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Abstract

We propose a new processing parad@n, called the

Expandable Split Window (ESW) paradigm, for exploiting fine-
grain parallelism. This para@rn considers a window of instruc-
tions (possibly having dependencies) as a single unit, and exploits
fine-grain parallelism by overlapping the exeeution of multiple
windows. The basic idea is to conneet multiple sequential proces-
sors, in a decoupled and decentrsked manner, to achieve overall
multiple issue. This processing paradigm shares a number of pro-
perties of the restricted dataflow machines, but was derived from
the sequential von Neumsnn architecture. We also present an
implementation of the Expandable Split Window execution
model, and preliminary performance results.

1. INTRODUCTION

The execution of a program, in an abstract form, can be

considered to be a dynamic dataflow graph that encapsulates the

data dependencies in the program. The nodes of the graph

represent computation operations, and the arcs of the graph

represent communication of values between the nodes. The exe-
cution time of a program is the time taken to perform the compu-
tations and communication in its dynamic dataflow graph. If there
are altogether n communication arcs in the graph, and at a time a
maximum of m C4mununication arcs can be cmied out, then the

execution time involves a miniiurn of n /m communication steps,

no matter how many parallel resources are used for computations.

With the continued advartee in technology, switching components

become smaller and more efficient. The effect is that computation

becomes faster and faster. Communication speed on the other

hand, seems to be restricted by the speed of ligh~ and eventually

becomes the major bottleneck.

The abstract dataflow graph hides information about the
dktances involved in the inter-node or inter-operation communi-
cation. When a dataflow graph is mapped onto a processing struc-

ture, interesting dynamics are introduced into the picture. Fkst,
depcndmg on the matching between the dataflow graph and the

processing structure, adjacent nodes in the graph (those d~ectly

connected by a communication arc) may get mapped to either the

same processing elemen~ physically adjacent (eomrnunication-
wise adjacent) processing elements, or distant processing ele-
ments. Based on the mapping used, the communication arcs of

the graph get “stretehed” or “shrunk”, causing changes in the
communication cost because it takes more time to send values
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over a d~tanee. Seeond. since there can onlv be a finite amount.
of fast storage for temporarily storing the intermediate computa-

tion vahtes, the values have to be either consumed irnmedlatcly or

stored away into some form of backup storage (for example, main

memory), creating more nodes and communication arcs.

An irtspeetion of the dynamic dataflow graph of many

sequential programs reveals that there exists a large amount of

theoretically exploitable instruction-level parallelism

[2, 3,5,13, 24], is., a large number of computation nodes that can
be executed in parallel, provided a suitable processor model with

a suitable communication mechanism backed up by a suitable
temporary storage mechanism exists. Where is this pamllelism
most likely to be found in a dynamic execution of the sequential

progrrun? Because most programs are written in an imperative

language for a sequential machine with a limited number of archi-

tectural registers for storing temporary values, it is quite likely

that instructions of close proximity are data dependent. This

means that most of the parallelism can be found only further down
in the dynamic instruction stream. The obvious way to get to that

parallelism is to use a large window of dynamic instructions. ‘lMs

motivates the following bipartite questiorx “What is the best way
to identify a large number of independent operations every cycle,
especially if they are to be extracted from a large block of opera-

tions intertwined with intricate dependencies, and at the same
time reduce the communication costs and the costs of storing tem-
porary results?’ The design of a free-grain parallel processor, to a

large exten~ revolves around how one attempts to answer this

question and the train of questions that arise while attempting to

answer it. A good scheme should optimize not only the number

of operations exeeuted in parallel, but also the communication

eosfs by reducing the communication distances and the temporary

storing away of values, thereby allowing expandability. We con-

sider a processor model to be expandable if its abilities can be
expanded easily, as hrudware and software technology advances.
This requires the processor model to have no centralized resources

that can become potential bottlenecks.

Several processing paradigms have been proposed over the

years for exploiting fine-grain parallelism. The most general one,

the dataflow model, considers the entire dataflow graph to be a
single window and uses an unconventional programming para-

digm to expose the maximum amount of parallelism present in the

application- Such a generaf model allows the maximum number
of computation nodes to be active simultaneously, but incurs a

large performance penalty due to the “stretching”’ of the com-

munication arcs. It also suffers from the inability to express criti-
cal sections and imperative operations that are essential for the

efficient execution of operating system functions, such as resource
management [5, 17]. (Of late, more res~icted forms of dataflow
twchitecture have been proposed [9, 14, 16, 17].) This is where the
power of sequentiality comes in. By ordering the computation

nodes in a suitable manner, sequentiality can be used to introduce

(and exploit) different kinds of temporal locality to minimize the
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costs of communication and intermediate result storage. This has

the effect of combtig several adjacent nodes into one, because

the communication arcs between them become very short when
temporal locality is exploited by hardware mearts. A good exam-
ple of thii phenomenon are the vector machines, which exploit the

“regular” type of parallelism found in many numeric applications
effectively by hardware means such m chaining (i.e., forwarding a

result directly from a producer to a consumer without intermediate
storage).

Sequential execution can be augmented to exploit the

‘ ‘irregsh” type of parallelism found in most non-numeric appli-

cations. Superscalar processors [10, 12, 15, 18] and VLIW proces-

sors [4] do exactly this; they stay within the reahn of sequential

executiou but attempt to execute multiple operations every cycle.

