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Trace Scheduling: A Technique for Global
Microcode Compaction
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Abstract-Microcode compaction is the conversion of sequential
microcode into efficient parallel (horizontal) microcode. Local com-
paction techniques are those whose domain is basic blocks of code,
while global methods attack code with a general flow control. Com-
pilation of high-level microcode languages into efficient horizontal
microcode and good hand coding probably both require effective global
compaction techniques.

In this paper "trace scheduling" is developed as a solution to the
global compaction problem. Trace scheduling works on traces (or
paths) through microprograms. Compacting is thus done with a broad
overview of the program. Important operations are given priority, no
matter what their source block was. This is in sharp contrast with
earlier methods, which compact one block at a time and then attempt
iterative improvement. It is argued that those methods suffer from the
lack of an overview and make many undesirable compactions, often
preventing desirable ones.

Loops are handled using the reducible property of most flow graphs.
The loop handling technique permits the operations to move around
loops, as well as into loops where appropriate.

Trace scheduling is developed on a simplified and straightforward
model of microinstructions. Guides to the extension to more general
models are given.

Index Terms-Data dependency, global microcode optimization,
microcode compaction, parallel instruction scheduling, parallel pro-
cessing, resource conflict.

I. INTRODUCTION

THIS paper presents trace scheduling, a solution to the
1"global microcode optimization problem." This is the

problem of converting vertical (sequential) microcode written
for a horizontally microcoded machine into efficient horizontal
(parallel) microcode, and as such, is properly referred to as
"compaction" rather than "'optimization." In the absence of
a general solution to this problem, the production of efficient
horizontal microprograms has been a task undertaken only by
those willing to painstakingly learn the most unintuitive and
complex hardware details. Even with detailed hardware
knowledge, the production of more than a few hundred lines
of code is a major undertaking. Successful compilers into ef-
ficient horizontal microcode are unlikely to be possible without
a solution to the compaction problem.

Local compaction is restricted to basic blocks of microcode.
A basic block is a sequence of instructions having no jumps into
the code except at the first instruction and no jumps out except
at the end. A basic block of microcode has often been described
in the literature as "straight-line microcode." Previous research
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[ 1] - [3] has strongly indicated that within basic blocks of mi-
crocode, compaction is practical and efficient. In Section II
we briefly summarize local compaction and present many of
the definitions used in the remainder of the paper.

Since blocks tend to be extremely short in microcode, global
methods are necessary for a practical solution to the problem.
To globally compact microcode it is not sufficient to compact
each basic block separately. There are many opportunities to
move operations from block to block and the improvement
obtained is significant. Earlier methods have compacted blocks
separately and searched for opportunities for interblock op-
eration movement. However, the motivating point of this paper
is the argument that these methods will not suffice. Specifi-
cally:

Compacting a block without regard to the needs and ca-
pacities of neighboring blocks leads to too many arbi-
trary choices. Many of these choices have to be undone
(during an expensive search) before more desirable mo-
tions may be made.

As an alternative, we offer trace scheduling. Trace sched-
uling compacts large sections of code containing many basic
blocks, obtaining an overview of the program. Unless certain
operations are scheduled early, delays are likely to percolate
through the program. Such critical operations, no matter what
their source block, are recognized as such and are given
scheduling priority over less critical operations from the outset.
Trace scheduling works on entire microprograms, regardless
of their control flow, and appears to produce compactions
strikingly similar to those laboriously produced by hand. Trace
scheduling is presented in Section III. In Section IV sugges-
tions are given to extend trace scheduling to more realistic
models of microcode than that used in the exposition.

II. LOCAL COMPACTION

It is not the purpose of this paper to present local compaction
in detail. Thorough surveys may be found in [1] -[3]. However,
trace scheduling uses local compaction as one of its steps (and
we have developed an approach that we prefer to the earlier
methods), so we briefly summarize an attack on that
problem.
A. A Straightforward Model of Microcode

In this paper we use a relatively straightforward model of
microcode. Trace scheduling in no way requires a simplified
model, but the exposition is much clearer with a model that
represents only the core of the problem. Reference [1] contains
a more thorough model and references to others.
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During compaction we will deal with two fundamental
objects: microoperations (MOP's) and groups of MOP's
(called "bundles" in [1]). We think of MOP's as the funda-
mental atomic operations that the machine can carry out.
Compaction is the formation of a sequence of bundles from a

source sequence of MOP's; the sequence of bundles is se-

mantically equivalent to the source sequence of MOP's.
Both MOP's and bundles represent legal instructions that

the processor is capable of executing. We call such instructions
microinstructions, or MI's. MI's are the basic data structure
that the following algorithms manipulate. A flag is used
whenever it is necessary to distinguish between MI's which
represent MOP's and those which represent bundles of MOP's.
(Note: In the definitions and algorithms which follow, less
formal comments and parenthetical remarks are placed in
brackets.)

Definition 1: A microinstruction (MI) is the basic unit we
will work with. The set of all MI's we consider is called P. [An
MI corresponds to a legal instruction on the given processor.

Before compaction, each MI is one source operation, and P is
the set of MI's corresponding to the original given pro-

gram.]
There is a function compacted: P - {true, false}. [Before

compaction, each MI has its compacted flag set false.] If m
is an MI such that compacted (m) = false, then we call m a

MOP.

In this model MI's are completely specified by stating what
registers they write and read, and by stating what resources

they use. The following definitions give the MI's the formal
properties necessary to describe compaction.

Definition 2: We assume a set of registers. [This corre-

sponds to the set of hardware elements (registers, flags, etc.)
capable of holding a value between cycles.] We have the
functions readregs, writeregs: P subsets of registers. [rea-

dregs(m) and writeregs(m) are the sets of registers read and
written, respectively, by the MI m.]

