, when fairness is enforced to

1, the first thread is forced to switch every 1, 667 instruc-

tions (on average), instead of only on cache misses which

occur every 15, 000 instructions (IPM1 = 15, 000).

In this example thread 2 is almost starved when no fair-

ness is enforced (F = 0). When F = 1 (fairness enforced

to 1), both threads are forced to equal slowdown compared

to their IPCST
j . When F = 1/2, slowdown is allowed to

differ by at most a factor of 2.
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Figure 3. The effect of fairness enforcement

on throughput, using a two threads analytical
model. Legend’s notation: IPCno miss =
[IPCno miss1, IPCno miss2], IPM =
[IPM1, IPM2].

2.5. Fairness and Throughput Analysis

When fairness is not enforced, every thread switch hides

a memory access stall (last-level cache miss). However,

when fairness is enforced, additional thread switches are in-

duced in order to maintain the required fairness. Intuitively,

these forced thread switches, which cause a Switchlat cy-

cles stall, reduce the throughput of SOE4.

Figure 3 shows the effect of fairness enforcement on

throughput in a two threads model. It shows through-

put degradation due to fairness enforcement, of thread pair

combinations with different IPCno miss (performance ex-

cluding misses) and IPM . The figure shows that in most

cases fairness enforcement cause throughput degradation.

As shown by the lines of IPCno miss = [2.5, 2.5], when

IPCno miss is similar for both threads, throughput de-

grades by up to 4%. However, when the two threads do not

have the same IPCno miss, throughput can degrade by up

to 15% or can actually improve by up to 10%. The through-

put increase in the IPCno miss = [2, 3] cases is explained

by noting that fairness enforcement biases the execution to-

wards the thread with the higher IPCno miss, hence, im-

proves throughput.

Figure 3 shows a tradeoff between F (enforced fairness)

and throughput (for Misslat = 300, Switchlat = 25).

As shown, in some situations, forcing fairness increases the

throughput, while in other cases using a fairness (F) of less

than 1 allows balancing the fairness requirement with the

throughput degradation.

3. Implementation

In order to enforce fairness between threads, the proces-

sor should calculate IPSwj for each thread based on its

4It will be shown later that additional forced switches can actually in-

crease the throughput.

runtime characteristics and regulate the switch points in or-

der for the average instructions per switch to be equal to the

required IPSwj .

3.1. Runtime Calculation of IPSwj

In order to calculate IPSwj (Equation 9), two thread

characteristics must be obtained for each thread: IPMj and

CPMj . In addition Misslat must be known. All of these

can be obtained using three hardware counters per thread.

These counters should count instructions retired, last-level

cache misses and cycles while the threads are running in

SOE:

Instrsj: instructions retired from thread j.

Cyclesj: total number of cycles from the retirement of the

first instruction after thread j switches in, until it is

switched out (this is the actual number of cycles the

thread was running, excluding the switch overhead).

Missesj: number of last level cache misses encountered

while running thread j. In order to minimize inaccu-

racies caused by overlapping of misses (several clus-

tered pending misses on a specific thread caused by

out-of-order execution) we count only misses that ac-

tually cause a thread switch (non-resolved misses that

are encountered on retirement of the next-to-retire in-

struction).

The characteristics of the threads can be computed from

these counters, as shown in Equation 11, Equation 12 and

Equation 13. Average Misslat can be either a predefined

parameter or a measured statistic.

IPMj =
Instrsj

max(Missesj , 1)
(11)

CPMj =
Cyclesj

max(Missesj , 1)
(12)

IPCST
j =

IPMj

CPMj + Misslat
(13)

IPSwj can be calculated using the hardware counters

every λ cycles. The calculated IPSwj values will be used

during the following λ cycles. In other words, hardware

counters of each λ cycles are used as an estimation for the

following λ cycles. λ should be set to a value large enough

to allow good statistical averaging, but not too large in order

to allow performance phases to be accurately tracked.

In rare cases, where a thread does not encounter any miss

in λ cycles, a value of Missesj = 1 is used to estimate its

performance. This decreases IPCST
j estimation, however,

it is still good enough for our purposes.