For achieving this, superscalars scan through a window of
(sequential) operations every cycle and dynamically detect

independent operations to be issued in a cycle. These von Neu-

man based machines use the conventional programming para-
digm, but require a sufficiently large centralized window

(obtained by going beyond several basic blocks), if even moderate

sustained issue rates are to be desired. The hardwme reauired to.
extract independent instructions from a large centralized window

and to enforce data dependencies typically involves wide associa-

tive searches, and is non-trivial. Furthermore, superscalars
require multi-ported register files and wide paths from the instruc-

tion cache to the issue unit. Although dynamic scheduling with a

large centralized window has the potential for high issue rates, a
realistic implementation is not likely to be possible because of its
complexity, unless novel schemes are developed to reduce the

complexity.

VLIW processors partirdly circumvent this problem by

detecting parallelism at compile time, and by using a large

instruction word to express the multiple operations to be issued in

a cycle. A major limitation of static scheduling is that it has to

play safe, by always making worst-case assumptions about infor-

mation that is not available at compile time. VLIW processors

also require some of the centralized resources required by super-

scalars, such as the multi-ported register files, crossbars for con-

necting the computation units, and wide paths to the issue unit.

These centralized resources can easily become bottlenecks and be

a severe limitation on the performance of these machines.

Looking at these existing models, we see that the concept

of sequential execution with a large window is good, but
definitely not sufficient by itself. The following additional criteria

are very important.

● The creation of the large window should be accurate. That is,

the window should consist mostly of instructions that are

guaranteed to execute, and not instructions that “might” be

executed.

● Factors such as the ability to feed instructions into this win-
dow, should not be a limitation. That is, it should be possible

to get farther down in the instruction stream, without fetching

and decoding the instructions in between.

● There should be provision to issue loads before proper address

dkunbiguation, i.e., in a speculative manner.

We also need a powerful way of decentralizing the critical

resources in the system. Our objective is to use the conventional

sequential programming paradigm with dynamic scheduling and

large windows, but augmented with novel techniques to decentral-

ize the critical resources. TMs is achieved by splitting a large
operation window into small windows, and executing many such
small windows in parallel. The principle of datafiow is used in a

restricted manner to pass vahses efficiently across the multiple

windows in execution; the execution mo&l within each window

can be a simple, sequential processor. As we will see later in thk
paper, such an approach has the synergistic effect of combkirtg
the advantages of the sequential and the dataflow execution
models, and the advantages of static and dynamic scheduling.

1.1. Organization of the Paper

We have outlined the important issues pertaining to design-

ing a Klgh-performance fine-grain parallel processor. The rest of

this paper is organized as follows. Section 2 describes the basic

philosophy behind the Expandable Split Window (ESW) process-

ing paradigm. Section 3 describes a possible implementation of

this paradigm. The description includes details of the instruction
issue mechanism (distributed instruction caches), the dktributed

register file, the distributed memory d~atnbiguation uni~ rmd the

distributed data cache. Section 4 presents preliminary perfor-

mance results for the new paradigm, obtained horn a simulation
study using the SPEC benchmarks. Section 5 provides a susntmuy
of the research done so far, and the future course of work.

2. THE EXPANDABLE SPLIT WINDOW
PROCESSING PARADIGM

To have an expandable system that can handle large win-

dows in an efficient manner, and whose ability can be expanded
easily as technology advances, we need to decentralize all the crit-
ical resources in the system. These include the hsmdware for

dependency enforcement and identification of independent opera-
tions within the window, the instruction supply mechanism, and

the memory address dkambiguation mechanism. A convenient
way of simplifying the hardw~e for identification of independent

operations is to split the large window into smaller windows (cf.

Figure 1) so that the task of searching a large window can be split

into 2 smaller subtasks: (i) independent searches (if need be) in

small windows, all of which can be done in parallel, and (ii)

enforcement of control and data dependencies between the

smaller windows. The dynamic scheduling hardware can then be

divided into two hierarchical units — a distributed top-level unit

that enforces dependencies between the small windows, and

Uuuu

Small Windows

Distributed
Register File

(i) (ii)

Figure 1: Splitting a large window of instructions

into smaller windows

(i) A single large window (ii) A number of small windows
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several independent lower-level units at the bottom level, each of

which enforces dependencies within a small window and

identifies the independent instructions in that window. Each of

these lower-level units can be a separate execution unit akin to a

simple (possibly sequential) execution datapath.

Having decided to split the large operation window, the

next question is where to split. There are several issues to be con-
sidered here. FirsG the overall large window would invariably

consist of many basic blocks, obtained through dynamic branch
prediction. When a prdlction is found to be inmrrcct, we would
like not to discard the part of the window before the mispredicted
branch. Second it would be ideal if (at least some of) the infor-
mation available at compile time is conveyed to the dynamic
scheduling hardware. WMI these views in mind, we propose to

consider a single-entry loop-free call-free block of (dependent)

instructions (or a basic window) as a single unit, i.e., each

such block forms a small windowl. Splitting the dynamic instruc-
tion stream at such statically determined boundsu%s has the fol-

lowing advantages:

(1) If a basic window is a basic block or a subset of a basic block
then it is a straight-line piece of code that is entirely executed
once it is entered, and the registers read and written are the
same for any execution of that basic window. Ironically, the

dynamic scheduling hardware expends quite a bit of effort to

reconstruct this information. This information can be stati-

cally determined and conveyed to the hardware in a concise

manner (explained in Section 3.3.3), which simplifies the

hardware for the enforcement of register value dependencies

between the basic windows. If a basic window is a superset

of several basic blocks, then also it is possible to express thk
information, but the information will be conservative, as it has
to consider all possible paths through the basic window.

(2) The control flow graph of most programs are embedded with
diamond-shaped structures (reconvergent fanouts, typically
due to if-then and if-then-else statements), which
tend to have low branch prediction accuracies. In such situa-

tions, there is merit in encompassing the diamond-shaped part
within a basic window so as to allow subsequent windows to

start execution earlier with no fear of being discarded later

due to an incorrect branch prediction at an earlier stage.