Definition 3: We are given a function resource compatible:
subsets of P Itrue, false}. [That a set of MI's is re-

source-compatible means that they could all be done together
in one processor cycle. Whether that is the case depends solely
upon hardware limitations, including the available microin-
struction formats. For most hardware, a sufficient device for
calculating resource-compatible is the resource vector. Each
MI has a vector with one component for each resource, with
the kth component being the proportion of resource k used by
the MI. A set is resource-compatible only if the sum of its
MI's resource vectors does not exceed one in any compo-

nent.]

B. Compaction ofMOP's into New MI's

During compaction the original sequence of MOP's is
rearranged. Some rearrangements are illegal in that they de-
stroy data integrity. To prevent illegal rearrangements, we

define the following.

Definition 4: Given a sequence of MI's (ml, m2, .., mt),

we define the partial order << on them. When mi <<m«, we say
that mi data precedes mi. Data precedence is defined carefully
in Section IV, when the concept is extended somewhat. For
now we say, informally, given MI's mi, my with i < j:

* if mi writes a register and mj reads that value, we say that
mi << mj so that m1 will not try to read the data until it is
there;

* if mj reads a register and mk is the next write to that
register, we say that mj << mk so that Mk will not try overwrite
the register until it has been fully read.

Definition 5: The partial order << defines a directed acyclic
graph on the set of MI's. We call this the data-precedence
DAG. The nodes of the DAG are the MI's, and an edge is
drawn from mi to m1 if mi <<m«.

Definition 6: Given a DAG on P, we define a function
successors: P - subsets of P. If mi, mi belong to P, i<], we
place mj in successors(mi) if there is an edge from mi to mi.
[Many of the algorithms that follow run in 0(E) time, where
E is the number of edges in the DAG. Thus, it is often desirable
to remove redundant edges. If mi <<m«<< mk, then a redun-
dant edge from mi to mk is called a "transitive edge." Tech-
niques for the removal of transitive edges are well known
[4].]

Definition 7: Given a P, with a data-precedence DAG de-
fined on it, we define a compaction or a schedule as any par-
titioning ofP into a sequence of disjoint and exhaustive subsets
of P, S = (S1, S2, Su), 54 with the following two proper-
ties.

* For each k, 1 < k < u, resource-compatible(Sk) = true.
[That is, each element of S could represent some legal mi-
croinstruction.]

* If mi <<m«, mi is in Sk, and mj is in Sh, then k < h. [That
is, the schedule preserves data-precedence.]

[The elements of S are the "bundles" mentioned earlier.
Note that this definition implies another restriction of this
model. All MI's are assumed to take one microcycle to operate.
This restriction is considered in Section IV.]

It is suggested that readers not already familiar with local
compaction examine Fig. 1. While it was written to illustrate
global compaction, Fig. 1(a) contains five basic blocks along
with their resource vectors and readregs and writeregs sets. Fig.
1(d) shows each block's DAG, and a schedule formed for each.
Fig. 5(a) contains many of the MOP's from Fig. 1 scheduled
together, and is a much more informative illustration of a
schedule. The reader will have to take the DAG in Fig. 5(a)
on faith, however, until Section III.

Compaction via List Scheduling
Our approach to the basic block problem is to map the

simplified model directly into discrete processor scheduling
theory (see, for example, [5] or [6]). In brief, discrete processor
scheduling is an attempt to assign tasks (our MOP's) to time
cycles (our bundles) in such a way that the data-precedence
relation is not violated and no more than the number of pro-
cessors available at each cycle are used. The processors may
be regarded as one of many resource constraints; we can then
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say that basic block compaction is an example of unit execution
time (UET) scheduling with resource constraints. As such it
can be shown that the basic block problem is NP-complete,
since even severely restricted scheduling analogs are [5]. Thus,
we would expect any optimal solution to be exponential in the
number of MOP's in a block.

Despite the NP-completeness, simulation studies indicate
that some simple heuristics compact MOP's so well that their
lack of guaranteed optimality does not seem to matter in any
practical sense [2], [3]. The heuristic method we prefer is
microinstruction list scheduling (2). List scheduling works by
assigning priority values to the MOP's before scheduling be-
gins. The first cycle is formed by filling it with MOP's, in order
of their priorities, from among those whose predecessors have
all previously been scheduled (we say such MOP's are data
ready). A MOP is only placed in a cycle if it is resource com-
patible with those already in the cycle. Each following cycle
is then formed the same way; scheduling is completed when
no tasks remain. Fig. 2 gives a more careful algorithm for list
scheduling; the extension to general resource constraints is
straightforward.

Various heuristic methods of assigning priority values have
been suggested. A simple heuristic giving excellent results is
highest levels first, in which the priority of a task is the length
of the longest chain on the data-precedence DAG starting at
that task, and ending at a leaf Simulations have indicated that
highest levels first performs within a few percent of optimal
in practical environments [7], [2].
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Fig. 1. (a) Sample loop-free code, the essential instruction information. (b)
Flow graph for Fig. 1. (c) Flow graph information for Fig. 1. (d) Data

precedence DAG's and schedule for each block compacted separately.

III. GLOBAL COMPACTION USING TRACE
SCHEDULING

We now consider algorithms for global compaction. The
simplest possible algorithm would divide a program into its
basic blocks and apply local compaction to each. Experiments
have indicated, however, that the great majority of parallelism
is found beyond block boundaries [8], [9]. In particular, blocks
in microcode tend to be short, and the compactions obtained
are full of "holes," that is, MI's with room for many more

MOP's than the scheduler was able to place there. If blocks
are compacted separately, most MI's will leave many resources

unused.