There are several alternative implementations for calcu-

lating IPSwj every λ cycles. It can be done in hardware,

using injected instruction flows (flows of instructions that

are injected into the pipeline by the hardware as a result of
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an event) or using interrupts. We found λ = 250, 000 cycles

to be large enough for our statistical purposes.

3.2. Maintaining IPSwj using Deficit Counts

Fairness mechanism is expected to maintain IPSwj in-

structions on average, between switches for thread j. How-

ever, simply forcing a thread switch every IPSwj instruc-

tions will not produce the expected average instructions per

switch, as threads are switched on last-level cache misses

as well. In order to achieve this average, we are using a

per thread Deficit Counter, for dynamically adjusting the

switch points. Deficit Counters are used to hold the quota

’left-over’. This leftover is caused by misses encountered

before the quota is fully used up. The leftover increases

the quota of the thread the next time it is switched in. This

deficit mechanism is done in a similar manner to Deficit-

Round-Robin mechanism [37].

The hardware maintains a per thread Deficit Counter.

Initially, the Deficit Counter is set to 0 for all of the threads.

Deficit Counter of thread j is incremented by IPSwj every

time thread j is switched in. On retirement of each instruc-

tion, the corresponding Deficit Counter is decremented. A

thread is switched out when its Deficit Counter reaches 0,

or when a last-level cache miss is encountered.

Deficit counting ensures that when a miss event causes

a switch before IPSwj instruction quota was reached, the

next instructions quota for that thread will be larger. This

compensates for the shorter previous quota, that ended by

a miss. The deficit mechanism ensures that on average

the thread will run for the required IPSwj instructions be-

tween switches.

4. Simulation Methodology

An out-of-order processor was simulated using a detailed

cycle accurate execution driven simulator. The processor is

derived from the P6 micro-architecture [19]. The simulator

uses Long Instruction Traces (LITs) [38]. LITs are not ac-

tually traces (they do not contain an instruction or execution

trace). Each LIT contains an architectural checkpoint (state

snapshot) in addition to injectable external events. Each

checkpoint consists of a memory image and processor state

(registers). Injectable external events include interrupts, IO

and DMA events. Using LIT enables full accurate simu-

lation of the application as well as of interrupts, operating

system and DMA side effects. These tools and methodol-

ogy were extensively used for detailed simulation in many

studies [3, 9, 14, 33, 38].

4.1. Machine Configuration

We simulated an out-of-order core, with first level in-

struction and data caches, a unified 2nd level cache (L2),

a pipelined bus and a constant latency memory (as shown

Fetch/Retire width 4 / 4

RS / ROB size 36 / 96 entries

Load/Store buffers 48 / 36 entries

L1 D-cache 32K, 8 ways, 64B line, 2 load ports,

1 store port

L1 I-cache 32K, 4 ways, 64B line

Branch prediction 24K bimodal / 24K gshare / 4K BTB

entries, 32 RSB entries

L2 unified cache 2M, 8 ways, 64B lines, 5 cycles

hit/miss indication

Memory latency 300 cycles

SOE event L2 miss

λ 250,000 cycles

Table 3. Simulated machine parameters

ALU

AGU Data Cache
Access (hit)

Data Cache
Access (miss)AGU

Instr Execute Retire

Memory Hierarchy

L2 Cache Access
(miss) Memory Access

Core
Out−Of−Order

L1 Instrs

L2 Cache (unified)

Bus

Memory
Thread Switch Trigger

(when next uop is pending on a detected miss)

ALU

Load
(L1 hit)

(L2 miss)
Load

Fetch Decode

Cache Cache
L1 Data

Instr

Alloc
Rename/

Uop

(write to RS)
Issue
Uop

Dispatch
and

Schedule

Figure 4. Processor pipeline and memory hi-
erarchy.

in Figure 4). Table 3 summarizes machine configuration

parameters. Structure sizes were based on Intel’s disclo-

sure of their latest processor core [27], and were slightly

increased to reflect our view on a future version of that pro-

cessor. Memory latency was set to 300 cycles, which is 75ns

at 4GHz processor frequency. High level views of the sim-

ulated processor pipeline as well as the memory hierarchy

are shown in Figure 4.