(3) By merging small basic blocks into one basic window, we can

tide over the problem of poor utilization of an execution unit
when small, data-dependent basic blocks appear next to each
other in the dynamic instruction stream. TMs situation arises

frequently in non-numeric benchmarks, where the mean basic
block size is typically 5-6 instructions.

E.wn@e: The basic idea behind the new paradigm is best illus-

trated by an example. Consider the following loop, which adds

the number 10 to 100 elements of an amay and sets an element to

1000 if it is greater than 1000. This is a typical for loop with an

if statement enclosed within.

1 If a single-entry loop-free call-free block is too large, or if it is a
collection of blocks with few data &pendencies between them, then it can
be split into appropriate smaller blocks. In this paper, quite frequently we
use a basic block as a basic window for itlustratien purposes, although a
basic window could be a subset or a superset of basic blocks. We are stitf
investigating tbe issues involved in cseatirsg a basic window that is larger
than a basic block. We ate also investigating the implications of removing
the “loop-free” requirement. ‘I%e basic window discussed in this paper
should therefore be conside~d only as one example of a basic window of

instructions.

A: R1=R1+l

R2 = [RI, base]

R3 = R2 + 10

BLT R3, 1000, B

R3 = 1000

B: [RI, base] = R3

BLT Rl, 100, A

In thk example, all the instructions in one iteration except
the last instruction can be executed only in strict sequential order.
We can consider each iteration of this loop to be a basic window;

at run time, the loop gets expanded into multiple basic windows

as shown bdo W.

Basic Window 1

Al : R1 ~ =RIO+l

R21 = [Rll, base]

R31 = R21 + 10

BLT R31, 1000, BI

R31 = 1000

BI : [Rll, base] = R31

BLT Rll, 100, A2

Basic Window 2

A2 : R12 = Rll + 1

R22 = [Rlz, base]

R32 = R22 + 10

BLT R3*, 1000, B2

R32 = 1000

B2 : [R12, base] = R32

BLT R12, 100, A3

Multiple instances of a register are shown with different

subscripts, for example, Rll and R12. Although the instructions

of a basic window in this example we sequentially dependen~ a

new basic window can start execution once the first instruction of

the previous basic window has been executed. our idea is to exe-

cute these multiple basic windows in parallel, with distinct execu-
tion units. Notice that among the two branches in an iteration,

branch prediction is performed only for the second one, which can

be predicted much more accurately than the other. The low
confidence branch (the first one) has been incorporated within the

basic window so that a poor brartch prediction does not result in
an inaccurate dynamic window. For a general program, the com-
piler divides the instruction stream into basic windows based on

the following factors: (i) the pattern of data dependencies between

instructions, (ii) maximum size allowed for a basic window, and

(iii) predictability of branch outcomes.

3. IMPLEMENTATION OF THE ESW PARADIGM

As mentioned earlier, to be expandable, there should be no
centralized resources that could become potential bottlenecks.

Designing a dynamically scheduled free-grain parallel processor
with decentralized resources poses several challenges, some of

which are: (i) an adequate decentralized instruction issue mechan-

ism, (ii) adequate CPU resources, and (iii) rm adequate decentral-

ized memory system. Other issues, of no less magnitude, that
pose challenges especially when doing speculative execution are:

(i) efficient means of forwarding results from one instruction to

another when a number of instructions me simuhaneously active,

(or efficient means of detecting and enforcing register dependen-
cies), (ii) disamblguating memory addresses and enforcing
memory dependencies, (iii) good branch handling/prediction
schemes that allow the dynamic window to be expanded fairly
accurately, and (iv ) efficient mechanisms to recover a precise state
when special events such as incorrect branch predictions and

exceptions occur.

In this section, we discuss a possible implementation of the
new processing paradigm. In the ensuing subsections, it will
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Figure 2: Block Diagram of the Expandable Split Window Paradigm Implementation

become evident that throughout the desiW we have emphasized

two points — decentralization (which facilitates expandability)

and realizability y. Several novel techniques have been used to

decentralize the resources, without which the potential of the new
paradigm could not have been exploited. The tecbriques used for

decentralizing the different parts of the system are differen~
because their workings and the way they fit into the system are

different. As the purpose of this paper is to introduce the para-

digm and present an overall view, and because of space restric-

tions, some of the intricate design details are not presented here.

Figure 2 presents the block diagram of our machine. The
processor consists of several independent, identical stages, each of
which is equivalent to a typical datapath found in modern proces-
sors. The stages conceptually form a circulsr queue, with
hardware pointers to the head and tail of the queue. These

pointers are managed by a control unit (not shown in Figure 2 for

clarity), which also performs the task of assigning basic windows
to the stages. Dynamic branch prediction is used (if required) to

decide new basic windows, and every cycle, the con~ol unit
assigns a new window to a stage unless the circular stage queue is

full. It is important to note that all that the control unit does when
it assigns a window to a stage unit is to tell the stage to execute a

basic window starting at a particular PC (program counter) value;

it is up to the stage to fetch the required instructions, decode them

and execute them (most liiely in serial order) until the end of the

basic window is reached. The control unit does not perform

instruction decodkg. (A major purpose of “decoding” instruc-

tions in a superscalar processor is to establish register dependen-
cies between instructions. We shall see in section 3.3 how we
enforce the register dependencies without dynamically decoding
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the instructions.) Because the task of the control unit is relatively

straightforward, it does not become a potential bottleneck. (Con-

trol units with instruction decoders that feed centrrdized windows

are a major impediment to performance in superscalar processors,

as shown in [21].)