A. The Menu Method

Most hand coders write horizontal microcode "on the fly,"
moving operations from one block to another when such mo-

tions appear to improve compaction. A menu of code motion
rules that the hand coder might implicitly use is found in Fig.
3. Since this menu resembles some of the code motions done
by optimizing compilers, the menu is written using the ter-
minology of flow graphs. For more careful definitions see [10]
or [1 1 ], but informally we say the following.

Definition 8-Flow Graph Definitions: A flow graph is a

directed graph with nodes the basic blocks of a program. An
edge is drawn from block Bi to block B1 if upon exit from Bi
control may transfer to B1.

MOP
NUMBER

ENTRANCE
ENTRANCE

m1
.2
m3
.4
m5

.6
m7
m8

m9
m10
.ll
m12
m13
m14

m15
M16

m17

EXIT
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GIVEN: A set of tasks with a partial order (and thus a DAG) defined on them B. Earlier Methods ofGlobal Compaction
and P identical processors.

A function PRIORITY-SET which assigns a priority value to each task
according to some heuristic.

BUILDS: A schedule in which tasks are scheduled earlier than their successors

on the DAG, and no more than P taslks are scheduled each cycle. The
schedule places high priority tasks ahead of low priority tasks when
it has a choice.

ALGORITMM:

PRIORITY-SET is called to assign to a priority-value to
each task.

CYCLE = 0

DRS (the DATA READY SET) is formed from all tasks with no

predecessors on the DAG.

While DRS is not empty. do

CYCLE = CYCLE + 1

The tasks in DRS are placed In cycle CYCLE in order of
their priority until DRS is exhausted or P tanks
have been placed. All tasks so placed are removed
from DRS.

All unscheduled tasks not in DRS whose predecessors
have all been scheduled are added to DRS.

end (while)

Scheduling is finished, CYCLE cycles have been formed.

Fig. 2. An algorithm for list scheduling.

RULE MOP CAN MOVE
NUMBER FROM TC

1 B2 BE

2 Bl and B4 B2

3 B2 B3

4 B3 and B5 B2

UNDER THE CONDITIONS
THAT

and B4 the MOP is free at the
top of B2

identical copies of the
MOP are free at the bottoms
of both BE and B4

and BS the MOP is free at the
bottom of B2

identical copies of the
MOP are free at the tops
of both B3 and BS

S B2 E3 (or BS) the MOP is free at the

bottom of B2 and all
registers written by the
MOP are dead in BS (or B3)

B3 (or BS) B2 the MOP is free at the
top of B3 (or BS) and all

registers written by the
MOP are dead in B5 (or B3)

Block numbers refer to the flow graph in example 2(b).

Any of the above motions will be beneficial if the removal of the
MOP allows (at least one) source block to be shorter, with no extra

cycles required in (at least one) target block. It may be necessary
to recompact the source and/or targets to realize the gain.

Fig. 3. The menu rules for the motion of MOP's to blocks other than
the one they started in.

The graph may be acyclic, in which case we say it is loop
free. If it has cycles, the cycles are called loops. [Although a

formal definition of a loop is somewhat more difficult than it
may at first seem.]
A register is live at some point of a flow graph if the value

stored in it may be referenced in some block after that point,
but before it is overwritten. A register not live at some point
is dead at that point. We say a MOP is free at the top of its
block if it has no predecessors on the data-precedence DAG
of the block, and free at the bottom if it has no successors. [A
MOP may be free at both the top and the bottom of its
block.]

Flow graph concepts are illustrated in Fig. 1; see especially
(c).

Previous suggestions for global compaction have explicitly
automated the menu method [12], [13]. This involves essen-
tially the following steps.

1) Only loop-free code is considered (although we will soon
consider a previous suggestion for code containing loops).

2) Each basic block is compacted separately.
3) Some ordering of the basic blocks is formed. This may

be as simple as listing pairs of basic blocks with the property
that if either is ever executed in a pass through the code, so is
the other [12], or it may be a walk through the flow graph
[13].

4) The blocks are examined in the order formed in 3), and
legal motions from the current block to previously examined
ones are considered. A motion is made if it appears to save a
cycle.

Limitations of the Earlier Methods

The "automated menu" method appears to suffer from the
following shortcomings.

* Each time a MOP is moved, it opens up more possible
motions. Thus, the automated menu method implies a massive
and expensive tree search with many possibilities at each
step.

* Evaluating each move means recompacting up to three
blocks, an expensive operation which would be repeated quite
often.

* To find a sequence of very profitable moves, one often has
to go through an initial sequence of moves which are either not
profitable, or, worse still, actually make the code longer. Lo-
cating such a sequence involves abandoning attempts to prune
this expensive search tree.
We summarize the shortcomings of the automated menu

method as follows:

Too much arbitrary decisionmaking has already been
made once the blocks are individually compacted. The de-
cisions have been shortsighted, and have not considered
the needs of neighboring blocks. The movement may have
been away from, rather than towards, the compaction we
ultimately want, and much of it must be undone before we
can start to find significant savings.

An equally strong objection to such a search is the ease
with which a better compaction may be found using trace
scheduling, the method we will present shortly.

C. An Example

Fig. 1 (a)-(d) is used to illustrate the automated menu
method and to point out its major shortcoming. The example
was chosen to exaggerate the effectiveness of trace scheduling
in the hope that it will clarify the ways in which it has greater
power than the automated menu method. The example is not
meant to represent a typical situation, but rather the sort that
occurs frequently enough to call for this more powerful solution
to the problem. Fig. 1 is not written in the code of any actual
machine. Instead, only the essential (for our purposes) features
of each instruction are shown. Even so, the example is quite
complex.