We have modified the simulator to support SOE multi-

threading, switching on L2 cache misses (last-level cache

misses). Misses induced by load instructions as well as i/d

TLB page walks are tracked by flagging them in the ROB

(Re-Order Buffer). A thread switch is triggered when the

head of the ROB (the next instruction or micro-operation

to be retired) is flagged as handling a miss which has not

been resolved5. A thread switch causes draining of instruc-

tions from the RS (Reservation Station), ROB and LB (load

buffers) and is simulated as a 6 cycles long draining. Struc-

tures such as iTLB, dTLB, caches and branch prediction

history are shared, and are not flushed on switch. This

is required in order to maintain performance after thread

switch events [31]. The store buffer keeps dispatching re-

tired stores even after a flush, but will not forward their data

if they are not from the same thread.

Switch latency is defined as the number of cycles from

5This triggering scheme allows overlapping of clustered misses exe-

cuted using the out-of-order (prefetching effect).
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the start of the switch until the first instruction of the next

thread reaches the pipe stage in which the switch was trig-

gered (retirement). The switch latency is not constant (de-

pends for example on the instruction that was switched in),

and usually accumulates to around 25 cycles.

We set λ to 250, 000 cycles. λ is the period used for

sampling hardware counters and recalculating fairness pa-

rameters. In order to ensure that all threads are run in every

λ cycles, each thread is limited to a certain amount of time,

before it is forced to switch out. We refer to this value as

the maximum cycles quota per thread. This value should

be less than λ/N , where N is the number of threads. A

value less then λ/N ensures that all threads execute in any

given λ cycles. The maximum cycles quota deals with the

rare cases where threads do not encounter any miss in λ cy-

cles. It should be noted that the maximum cycles quota for

a thread switch should be large enough so that the quota-

forced switches are relatively rare and do not cause perfor-

mance degradation. We used 50,000 cycles as the maximum

cycles quota per thread.

Spec CPU2000 benchmarks [10] were simulated on a

two threads SOE configuration. Caches were warmed up

using 10,000,000 instructions from each thread. Threads

were simulated until both of them completed at least

6,000,000 instructions. The first 1,000,000 simulated in-

structions were not included in the results (statistics), and

were used to warm up the internal micro-architecture state

(internal structures such as the branch prediction tables as

well as the fairness mechanism state). When the same

benchmark was run on both threads, the two threads were

offset by 1,000,000 instructions.

We used 16 combinations of benchmarks, out of which

8 combinations were of the same benchmark executed on

both threads. Each combination was simulated using SOE

without fairness (F = 0), and with F = 1, 1/2 and 1/4. In

addition, we simulated each benchmark alone on the pro-

cessor, in order to obtain its real IPCST
j .

5. Simulation Results

5.1. Detailed Examination

We use a representative two threads combination in or-

der to gain insight into the fairness enforcement mechanism.

We use a combination of gcc and eon applications. This

combination requires active fairness enforcement without

which the gcc thread almost starves, while eon runs on the

processor most of the time.

5.1.1. Estimating IPCST
j while Running in SOE. Fair-

ness enforcement is done by calculating IPSwj for each

thread, based on the estimated values of IPCST
j . IPCST

j

is estimated using hardware counters. Figure 5 (top) shows

single thread performance of the two threads when each of

them is executed alone on the processor, compared to the

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
6
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1
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ST
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 estimation (ST uses sliding average over 250k cycles, SOE: estimated using λ=250k cycles)
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Speedup ratio, F = 1/4

Figure 5. IPCST
j estimation using hardware

counters while running in SOE multithread-
ing with fairness enforcement (top). The es-

timated speedup of the individual threads
when run with and without fairness enforce-
ment (middle). The achieved ratio between

thread speedups - achieved fairness (bot-
tom). Fairness is enforced to 1/4.

estimated performance using hardware counters. Equation

13 is used to estimate the performance. The figure shows

that hardware counters can be effectively used to estimate

single thread performance of each thread (IPCST
j ), while

they are both running in SOE.