The active stages, the ones from the head to the tail,

together constitute the large dynamic window of operations, and

the stages contain basic windows, in the sequential order in which
tie windows appear in the dynamic instruction s~eam. When all

the instructions in the stage at the head have completed execution,
the window is committed, and the control unit moves the head

pointer forward to the next stage. Consequently, the big window

is a sliding or continuous window, and not a fixed big window, a
feature that allows more parallelism to be exploited [24]. The
major parts of the ESW implementation are described below.

3.1. Distributed Issue and Execution Units

Each stage has as its heart an Issue and Execution (IE) urti~

which takes operations from a local instruction cache and pumps

them to its functional units after resolving their data dependen-
cies. i% IE unit is comparable to the Instruction Issue and Execu-

tion Unit of a conventional processor in that it has its own set of
functional units. Notice that if the cost of functional units (espe-

cially the floating point units) is a concern, infrequently used

functional units may be shared by multiple stages. It is also possi-
ble to have a small interconnect from the IE units to a common

Functional Unit Complex. In any given cycle, up to a fixed

number of ready-to-execute instructions begins execution in each

of the active IE units. It is possible to have out-of-order execution

in an IE unit, if desired.

3.2. Distributed Instruction Supply Mechanism

The proposed scheme for exploiting instruction-level paral-
lelism by the execution of multiple basic windows in parallel will

bear fruh only if instructions are supplied to the IE units at an ade-
quate rate. Supplying multiple IE units in parallel with instruc-

tions from different basic windows can be a difficult task for an

ordinary centralized instruction cache. We need novel instruction

cache designs, ones that are suited to the issue strategy and the
execution model used.

We propose to use a two-level instruction cache, with the
level 1 (L1 ) (the level closest to the IE units) split into as many

parts as the number of stages, one for each stage, as shown in Fig-

ure 2. An IE unit accesses instructions from its LI cache. If a

request misses in the L1 cache, it is forwarded to the L2 instruc-

tion cache. If the window is available in the L2 cache, it is sup-
plied to the requesting L1 cache (a fixed number of instructions

me transferred per cycle until the entire window is transferred —

a form of intelligent instruction prefetch). If the transferred wirt-

dow is a loop, the L1 caches of the subsequent stages can also
grab the window in parallel, much like the snarfing (read broad-

cast) scheme proposed for multiprocessor caches [8]. If the
request misses in the L2 cache, it is forwarded to mairt memory.
Notice that severat IE units can simultaneously be fetching

instructions from their corresponding L1 caches, and several L1
caches can simultaneously be receiving a basic window (if the
window is a loop) from the L2 cache, in any given cycle.

3.3. Distributed Inter-Instruction Communication

Mechanism

A high-speed inter-instruction communication mechanism
is central to the design of any processor. Earlier we saw that a
centralized register file can become a bottlenrxk for the VLIW

and superscalar processors. In our processor, at any one time

there could be more than 100 active operations, many of which

may be executed simultaneously. Clearly, a centralimd architec-

tural register file cannot handle the amount of register traffic

needed to support that many active operations; we need a decen-

tralized inter-instruction communication mechanism. The main

criteria to be considered in coming up with a good decentralized

scheme is that it should tie well with the distributed, speculative
execution feature of our model. (For instance, the split register
file proposed for the VLIW and superscalam cannot be of much
help to our model.)

In order to do a careful design of the decentralized register

tile, we first conducted a quantitative study of the tmffic handled
by the architectural registers in a load/store architecture (MIPS
R2000). In particular, we studied how soon newly created regis-

ter instances are used up by subsequent instructions and are even-

tually overwritten. These studies showed tha~ (i) a significant

number of register instances are used up in the same basic block

in which they are created, and (ii) most of the rest are used up in

the subsequent basic block. The first result implies that if we have

a local register file for each stage, much of the register @affic
occurring in a stage can be handled by the local register file itself.

Ordy the last updates to the registers in a stage need be passed on

to the subsequent stages. The second result implies that most of

these last updates need not be propagated beyond one stage. Thus

we can exploit the femporal localif y of usage of rep”sfer values to

design a good decentralized register file structure that ties well

with our execution model, and that is exactly what we do.

3.3.1. Distributed Future File

In our proposed design, each stage has a sepaate register

file called afufure file. These distributed future files are the work-
ing files used by the functional units in the IE units. In that sense,

they work similar in spirit to the future file discussed in [20] for
implementing precise interrupts in pipelined processors. As we
will see in section 3.5, the distributed future file simplifies the task

of recovery when incorrect branch predictions are encountered. If

out-of-order execution within IE units is desired, then each IE unit

should also have some means of forwarding results within the unit

(possibly reservation stations [23]). Another advantage of the dis-

tributed future file structure in that case is that it allows indepen-
dent register renaming for each stage. An architectural register

file is maintained to facilitate restart in the event an exception

occurs in the IE unit at the head of the queue, and to bring the pro-
cessor to a quiescent state before system calls.

3.3.2. Register Data Dependencies Within a Stage

Register dependencies within a basic window are enforced

by either doing serial execution within an IE unit, or using reser-
vation stations (or renamed registers) with data forwarding.