Fig. 1(a) shows the MOP's written in terms of the registers
written and read and the resource vector for each MOP. The
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jump MOP's show the names of the blocks it is possible to jump
to, and the flow graph obtained is shown in Fig. 1(b). In Fig.
1(c) is a table showing the registers live and MOP's free at the
top and bottom of each block. Finally, Fig. 1(d) shows each
block's data dependency DAG and a compaction of the block.
The compaction would be obtained using list scheduling and
almost any heuristic (and probably any previously suggested
compaction method).

Given the blocks as compacted in Fig. 1(d), an automated
menu algorithm could then choose to use rules R 1-R6 to move
MOP's between blocks. Fig. 4 shows the possible application
of some of these rules, and using them we see that some of the
blocks may be shortened. If, for the moment, we suppose that
the code usually passes through the path B1-B2-B3, we can
see that the length of that path may be reduced from the initial
13 cycles (with each block compacted separately) to 11 cycles,
an important savings. Nonetheless, we shall see that this is an
example of an unsatisfactory compaction obtained using the
automated menu method.

D. Trace Scheduling-Compacting Several Blocks
Simultaneously

The shortcomings of the automated menu method are ef-
fectively dealt with using the technique we call trace sched-
uling. Trace scheduling operates on traces instead of basic
blocks. A trace is a loop-free sequence of instructions which
might be executed contiguously for some choice of data. More
formally, we define the following.

Definition 9: There is a functionfollowers: P - subsets of
P. [Given an MI, say m, the set followers(m) is all MI's to
which control could next pass after m is executed.] If mi is in
followers(mj), then we say that mj is a leader of mi. If there
is more than one MI in followers(m), then m is called a con-
ditional jump MI.
We define a trace as any sequence of distinct MI's (mI, M2,
, mt) such that for each j, 1 < j < t -1, m+1 is in follow-

ers(mj). [Thus, a trace is a path through the code which could
(presumably) be taken by some setting of the data. Note that
if no MI in T is a conditional jump, T might be a basic block,
or part of one. In general, T may contain many blocks.]

To allow us to consider P to be a portion of a larger program,
we have dummy MI's which are on the boundaries of P. We
call these dummy MI's entrances and exits, and they are used
to interface P with the rest of the program.

Definition 10: We assume that some of the MI's are dis-
tinguished as exits and some as entrances. Exits are dummy
MI's each representing the start of a section of code outside
of P. Exits have no followers. Entrances are dummy MI's each
representing some jump into P from outside P. Entrances are
not followers of any MI in P.

Before compaction we set the compacted value of both en-
trances and exits to true, so they never appear on a trace. After
compaction is completed, we replace all jumps to exits by
jumps to the code location, outside P, represented by the exit.
Similarly, we change all jumps from code outside P to en-
trances by having the jump be to the followers of the en-
trance.

RULE
NUMBER

EXAMPLE OP
MOTION

move MOP 7 from block
B2 to blocks B1 and B4

move MOPs 5 and 16 from
blocks B1 and B4 to form
a new MOP in B2, if MOPs
5 and 16 are identical

move MOP 7 (if it has
not been moved by rule
1) from block B2 into
block B3 (possible
since register Rll is
dead at the entrance to
block B5)

REALIZABLE
SAVINGS

block B2 goes from 3 to 2 cycles
while, by placing a copy of MOP
7 next to MOPs 2 and 15, U1 and
B4 stay the same size

since the now MOP may be placed
next to MOP g, it costs nothing
in B2, while saving a cycle in
both B1 and B4

since MOP 7 may be placed next
to MOP 11, it costs nothing in
block B3, while saving a cycle
in block B2

Fig. 4. Examples of the savings available in Fig. 1(d) via the menu
method.

Building Data-Precedence Graphs on Traces

The automated menu method hunts for specific cases of
interblock motions and examines each only after compacting
basic blocks. Trace scheduling takes the opposite tack. Here,
the scheduler is given in advance the full set of MOP's it has
to work with and is allowed to produce whatever schedule is
most effective. No explicit attention is given to the source code
block structure during compaction. Sometimes, though, it is
not permissible for an operation to move from one block to
another. That new information and ordinary data-precedence
determine edges for a DAG. Given this DAG, it is possible to
explain the main technique of trace scheduling as follows.

The DAG built for a trace already contains all of the nec-
essary restrictions on interblock motion, and only those re-
strictions. A scheduler may compact the trace without any
knowledge of where the original block boundaries were.
The scheduler's sole aim will be to produce as short a
schedule as possible for the trace, making implicit inter-
block motions wherever necessary to accomplish this goal.
This may be done at the expense of extra space, and may
sometimes lengthen other traces. Thus, the process is ap-
plied primarily to the traces most likely to be executed.

More formally, we build the DAG as follows.

Definition 11: Given a trace T = (ml, m2, * **, mt), there
is a function condreadregs: the set of conditional jumps in T

subsets of registers. If i < t, register r is in condread-
regs(mi) if r is live at one or more of the elements of follow-
ers(mi) - fmi+ Ii. [That is, at one of the followers besides the
one which immediately follows on the trace. Algorithms for
live register analysis are a standard topic in compiler research
[10], [11 ]. We assume that updated live register information
is available whenever it is required.] For the last element on
T, we define condreadregs(mt) as all registers live at any fol-
lower of mt.