As shown in Figure 5 (top), the estimated IPCST
j

closely tracks the real IPCST
j . It is usually slightly lower

than the real IPCST
j , due to several issues that may slow

down each thread’s execution in between misses. When

a thread executes alone, the out of order mechanism uses

some of the miss-stall cycles for out-of-order execution.

These speculatively executed instructions are retired after

the miss is resolved. Needless to say, these executions are

not possible in SOE, which uses the stall time for the ex-

ecution of the other thread. Another factor which reduces

the performance of the individual threads is resource shar-

ing (e.g. branch predictor tables). Sharing of resource re-

duces their effective size, as seen by each thread, when both

threads are running together.

5.1.2 Fairness Enforcement. Figure 5 (middle) shows

the individual thread estimated speedups and the actual

achieved fairness (bottom), when the two threads run un-

der SOE. When fairness is not enforced, the 2nd thread

(eon) executes most of the time, which causes the 1st thread

(gcc) to almost starve. When fairness is enforced to 1/4, the

2nd thread’s (eon) speedup is not allowed to exceed the 1st

thread’s (gcc) speedup by a factor of more than four. Now
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Thread 2

Thread 1

Figure 6. SOE throughput (IPCSOE =
IPCSOE

1
+IPCSOE

2
) with and without fairness

enforcement, as well as IPCST
j of each of the

two threads when executed alone.

the speed of gcc is 20 times faster than its speed without

fairness enforcement.

The speedup plot shows one occurrence in which the 2nd

thread gets higher speedup, followed by a slightly higher

speedup of the 1st thread. This can be seen on the plots

at 6,000,000 cycles when no fairness is enforced, and on

7,000,000 cycles when fairness is enforced to 1/4. This

is most likely due to a short performance phase change, in

which the estimation based on the previous λ (250,000) cy-

cles isn’t accurate. This causes a short unfair execution. In

long runs, however, the effects of these short unfair peri-

ods average towards an average of good fairness. The time

difference of 1,000,000 cycles indicates that phase change

occurred in the 2nd thread (eon), which gets slower when

fairness is enforced (had the phase change been in the other

thread, which gets faster when fairness is enforced, the oc-

currence would have moved to an earlier cycle in the fair

scenario).

5.2. Fairness and Throughput

The throughput of different thread combinations is

shown in Figure 6. IPCSOE with and without fairness en-

forcement, as well as IPCST
j for both threads, are shown.

IPCSOE is shown as stacked performance of the two

threads (Equation 10). The average speedup of SOE over

single thread6 is 24%, 21%, 19% and 15%, for no fairness

enforcement (F = 0), F = 1/4, 1/2 and 1.

Usually, as shown in Figure 6, fairness enforcement has

only negligible effect on the throughput when IPCST
j of

the two threads is roughly the same (e.g. lucas:applu,

bzip2b:bzip2b). The greater the difference between perfor-

mance of the individual threads, the more thread switches

will be required in order to enforce fairness. Induced

switches cause throughput degradation as enforced fairness

F increases (e.g. galgel:gcc, apsi:swim).

6Speedup of SOE over single thread = IPCSOE

1

N
N
j=1

IPCST
j
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Figure 7. SOE throughput degradation due to
fairness enforcement.

Figure 7 shows throughput degradation caused by fair-

ness enforcement, as well as number of forced thread

switches in 1000 cycles. It shows throughput normalized

to the throughput without fairness enforcement. Forced

switches are caused by fairness enforcement (they do not

hide any memory access). Enforcing fairness of 1, 1/2
or 1/4 causes an average throughput degradation of 7.2%,

3.7% and 2.2% respectively. Enforcing perfect fairness

(F = 1) can cause a large performance degradation, even

in cases where the same application is executed on both

threads. Using fairness of 1/2 or 1/4, allows the thread

speedups to have some difference (slack), which reduces

performance degradation. Throughput degradation is the

combined effect of the overhead caused by induced thread

switches and the fact that usually slower threads (threads

with lower IPCno miss) are allowed to execute more in-

structions (at the expense of the faster thread). As shown,

there is a high correlation between the number of forced

thread switches and the effect on the throughput (perfor-

mance).