3.3.3. Register Data Dependencies Across Stages

The burden of enforcing register data dependencies across
multiple basic windows becomes tight when windows are ordered
in a sequence, and the data flowing into and out of basic window
boundaries are monitored. To keep the discussion simple, we

shall explain the working of the scheme for the case when basic
windows are either basic blocks or subsets of basic blocks. For a

given basic block the registers through which externally-created
values flow into the basic block and the registers through which

internally-created vahtes flow out of the basic block are invariant

for any execution of that basic block. We express these invariants

concisely by bh maps called use and create masks.
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The create and use masks capture a good deal of

the information (related to register traffic) in a basic block in a

simple and powerful way. If there were no create masks,

each instruction in the large dynamic window has to be decoded

before identifying the destination register and settiig the

corresponding “busy bit” in the register file. Subsequent instruc-

tions in the overall lwge window, even if independen~ have to
wait until all previous instructions are decoded, and the “busy

bhs” of the appropriate registers ze set. The advantage of having

a create mask is that all the registers that are written in a
basic block are known irnmedately after the mask is fetched, i.e.,

even before the entire basic block is fetched from the instruction

cache and decoded. (As mentioned earlier, this “decoding” prob-

lem is a major problem in the superscalar processors proposed to

date.) Independent instructions from subsequent basic windows

can thus start execution, possibly from the next cycle onwards,

and the hardware that allows that is much simpler than the

hardware required to &code a large number of instructions in

parallel and compare their source and destination registers for

possible conflicts.

Generation of Reg”sterMasks

If adequate compile-time support is available, the masks

can be generated by the compiler itsel~. If the use of compile-

time support is not an option (for example if object code compati-

bility is required), or if the additional code space overhead due to

the masks is considered intolerable, the masks can be generated at

run time by hwdware the first time the block is encountered, and

stored in a dynamic table for later reuse.

Forwarding of Rep”ster Values

When art instruction completes execution, its results are
forwarded to subsequent instructions of that stage. If the result is

a register’s last update in that basic block, the result is written to

the future file of that stage, and forwarded to the future files of the

subsequent stages as well, one stage at a time. When a result from

a previous stage reaches a future file, the appropriate register is

updated. If the register entry appears in the use mask of that

stage, then the reservation stations in that unit are checked for

possible matchings. The result is also forwarded to the subse-

quent future file in the next cycle. The craiat e and use

masks helps to reduce the forwadkg tmiffic and the associative
search involved in forwsrdmg the results. When the result of an
instruction (i.e., a new register instance) is forwarded to a future

file, the reservation stations in the corresponding IE unit need be
searched for possible matchmgs only if the register entry appears

in its use mask. Similarly, if the register entry appears in a

crest e mask, then the result need not be forwarded to the sub-
sequent stages, because they need a different instance of that

registe?. Notice that data from several stages can simultaneously

be traveling to subsequent stages in a pipelined fashion. Queues

are used to facilitate this forwarding.

2 All optimizing compilers invariably do datsttow anatysis [1, 7];
the create and use masks are similar to the def and use variables
computed by these compilers for each basic block, except that the former
pair represent architectural registers and the latter pair represent variables
of the source program.

3 SirIce most of the register instances are used up either in the same
basic block in which they are created or in the subsequent basic block, we

can expect a significant seduction in the forwarding traffic because of the
create maek,

When the IE unit at the head commits, the last updates in

that window are written to the archhectural register file for pur-
poses of precise state recovery (see section 3.5).

3.4. Distributed Data Memory System

When a processor attempts to issue and execute many

instructions in parallel, it is imperative that the memory system
should be capable of supporting multiple memory references per

cycle, preferably with small latencies [22]. The latency cars be

reduced by using a data cache. In lime with our objective of
expandability, the memory system also has to be decentralized.

Decentralizing the memory system is harder than most of

the other parts. When a system performs speculative execution, a

store operation cart be allowed to proceed to the memory system

only when it is guaranteed to comtni~ otherwise the old memory

value is lost and recovery will not be possible. Nevertheless,

succeeding loads (from speculatively executed code) to the same
location do require the new value, and not the old value. Thus,

there must be some means of forwarding “uncommitted”

memory values to subsequent loads, just like the forwarding of

“uncommitted” register vahtes. In the case of register values, the

dktributed register files served as good temporary platforms to

hold these “uncommitted” register vahtes, and the crest e and

use masks served to enforce the dependencies between them.

But such a straightiorward replication scheme will not work for

the memory system, because of the following reasons.

(1) Even if replication of data caches was feasible, we still have
the problem of maintatilng consistency among the multiple
copies, and that too, with the restriction that values have to be
written onto a memory location in the order given by the

sequential semantics of the program.

(2) With register values, maintaining this consistency was easily

done by using the static cxeake and use masks. In the

case of memory values, the number of memory locations is
much too large to pennit the use of such bitmaps. Further-

more, memory addresses, unlike register addresses, are com-

puted at run time, and therefore have the ahsirrg problem.

Although some addresses could be disasnbiguated statically,

many others, especially those arising from pointer vmiables in

the source program, can be determined only at mn time. This

is reflected in the fact that even if the data cache is &central-
ized, we still need to do a global memory disambiguation
within the large active window.

3.4.1. Enforcing Memory Data Dependencies

To gu~antee correctness of execution, before a load opera-

tion is issued, the load address has to be checked (for possible

conflicts) with the addresses of all pending stores in the same

basic window as well as the preceding active basic windows.

Whereas performing this (centralized) associative search is one

problem, the more serious problem is that tie memory addresses
of some of the previous stores may not be determined yet. If

worst-case assumptions are made about possible memory hazards
and a load operation is made to wait until the addresses of all

pending stores are determined, parallelism is inhibited and perfor-

mance might be affected badly. What we need to do is to allow

for the execution of load instructions without proper disasnbigua-

tion, with facilities provided for recovery actions when it is deter-
mined that an incorrect value has been loaded. For this recovery,

we can use the same facility that has been provided for fast
recovery in times of incorrect branch prediction. Our analysis of
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tie memory traffic in programs indicates that most of the stored
values me not reloaded in the immediate future, say witltii the

next 100 instructions (a good compiler would keep soon-to-be-

used values in registers). Therefore, we expect that most of the
time, the unresolved loads will fetch the correct values from the

data cache/main memory.