Definition 12: Given a trace T = (mI, m2,*.* mt), we de-
fine the successors function to build a directed acyclic graph
(DAG) called the trace data-precedence graph. [Or, just the
data-precedence graph or DAG if the context is obvious.] This
is calculated exactly as if T were a basic block, using the sets
readregs(m) and writeregs(m), except for the DAG edges
from conditional jumps. Ifm is a conditional jump, then all the
registers in condreadregs(m) are treated as if they were in the
set readregs(m) for purposes of building successors(m). [This
is to prevent values which may be referenced off the trace to
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be overwritten by an instruction which moves from below m
to above m during compaction. Again, the DAG is defined
more carefully when we extend it slightly in the next sec-
tion.]

Scheduling Traces

In brief, trace scheduling proceeds as follows.

To schedule P, we repeatedly pick the "most likely" trace
from among the uncompacted MOP's, build the trace
DAG, and compact it. After each trace is compacted, the
implicit use of rules from the menu forces the duplication
of some MOP's into locations off the trace, and that dupli-
cation is done. When no MOP's remain, compaction has
been completed.

To help pick the trace most likely to be executed, we need
to approximate the expected number of times each MOP
would be executed for a typical collection of data.

Definition 13: We are given a function expect: P 3- non-
negative reals. [Expect(m) is the expected number of execu-
tions ofm we would expect for some typical mix of data. It is
only necessary that these numbers indicate which of any pair
of blocks would be more frequently executed. Since some traces
may be shortened at the expense of others, this information is
necessary for good global compaction. For similar reasons, the
same information is commonly used by the hand coder. An
approximation to expect may be calculated by running the
uncompacted code on a suitable mix of data, or may be passed
down by the programmer.]

Given the above definitions, we can now formally state an
algorithm for trace scheduling loop-free code.

Algorithm: Trace Scheduling

Given: P, a loop-free set of microinstructions with
all of the following predefined on P:
leaders, followers, exits, entrances,
readregs, writeregs, expect,
resource-compatible.

Builds: A revised and compacted P, with new MI's
built from the old ones. The new P is
intended to run significantly faster than
the old, but will be semantically equivalent
to it.

Uses: T, a variable of type trace.
S, a variable of type schedule.
pick-trace, schedule, bookkeep, all
subroutines. [Explained after this
algorithm.]

Algorithm: for all mi in P, compacted(mi) = false;
for all exits and entrances compacted =
true;
while at least one MI in P has compacted
= false do;

call pick-trace(T);
[Sets T to a trace. T is picked to be
the most frequently executed path

through the uncompacted MI's left in
P.]

call schedule(T);
[Produces a trace schedule S on T
after building a DAG.]

call bookkeep(S);
[Builds a new, compacted MI from
each element of S, changing all of the
predefined functions as necessary,
both within and outside of T.
Duplicates MI's from T and places
them in P, where necessary.]

end;
The Subroutines Pick-trace, Schedule, Bookkeep
Algorithm: Pick Trace

Given:

Builds:

P, as defined above.

A trace T of elements from P. [The trace
is intended to represent the "most likely"
path through the uncompacted portion of
the code.]

Method: Picks the uncompacted MOP with the
highest expect, calling that m. Builds a
trace around m by working backward and
forward. To work backward, it picks the
uncompacted leader ofm with the highest
expect value and repeats the process with
that MOP. It works forward from m
analogously.

Uses: m, i', mmax imn all MI's.
F, G sets of MI's.

Algorithm: mnmax = the MOP m in P such that if m' is
a MOP in P, then expect(m) >
expect(m'). Break ties arbitrarily; [Recall
that if mi is a MOP, compacted(m,) =
false, so mmax is the uncompacted MI with
highest expect.]
m = mmax;
T = (m); [The sequence of only the one
element.]
F = the set of MOP's contained within
leaders(m);
do while F not empty;
m = element of F with largest expect
value;
T = AddToHeadOfList(T, m); [Makes
a new sequence
of the old T preceded by m.]
F = the set of MOP's contained within
leaders(m);
end;

m = mmax;
G = the set of MOP's in followers(m);
do while G not empty;
m = element of G with largest expect
value;
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T = AddToTailOfList(T, m); [Makes a
new sequence
of the old T followed by m.]
G = the set of MOP's contained within
followers(m);
end;

end;
Algorithm: Schedule

Given: P, as defined above.
T, a trace of elements from P.

Builds: S, a trace schedule.
Method: Builds a DAG on the trace as described

earlier. Once the DAG has been built, list
scheduling is done just as it is in local
compaction.

Build--DAG, a subroutine that builds the
trace data-precedence DAG by filling in
the successor MOP's for each MOP on the
trace. This uses the condreadregs sets as
explained in the definition of trace data-
precedence.
Priority-set, a subroutine that gives a
priority value to each MOP on the trace.
Any method (such as highest levels first)
that works well for basic blocks may be
used here, although it may be
advantageous to always favor elements
with relatively high expect values over
those without.
list -schedule, the subroutine used for
local compaction.

Algorithm: call build-DAG(T); [As described
above.]
call priority-set(T); [As described
above.]
call list-schedule(T, S); [Builds S, a
trace schedule for T.]
end;

By scheduling without paying attention to whether MOP's
were conditional jumps, we have given the scheduler carte
blanche to apply many possible code motions, and the
scheduler has used a heuristic to choose which ones to im-
plicitly apply. Menu rules R1 and R3 refer to the motion of
MOP's up past a code join and down past a code split, re-
spectively. We may find places in which the scheduler im-
plicitly applied motion rules R 1 and R3 without placing the
moved MOP into both necessary blocks. We now must com-
plete the motions to make them legal, as follows.

Algorithm: Bookkeep

The operations placed in individual cycles
are coalesced into new, compacted MI's.