Figure 8 (left) shows achieved fairness with and without

fairness enforcement. The F = 0 line shows the achieved

fairness of the two threads without any attempt to enforce it.

The lines with F = 1/4, 1/2 and 1 show the fairness when

it is enforced to be 1/4, 1/2 and 1 respectively. Simulation

runs are ordered by their achieved fairness when no fairness

is enforced. As shown in the figure, even in the most unfair

cases fairness enforcement achieves a fairness close to F

(the target fairness being enforced). On runs which are also

fair without fairness enforcement, the mechanism has small

effect on the achieved fairness.

Figure 8 (right) show the average achieved

fairness. It shows the average and standard de-

viation of min(F, Achievedfairness). Using

min(F, Achievedfairness) in our calculation ensures
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Figure 8. Achieved fairness (left) and its aver-

age and standard deviation(right).

that when achieved fairness is greater than F (the target

fairness being enforced), it will be truncated to F. This gets

rid of the biasing effect of runs that are fair even without

fairness enforcement (these runs that would have otherwise

biased the averages towards 1). There is no truncation for

the case of F = 0. The results show that achieved fairness

is highly accurate, although its accuracy degrades as stricter

fairness is being enforced.

6. Discussion

Simple heuristics for fairness improvements, such as

fetch prioritization or simple time sharing, are ineffective

for SOE. Fetch prioritization [29, 41] is a fine grained

prioritization approach appropriate for SMT. It prioritizes

fetches from the different threads. This can result in chang-

ing the thread from which instructions are fetched every few

cycles. This is applicable to SMT, where the front end main-

tains several threads and fetches are based on prioritization.

SOE, however, maintains a single fetch thread and has to

flush the pipeline on each such thread switch. Fetch pri-

oritization will result in frequent pipeline stalls which will

severely impair SOE performance. Simple time sharing is

ineffective for producing high fairness with small perfor-

mance degradation. When the time sharing quota is small,

high fairness can be achieved at the cost of high perfor-

mance degradation (due to frequent pipeline flushes). When

the quota is large, performance is maintained but fair exe-

cution is only rarely achieved. Consider the scenario in Ex-

ample 2. Forcing an average of 400 cycles between thread

switches will produce poor fairness. Although time will be

equally divided between the two threads, their individual

speedups (
IPCSOE

j

IPCST
j

) will be 0.5 and 0.8, and the achieved

fairness will be 0.5
0.8 = 0.6. On the other hand, as shown

in Table 2, by using the proposed algorithm the speedup of

both threads can be adjusted to 0.63 ( 1

1.59 ) and the achieved

fairness in that simple example will be 0.63
0.63 = 1.0.

Several attempts have been made to suggest a sin-

gle metric that combines both fairness and throughput.

Luo et al.[29] used the harmonic mean of the individ-

ual threads’ speedups. Snavely et al.[39] suggested us-

ing weighted speedup which is the sum of the individual

threads’ speedups (WS =
∑N

i=1
(IPCSOE

j /IPCST
j )). We

found both metrics to give insufficient insight into either

throughput or fairness, and the harmonic mean to be biased

toward fairness. We prefer the use of two metrics, one for

fairness and one for throughput (IPC). Each of them clearly

captures its purpose. Using two metrics allows the user to

subjectively balance between fairness and throughput. We

believe that fairness should be controlled in such a way that

maximum performance is maintained while guaranteeing

that no thread starves. This is not possible with either the

weighted speedup or the harmonic mean metric. Our fair-

ness metric is based on speedups of the individual threads

(similar to the approach used by Luo et al.) and clearly en-

capsulates fairness (but not throughput).

The empirical results shown in this paper demonstrate

that fairness can be effectively maintained using the pro-

posed mechanism. The results also indicate that attempting

to maintain perfect fairness (F = 1) has negative effects

on performance and in many cases on the achieved fair-

ness as well. Both performance and the achieved fairness

are affected by the large number of forced switches intro-

duced by the attempt to maintain perfect fairness. These

thread switches reduce the accuracy of the IPCST estima-

tion, on which fairness enforcement mechanism is based. In

extreme cases, this can lead to achieving worse fairness than

when attempting to enforce a less strict one (e.g. gcc:gcc or

mgrid:mgrid in Figure 8).