To detect if an unresolved load fetched an incorrect value,
we need to perform global memory d~amblguation within the

large active window. On tirst glance, this appears to be a sequen-

tial process, or one requiring a large associative search, but we
have developed a decentralized scheme for catrying this out. The

scheme, called an Address Resolution Buffer (ARBL is the sohl-
tion that we settled on after considering several other options.

3.4.2. Interleaved Address Resolution Buffer

As with all other major resources, the ARB is also decen-

tralized. The ARB is a special cache for storing information
relevant to the loads and stores that have been issued from the

active large window. It is interleaved (based on the memory
address) to permit multiple accesses per cycle. Figure 3 shows

the block diagram of a 2-way interleaved ARB. Each ARB bank B
would typically have provision for storing 4 - 8 addresses and

related information. Associated with each address entry is a bit-
map with twice as many bits as the number of stages. Of the 2
bits per stage, one is used for indicating if a (partially resolved)

load has been performed from the corresponding stage, and tlte B

other is for indicating if a store has been performed horn that

stage. There is also a rxdue field associated with each address

entry to store one memory value for that location.

Whhin each stage, memory dwambiguation is done in a

strict serial order with the help of a local queue-like structure,
which also has provision for forwarding values from stores to

loads within that stage. When a load is properly resolved locally

within its stage (automatic if each unit executes sequentially), it is
ready to be issued. When the load is issued, the addresses of the
entries in the appropriate ARB bank me associatively checked

(notice that this associative search is only 4-way or 8-way, search-
ing for a single key) to see if the same address is present in the

ARB. If the address is not presen~ an ARB entry is allotted to the

new address. If the address is present in the ARB, then a check is

made in its bitmap to see if an earlier store has been made to the

same address from a previous stage. If so, then it takes the value

stored in the rmlue field of the entry. Finally, the load bit

corresponding to the stage is set to 1.

When a store is performed a similar associative check is

performed to see if the address is already present in the ARB. If
not, an entry is allotted to the new address. The bitmap
corresponding to the store address is updated to reflect the fact
that a store has been performed from a pruticular stage. The value
to be stored is deposited in the value field of the bitmap. If the

store address was already present in the ARB, then a check is also

performed to see if an earlier load has been made to the same

address from a succeeding stage. If so, recovery action is initiated
so that all stages beyond the one that made the incorrect load sre

nullified, and restarted. Since there is provision for storing only

one “store value” at a time for any address, special recovery

actions are taken when a second store request occurs to an
address.

When the stage at the head is retired all load and store
marks corresponding to that stage are erased immediately. This

requires a facility to clear all the bits in 2 columns of the ARB in
1 cycle. Similarly, when the tail pointer is moved backwards dur-

ing recovery, the columns corresponding to the stages stepped

over by the tail pointer are rdso cleared immediately. An ARB

entry is reclaimed for reuse when all the load and store bits asso-
ciated with the entry are cleared.

The ARB scheme has the full power of a hypothetical

scheme that performs associative compares of the memory

addresses in the entiie kwge window. Here also, we use the con-

cept of splitting a large task (memory disambiguation withii a

large window) into smaller subtasks. Furthermore, it ties well
with our execution model. It allows speculative loads and specu-

lative stores! It rdso allows forwarding of memory values when
loads are performed, and all stores are effectively “cache hits”

because the vahte is stored only in the ARB until its stage is com-

mitted.

Address Value Stsge 1 I I Stase 8

a“OEEixio:olo; olo; olo:olo:olo:ol

204s 10 0,0 0,0 0,1 010 0,0 0,0 0,0 0,0
0:0 0:0 0:0 0:0 0:0 0!0 0:0 0:0

ank 1 0:0 0:0 0:0 0!0 0:0 0:0 0:0 0:0
0;0 0;0 0:0 0;0 9;% 0:0 0;0 0:0

Figure 3: A Two-Way Interleaved Address Resolution Buffer

We feel that the ARB is a very powerful, decentralized
(and thus expandable) way of dynamically disarnbiguating
memory references. We are considering the performance impact

of set-associative mappings in the ARB, as well as other perfor-

mance implications of this “cache besides the cache”.

3.4.3. Interleaved Data Cache

As seen from the discussion so far, conventional data

caches me not appropriate for the ES W paradigm; the exact nature

of the data caches is a subject of our future research. Currently

we propose to use an interleaved non-blocking cache similar to
the one proposed in [22].

3.5. Enforcing Control Dependencies

Dynamic branch prediction is used (if required) to fetch

new basic windows. When a conditional branch instmction or a

return instruction is executed in an IE unit, its outcome is com-

pared with the earlier prediction. If there is a mismatch, then all

subsequent windows are discarded. This is easily done by
advancing the tail pointer (of the circular stage queue) to the stage

that succeeds the one containing the mispredicted branch. In the

next cycle, the IE unit at the tail starts fetching the correct set of
instructions. Notice that the distributed future file system helps to
maintain precise states at each basic window boundary, which
eases the implementation of the recovery mechanism

significantly.
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4. PERFORMANCE ISSUES

4,1. Preliminary Experimental Results

We me in the process of conducting several simulation stu-

dies, both to verify the potential of the new processor design and

to study the effects of compiler optimizations. A sound evahta-

tion of the execution model can be done only after the develop-

ment of a compiler that considers the idiosyncrasies of the model

and exploits its potential. In this section, we present some of the

preliminmy results obtained in our simulation studies. These

results should be viewed as a realistic stiwting point.