Method: The details of the bookkeeping phase are
very complex and their formal presentation
is unintuitive. Instead of a careful
algorithm, a more informal, hopefully
clearer explanation is given.

Expla- When there were jumps to the trace, we
nation- now must find a location in the new
Repair- schedule to jump to. This may be difficult,
ing because MOP's may have moved above
Rejoins: and below the old join. We may-only rejoin

to places that have no MOP's at or below
them which had been above the old join,
since we don't want to execute such
MOP's. When we find the highest point for
a rejoin, menu rule R 1 requires that all
MOP's which had been below the join, but
are now above it, be copied into the joining
block. That is,

. We first consider each MOP mi on
T, i > 1, which has a leader besides
mi- 1. Find the minimum Sj, an MI
in the new schedule, with the
property that for any k, k > j, Sk
contains only MOP's mh with h >
i. That is, Sj is the spot on the
schedule below which are found
only MOP's which were at or below
the old joining position. Sj is the
new rejoining position
corresponding to jumps to mi in the
original program.

. For each such rejoin, create a new
block B, which jumps to Sj.
Change all jumps to mi, besides the
one from mi-1, to jump to the new
block Bi. (In other words, place Bi
between all jumps to the rejoin and
the rejoin itself.)

. Populate Bi with copies of all
MOP's mh with h > i but which
are now in some Sk, where k < j.
In other words, populate this block
with copies of MOP's which had
been below the old join, but are
above the new rejoin. We are now
finished legalizing the scheduler's
uses of rule R 1.

Condi- Some MOP's which were originally above
tional a conditional jump on the trace may have
Jumps:

P, as defined above.
T, a trace of elements from P.
S, a trace schedule.

A revised P, with operations duplicated
where necessary to make the code
semantically equivalent to the original P.

been scheduled in an MI below the jump.
This is an example of the scheduler
implicitly choosing to use rule R3. In that
case we must copy these MOP's to the
'place jumped to, as required by R3. If all
registers written by the MOP are dead at
that place, then R5 tells us that the MOP's
did not need to be copied.

. Consider each mi on T which has a

Uses:

Given:

Builds:
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follower besides mi+i, (we consider
mt, the last trace element, to fit
that requirement with all of its
followers). mi, then, has a jump
besides the one forming the trace.

* Create a new block Bj for each mj
infollowers (mi) besides mi+1.
Change the jump to mj from the
MI containing mi so it jumps to Bj
instead, and have Bj jump to mj.
That is, place Bj between mi and
mi.

* In Bj place a copy of any MOP Mk
such that k < i, where Mk has been
scheduled below the MI containing
mi. This completes the use of menu
rule R3.

. Remove from Bj any MOP which
writes only dead registers, that is,
writes unreferenced in this branch.
[This is the substitution of rule R5
for rule R3.]

After the above, we fix up the flow graph
so that empty blocks are removed. The
MOP's placed in a given block are written
the order in which they appeared in the
original code (although any topological
sort of a data precedence DAG containing
them would do). The followers of "fall
through" jumps are adjusted to account
for the new order. Expect values, which
are functions of where the conditional
jumps have been scheduled, are updated.
(Here, the algorithm gets especially
unintuitive.)

E. An Example, Revisited

Now consider Fig. 1. Suppose the most likely trace was the
blocks B1, B1, B3. Fig. 5(a) shows the DAG for that trace, and
a schedule that would be formed using the highest levels first
priority function. The dotted lines in the DAG are edges that
would arise between MOP's which originated in different
blocks, but are treated no differently from ordinary edges.
Note that, in this example, the scheduler was able to find a
significantly shorter compaction, namely 7 cycles to the 11
which might be expected from the automated menu method.
This is due to the overview the scheduling algorithm had of the
whole trace. The necessity to execute M6 early, in order to do
the critical path of code, is obvious when looking at the DAG.
An automated menu compactor would be unlikely to see a gain
in moving M6 into the first block, since there would be no cycle
in which to place it.
The notes for Fig. 5(a) show the MOP's which would have

to copied into new blocks during the bookkeeping phase. Fig.
5(b) shows the new flow graph after the copying. Fig. 5(c) and
(d) display the rest of the traces being compacted.

DAG
.--

3

0@o
/1 (

SCHEDULE
CYCLE MOP(S)

1 m6
2 m8,mlO
3 ml,m9
4 mll,m2,m7
5 m3,ml2
6 m4,ml3
7 m5,ml4

PRIORITY LIST: 6, 8, 9, 1, 7,
11, 2, 3, 12, 4,
13, 5, 10, 14

Bookkeeping phase:

Rejoin to path at MOP m6 cannot be made without including
illegal earlier MOPs. MOPs 6-14 must be copied to after B4.

The following MOPs have moved to below the conditional jump
at MOP m8 and must thus be copied to before B5: 1-5,7

(a)
T

R

B 4

A

C

B

E

1 B

notes: TRACE 1 is the resultant
in example 2(a).

CONTENTS OF NEW BLOCKS

BLOCK CONTAINS COPIES OF MOPs

B6 1,2,3,4,5,7

B7 6,7,8

B8 9,10,11,12,13,14

compaction of Bl, B2, B3 shown

Blocks B4 and B7 could be merged to form a new basic block,
we leave them umerged in the example.

(b)
DAG

..

I'% "E,:II,..'010,
II I

SCHEDULE
CYCLE MOP(S)
...... ......

1 m6,ml5
2 m8,mlO,ml6
3 m9,m7
4 mll
5 m12
6 m13
7 m14

notes: MOP m7 has moved to below the conditional jump at MOP m8
and must thus be copied to before B5. Hopefully, an
adequate bookkeeping phase will note the existence of m7
free at the top of B5 and will use a menu rule to move both
into one MOP in B5.