Increasing the enforced fairness (F) increases the num-

ber of induced thread switches. This increases the to-

tal thread switch overhead as well as usually allowing the

slower thread to execute more instructions. This usually

decreases throughput but increases the achieved fairness.

Hence there is a tradeoff between fairness and throughput.

The balance point between fairness and throughput depends

on the user’s preferences. There is no objective metric that

combines both throughput and fairness to allow such bal-

ance point analysis. According to our simulation results,

using F ≤ 0.5 is a reasonable compromise. This maintains

high throughput and guarantees that no thread starves.

The analytical model shows that enforcing fairness can

actually improve throughput. We did not encounter such a

case in our simulation runs. Fairness will increase through-

put when its enforcement biases execution towards threads

that have a higher IPCno miss. This means that lower

CPM threads also have higher IPCno miss. This occurs

for short periods of time, but not enough to increase the av-

erage throughput in any of our runs.

The SOE mechsnism presented in this paper may be ex-

panded by using various events to trigger thread switches.

For example, L1 misses (which may hit or miss the L2

cache) can cause a thread switch to hide L1 miss latency.
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Another example are explicit instructions that can trigger

thread switches7.

We used a constant predefined value for miss latency

(300 cycles) to represent the average memory access la-

tency. Some switch events may have variable latency,

whose average is hard to predict (e.g. L1 miss). In these

cases, event’s latency should be monitored using hardware

counters. For example, in order to determine L1 miss la-

tency, a hardware counter could count the total number of

cycles used for L1 misses handling. On every λ cycles,

when fairness parameters are recalculated, Misslat should

also be calculated, using the hardware counter divided by

the number of L1 misses. This method can be used to sup-

port multiple event types with variable latencies.

7. Conclusions

SOE is a low power and low complexity multithreading

solution, that improves processor utilization and through-

put. It hides execution stalls, such as last level cache misses,

by switching threads on the detection of such stalls. This pa-

per presented a fairness enforcement mechanism for SOE,

forcing thread switch points based on architectural level

runtime fairness tracking. Fairness tracking is done by esti-

mating the single thread performance of individual threads

while they are running using SOE multithreading, based

on a model developed in this paper. The overhead of the

fairness mechanism is very low. It requires the use of a

few hardware counters, which exist anyhow in most modern

processors, and the addition of hardware or software hooks

(e.g. interrupts) for IPSwj calculation.

Simulation results show that the suggested fairness en-

forcement mechanism works well for a variety of applica-

tions. SOE achieves an average speedup over single thread

of 24% when no fairness is enforced. In this case, over a

third of our runs achieved poor fairness in which one thread

ran extremely slowly (10 to 100 times slower than its single

thread performance) while the other thread’s performance

was hardly affected. By using the proposed mechanism we

guarantee fairness of F = 1/4, 1/2 and 1 for a performance

loss of 2.2%, 3.7% and 7.2% respectively. It should be

noted that by loosing a very small amount of performance,

we guarantee thread execution fairness.

When thread execution is unfair, the fairness mecha-

nism improves fairness by forcing additional thread switch

points. Fairness enforcement, when not required (threads

run in a fair fashion even without any enforcement), has

negligible effect on the execution. Thread switches caused

by fairness enforcement usually cause a performance loss,

due to the switch latency they incur. Enforcing strict fair-

ness is not necessary, a reasonable compromise is to en-

7An example of such instruction in X86 instruction set is pause. This

instruction hints that a short execution pause can be done. Pause is usually

used in busy wait loops, that wait for external events.

force a fairness of 0.5 or less in order to reduce the impact

of thread switches and maintain a high throughput.

The fairness mechanism is based on estimating the single

thread performance of the individual threads, while running

in SOE. This estimated performance is used to calculate the

achieved fairness, and to induce thread switches in case the

achieved fairness needs to be improved. The extension of

our method to SMT is by no means a trivia task due to the

difficulty in estimating the performance of the individual

threads while they are running in SMT. Extension of this

work to SMT is being considered and remains as a future

work.
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