The simulator that we developed uses the MIPS R2000 -
R2010 instruction set and functional unit latencies. All important
features of the ESW paradigm, such as the split instruction

caches, distributed address resolution buffer, and data caches,
have been included in the simulator. The simulator accepts exe-

cutable images of programs, and executes them, it is not trace

driven. Its features are listed below:

● Number of stages cart be varied.

● Up to 2 instructions are fetched/decoded/ksued from each of

the active IE units, every cycle; out-of-order execution is used

in each stage.

● A basic window can have up to 32 instructions.
● The dara cache is 64Kbytes, direct-mapped, and has an access

latency of 2 cycles (one cycle to pass through the interconnect
between the IE units and the cache, and artother to access the
ARB and the cache in parallel). The interleaving factor of the

data cache rmd the ARB is the smallest power of 2 that is

equal to or greater than twice the number of stages. (For

instance, if the number of stages is 6, the interleaving factor

used is 16.) The cache miss latency is 4 cycles.

● Each stage has a 4Kword L1 instruction cache.

● The L2 instruction cache has not been included in the simula-
to~ instead, we assume 100% hit ratio for the L2 instruction

cache.
● The branch prediction mechanism for conditional branches

uses the 3-bh counter scheme proposed in [19]. For effec-
tively predicting the return addresses of procedure calls, there
is a stack-like mechanism similar to the one discussed in [1 1],
with a stack depth of 20.

The simulator is not equipped to detect basic windows that

me supersets of basic blocks (which needs a control flow analysis

within each procedure to make sure that each basic window has

only a single entry); currently it uses basic blocks (or smaller

blocks if a basic block is larger than 32) as basic windows.

For benchmarks, we used the SPEC benchmark suite. The
benchmark programs were compiled for a DECstation 3100;

notice that the a. out exectttables so obtained have been com-

piled for a single-IPC machine. The C benchmarks were simu-

lated to completion, the FORTRAN benchmarks were simulated

up to approximately 1 billion instructions.

Table 1 presents the results obtained with code generated
for an ordinary single IPC machine, and with basic blocks used as

basic windows. The latter feature affects the performance of the

integer benchmarks because they contain several small basic

blocks with poor predictability, as is evident from the “Mean
Basic Block Size” column and the “Branch Prediction Accu-
racy” column. The C benchmarks are executed with 4 stages and
the FORTRAN benchmarks with 10 stages.

From Table 1 we see tha~ even using basic blocks as basic
windows, we get fairly impressive completion rates, ranging from

1.81 to 2.04 for the C programs, and 1.92 to 5.88 for the

FORTRAN benchmarks, even using code that is not

compiled/scheduled for our machine model. (Notice that tie
actual speedup numbers would be higher because the instruction

completion rate of a conventional processor is S 1.)

Table 1: Instruction Completion Rates with Unmodified Code

Benchmarks

eqntott
espresso
gcc
Xtisp

dnasa7
doduc
fpppp
matrix3tX)
spice2g6
tomcatv

Mean
Basic Block

Sixe

4.19
6.47
5.64
5.04

26.60
12.22

113.42
21.49
6.14

45.98

No.
of

Stages

4
4
4
4

10
10
10
10
10
10

Branch
Prediction
Accuracy

90. 14%
83.13%
85.11%
80.21%

99.13%
86.90%
88.86%
99.35%
86.95%
99.28%

Completion

Rate

2.04
2.06
1.81
1.91

2.73
1.92
3.87
5.8f3
3.23
3.64

In comparing our results to other resul~ in the literature,
we see that we are achieving issue rates similar to Butler. et. al.

[3], with similar resources b~ larger window sizes (our results are
slightly better in several cases), and much better than the issue

rates achieved by Smith, et. ul [21]. TMs is despite the fact that
we include all stalls, specifically stalls due to: instruction and data

cache misses (ins~ction cache miss stalls cause a noticeable

degradation in performance in many schemes), data cache bank

contention (including contention due to speculative loads),

recovery due to incorrect speculative loads (we do not assume

disambiguated memory operations), and recovery due to branch

Prdlction with a real predictor (our predictor does not do too
well, as can be seen in Table 1), whereas the other studies make

optimistic assumptions in these cases.

We tried using more stages for the C benchmarks, and our

results improved somewha~ but not significantly (about ‘20-30~0

increase in performance) because of our using a basic block as a
basic window, and the small average size of a basic block in the
code compiled for a single-IPC machine.

4.2. Role of the Compiler

The compiler has the opportunity to play an important role

in bringing to reality the full potential of this processing para-

digm. The compiler can introduce helpful transformations that

are tailored to the idiosyncrasies of the execution model. For
instance, if the compiler partitions the instruction stream into

basic windows that are larger than basic blocks, or if the compiler
knows how the instruction stream would be dynamically parti-

tioned into windows, it can attempt to move up within a window

the operations whose results are needed early on in the following
window. Similarly, it can perform a static memory disambigua-

tion, and push down (within a window) those loads which are
guaranteed to conflict with stores in the previous windows. Many

other ‘ ‘optimizations” are also possible. The important ones

include:

● Partition the program into basic windows that are supersets of
basic blocks and convey this to the hardware. This would
allow a more accurate expansion of the dynamic window to
get at more parallelism. (This information is present in the
control flow graph constructed by the compiler.) In case the
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basic block is large, decide whereto spli~ 5. SUMMARY AND FUTURE WORK

● Perform static code re-schedulirtg based on the idiosyncrasies

of the ESW model, as described earlier. For example, pack

all dependent inslIuctions into a basic window.

Table 2 gives a feel of the improvements we can expect to
see when some of the above points are incorporated. The results
in Table 2 were obtained by manually performing the optimiza-

tion in one or two important routines in some of the benchmarks.