(C)
DAG

00~3,
SCHEDULE

CYCLE MOP(S)

1 ml,ml7
2 m2,m7
3 m3
4 m4
5 m5

notes: A rejoin is to be made at the entrance to block B5 from the path
of B4, B7, B8. Thus a copy of m7 and ml7 would have to be made
in a new block, B9, which would fall through to the exit. Since
that block is trivially parallelized, it is not shown.

(d)
Fig. 5. (a) Schedule for the main trace (Bl, B2, B3). (b) Flow graph after

the bookkeeping necessary to make the schedule formed in (a) legal. (c)
Schedule for the next most commonly executed trace (B4, B7, B8). (d) Final
blocks for the (B5, B6) of the flow graph compacted.

F. Code Containing Loops
We now extend trace scheduling to cover code with any

control flow. It is important that code containing loops be
handled well, since short loops are quite common in microcode.

Typical examples of very short loops include byte shifts and
waiting loops, which test for an infrequently true condition like
"memory busy." We do not want to exclude these loops from
the compacting process.
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Definition 14: A loop is a set of MI's in P which correspond
to some "back edge" (that is, an edge to an earlier block) in
the flow graph. For a careful definition and discussion, see
[11].

Reducible Flow Graphs
For convenience, we think of the whole set P as a loop. We

assume that all of the loops contained in P form a sequence LI,
L2, * *- LP, such that

a) eachLi isaloopinP,
b) Lp = P,
c) if Li and Lj have any elements in common, and i < j,

then Li is a subset of Lj. That is, we say that any two loops are
either disjoint or nested, and that the sequence L1, L2,* Lp
is topologically sorted on the "include" relation.
The last requirement above is that P have a reducible flow

graph. (For more information about reducible flow graphs, see
[11].) Insisting that P have a reducible flow graph is not a
problem for us for two reasons. One, programs formed using
so-called "structured" control of flow, and not unrestrained
GOTO's, are guaranteed to have this property. This is not a
compelling argument, since it must be granted that one is apt
to find wildly unstructured microcode (the nature of the micro
machine level tends to encourage such practices). However,
code generated by a compiler is unlikely to be so unstructured.
The second reason is stronger, however, and that is that an
irreducible program may easily be converted in.to a reducible
one with the use of some simple techniques [11]. The auto-
matic conversion produces a slightly longer program, but we
have seen that small amounts of extra space is a price we are
willing to pay. All known methods which guarantee that the
conversion generates the least extra space rely on the solution
of some NP-complete problem, but such a minimum is not
important to us.
We will, then, assume that the flow graphs we are working

with are reducible, and that the set of loops in P is partially
ordered under inclusion. Fig. 6(a) is a sample reducible flow
graph containing 12 basic blocks, B1-B 12. We identify five
sets of blocks as loops, L1-L5, and the table in Fig. 6(b)
identifies their constituent blocks. The topological sort listed
has the property we desire.

There are two approaches we may take in extending trace
scheduling to loops; the first is quite straightforward.
A Simple Way to Incorporate Loops Into Trace Scheduling
The following is a method which strongly resembles a sug-

gestion for handling loops made by Wood [ 14]. Compact the
loops one at a time in the order L1, L2, * - *, Lp. Whenever a
loop Li is ready to be compacted, all of the loops Lj contained
within it have j < i, and have already been compacted. Thus,
any MI contained in such an L1 will be marked as compacted
[see Fig. 6(c)].
We can see that trace scheduling may be applied to Li di-

rectly with no consideration given to the fact that it is a loop,
using the algorithms given above. No trace will ever encounter
an MI from any LJ, j < i, since they are all marked compacted.
Thus, the traces selected from Li may be treated as if they
arose from loop-free code. There are still "hback edges" in LJ,
that is what made it a loop, but they are treated as jumps to
exits, as are jumps to MI's outside of Li.
When this procedure is completed, the last loop compacted

will have been P. Each MOP will have been compacted in the

LOOP

Li

L2

L3

L4

L5

(a)
CONTAINED OUTERMOST
BLOCKS CONTAINED LOOPS
<.BN>... ... o.....e..

<B7,B8> none

<B9, BIO> none

<B6-12> L1.,L2

<B2,B3> none

<B2-12> L3,L4

NODES ON
MODIFIED DAG
......s.a."..

B7,B8

B9,B1O

B6,Bll,B12,lrl ,lr2

B2,B3

B4,B5,lr3,lr4

L6 (the whole set) L5 B1,1r5
<B1-12>

A TOPOLOGICAL SORT OF THE LOOPS: L4, Ll, L2, L3, L5, L6
(each loop appears ahead of all

loops it is contained in)

(b)
L5:L3:

(c)
Fig. 6. (a) A reducible flow graph. (b) Loop structure information for the

flow graph given in (a). (c) What the flow graphs L3 and L5 would look
like at compaction time, considering each loop representative as a block.

Li in which it is most immediately contained, and we will have
applied trace scheduling to all of P. Even with the addition of
trace scheduling, however, this does not provide enough power
for many applications.

A More Powerful Loop Method
The above method fails to take advantage of the following

potentially significant sources of compaction.
* Some operations which precede a loop could be moved
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to a point after the loop and vice versa. Loops should not be
regarded as arbitrary boundaries between blocks. Compaction
should be able to consider blocks on each side of a loop in a way
that considers the requirements of the other, and MOP's
should be moved between them wherever it is desirable and
legal.