Hand code scheduling was performed only for those benchmarks

which spend at least 5~0 of the time in a limited portion of the

code, so that manual analysis is possible. The only transforma-

tions that were performed are (i) moving up within a basic win-
dow those instructions whose results are needed in the critical

path in the following basic windows. (Such instructions typically
include induction variables, which are usually incremented at the

end of a loop when code is generated by an ordinary compiler.)
(ii) in the cmppt routine of eqsatott, we expand a basic win-
dow to a superset of 3 basic blocks. (iii) in the compl_lft and
elim_lowering routines of espresso, we consider basic win-

dows that are supersets of basic blocks.

Table 2: Instruction Completion Rates with Modified Code

mIf r 1

dnasa7 10 98.95% 7.17
matrix300 10 99.34% 7.02
tomcatv 10 99.31% 4.49

Even the simple optimization implemented for Table 2

boost performance considerably in the cases considered —

eqntott is achieving close to 5 instructions per cycle, and

matrix300 and dnasa7 are able to sustain over 7 instructions per
cycle (the completion rate for dnasa7 has improved from 2.73 to
7.17 with thk simple code scheduling). We expect that with such

simple compiler enhancements (for example facilitating the

hardware’s task of recovering part of the control stmctttre of the
program), we will be able to double the performance of the C

benchmarks. We base our expectation on an analysis of the C
programs which suggests that expanding the basic window into a

sequence of basic blocks will not only increase the average size of

the basic window (in terms of usefitl instructions executed) by a
factor of about ~ but also allow us to get past of many of the

“badly predicted” branches since they become part of the basic

window and do not prevent us from accurately expanding the

dynamic window. (Notice that the branch prediction accuracies
for eqntott in Table 2 are much better than those in Table 1 for
precisely this reason; the prediction accuracies are different for 4
and 8 stages because the exact dynamic instruction stream that

enters the IE units differs with different number of stages.) For
the FORTRAN programs, the primary impediment to greater per-
formance in most cases is the hardware litnhation, though in some

cases, such as tomcatv, static memory disambiguation would
assist in reducing the cycles lost due to incorrect speculative
loads.

5.1. Summary

We have proposed a new processing paradigm for exploit-

ing fine-grain parallelism. The model, which we call the Expand-
able Split Window (ESW) paradigm, shares a number of proper-
ties with the restricted dataflow machmes, but was derived from

the von Neumann architecture. The essence of dynamic datafiow

execution is captured by simple data forwarding schemes for both

register and memory values. The fundamental properties of the

von Neumann architecture that we retained includes a sequential

instruction stream, which relies on inter-instruction communica-
tion through a set of registers and memory locations. The result is

a simple archhecture that accepts ordinary sequential code, but
behaves as a fairly restricted dataflow machine.

We proposed an implementation of the proposed model. In

our view, the beauty of the ESW model and its implementation
lies in its realizability, not to mention its novelty. It draws heavily

on the recent developments in microprocessor technology, yet

goes far beyond the centralized window-based superscalar proces-

sors in exploiting “irregular” fine-grain parallelism. It has no

centmlized resource bottlenecks that we are aware of. This is

very important, because many existing execution models ue

plagued by the need for centralized resources. Almost all the

parts of our implementation are found in conventional serial pro-

cessors, the only exception is the Address Resolution Buffer
(ARB); yet these parts have been arranged in such a way as to
extract much more parallelism than was thought to be realistically
possible before. The ARB scheme presented in this paper is, to
the best of our knowledge, the first decentralized design for

memory disambiguation with a large window of instructions.

Another feature of the ESW paradigm is its expandability.

When advances in technology allow more transistors to be put on

a chip, our implementation can be easily expanded by adding

more stages; there is no need to redesign the

implementation/architecture.

The performance results are also very promising. We are

able to achieve about 2 instructions per cycle, with 4 stages, for

the C programs, and more for the FORTRAN programs, with no
special code transformations, and taking all stalls that degrade
performance into account. When we applied some optimization
suited to the ESW model to some of the benchmarks, the perfor-

mance was enhanced substantially; the completion rate increased

by a factor of 2.5 for eqntott and a factor of 2.6 for dnasa7. We

strongly feel that the ES W model has significant potential for
becoming the model of choice for future fine-grain parallel pro-

cessors. It encompasses many of the strengths of the VLIW,

superscalar, decoupled systolic, and restricted dataflow models of

computation, and overcomes most of their drawbacks.

5.2. Future Work

We would like to conduct a series of studies to determine
what a basic window of instructions should be. Currentty, we use
a single-entry call-free loop-free block of instructions as a basic
window. We are investigating the implications of removing the

“loop-free” requirement. Studies are also needed to determine

the optimum number of stages and the maximum number of

4 There is an ongoing independent work on hardware support for
dynamic dissmbiguation of memoty referencx-sin the context of a VLIW
processor in industty [6].
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instructions to be issued from each IE unit in a cycle. Another

issue worth investigating is the benefit of out-of-order execution

within an IE unit when it contains a straight-line piece of code. If

a window consists mostly of dependent operations, serial execu-

tion within each IE unit might suffice, thereby saving the associa-
tive hardware and reservation stations required within each IE unit
to perform out-of-order execution.

The design of our fie-grain pmallel processor is at a stage
where many of the hardware issues have been investigated, and
the arena slowly shifts to software issues. We expect to conduct
further analysis of programs for the purpose of software develop-

ment, especially a suitable compiler for the machme. We feel that

the compiler effort would not be as detailed as that required for

some other fine-grain parallel models since most of the tasks that

we ask of the compiler, such as the construction of the basic win-

dow and simple code scheduling are routinely done by compliers,

and some of the harder tasks, such as static memory disambigua-

tion are helpful, but not essential to our execution model.
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