* In many microprograms loops tend to iterate very few
times. Thus, it is often important to move MOP's into loops
when they can be done without extra cycles inside the loop and
are "loop invariant" (see [10] for details on loop invariance).
This is an ironic reversal on optimizing compilers, which often
move computations out of loops; we may want to move them
right back in when we compact microcode. This is especially
important on machines with loops which are rarely iterated
more than once, such as waiting loops. We certainly do not
want to exclude the cycles available there from the compaction
process.

Loop Representative MI's
The more powerful loop method treats each already com-

pacted loop as if it were a single MOP (called a loop repre-
sentative) in the next outermost loop. Just as was the case for
conditional jumps, we hide from the scheduler the fact that the
MOP represents an entire loop, embedding all necessary
constraints on the data precedence DAG. Then when a loop
representative appears on a trace, the scheduler will move
operations above and below the special MOP just as it would
for any MOP. Once the definition of resource compatibility
is extended to loop representatives, we may allow the scheduler
to move other MOP's into the loop is well.

Definition 15: Given a loop L, its loop representative Ir, and
a set of operations N. The set tirl u N is resource compatible
if:

* N contains no loop representatives,
* each operation in N is loop-invariant with respect to

* all the operations in N can be inserted into L's schedule
without lengthening it. (There are enough "holes" in L's al-
ready formed schedule.)
Two loop representatives are never resource compatible with

each other.
Trace Scheduling General Code

The more powerful method begins with the loop sequence

L1, L2, ., Lp as defined above. Again, the loops are each
compacted, starting with L1. Now, however, consider the first
loop L. which has other loops contained in it. The MI's com-

prising each outermost contained loop, say Lj, are all replaced
by a new dummy MOP, lrj, the loop representative. Transfers
of control to and from any of the contained loops are treated
as jumps to and from their loop representatives. Fig. 6(c) shows
what the flow graph would look like for two of the sample
loops. Next, trace scheduling begins as in the nonloop case.

Eventually, at least one loop representative shows up on one

of the traces. Then it will be included in the DAG built for that
trace. Normal data precedence will force some operations to
have to precede or follow the loop, while others have no such
restrictions. All of this information is encoded on the DAG as

edges to and from the representative.
Once the DAG is built scheduling proceeds normally until

some lr is data ready. Then lr is considered for inclusion in

each new cycle C according to its priority (just as any operation
would be). It is placed in C only if lrj is resource compatible
(in the new sense) with the operations already in C. Eventually,
some lr will be scheduled in a cycle C (if only because it be-
comes the data ready task of highest priority). Further data
ready operations are placed in C if doing so does not violate our
new definition of resource compatibility.

After scheduling has been completed, lrj is replaced by the
entire loop body Lj with any newly absorbed operations in-
cluded. Bookkeeping proceeds essentially as before. The
techniques just presented permit MOP's to move above, below,
and into loops, and will even permit loops to swap positions
under the right circumstances. In no sense are arbitrary
boundaries set up by the program control flow, and the blocks
are rearranged to suit a good compaction.

This method is presented in more detail in [2].

IV. ENHANCEMENTS AND EXTENSIONS OF TRACE
SCHEDULING

In this section we extend trace scheduling in two ways: we
consider improvements to the algorithm which may be desir-
able in some environments, and we consider how trace sched-
uling may be extended to more general models of micro-
code.
A. Enhancements
The following techniques, especially space saving, may be

critical in some environments. In general, these enhancements
are useful if some resource is in such short supply that unusual
tradeoffs are advantageous. Unfortunately, most of these are
inelegant and rather ad hoc, and detract from the simplicity
of trace scheduling.

Space Saving
While trace scheduling is very careful about finding short

schedules, it is generally inconsiderate about generating extra
MI's during its bookkeeping phase. Upon examination, the
space generated falls into the following two classes:

1) space required to generate a shorter schedule,
2) space used because the scheduler will make arbitrary

decisions when compacting; sometimes these decisions will
generate more space than is necessary to get a schedule of a
given length.

In most microcode environments we are willing to accept
some extra program space of type 1, and in fact, the size of the
shorter schedule implies that some or all of the "extra space"
has been absorbed. If micromemory is scarce, however, it may
be necessary to try to eliminate the second kind of space and
desirable to eliminate some of the first. Some of the space
saving may be integrated into the compaction process. In
particular, extra DAG edges may be generated to avoid some
of the duplication in advance-this will be done at the expense
of some scheduling flexibility. Each of the following ways of
doing that is parameterized and may be fitted to the relevant
time-space tradeoffs.

If the expected probability of a block's being reached is
below some threshold, and a short schedule is therefore not
critical, we draw the following edges.

1) If the block ends in a conditional jump, we draw an edge
to the jump from each MOP which is above the jump on the
trace and writes a register live in the branch. This prevents

487



IEEE TRANSACTIONS ON -COMPUTERS, VOL. C-30, NO. 7, JULY 1981

copies due to the ambitious use of rule R3 on blocks which are
not commonly executed.

2) If the start of the block is a point at which a rejoin to the
trace is made, we draw edges to each MOP free at the top of
the block from each MOP, which is in an earlier block on the
trace and has no successors from earlier blocks. This keeps the
rejoining point "clean" and allows a rejoin without copying.

3) Since the already formed schedule for a loop may be
long, we may be quite anxious to avoid duplicating it. Edges
drawn to the loop representative from all MOP's which are
above any rejoining spot on the trace being compacted will
prevent copies caused by incomplete uses of rule R 1. Edges
drawn from the loop MOP to all conditional jumps below the
loop will prevent copies due to incomplete uses of rule R3.

In any environment, space critical or not, it is strongly rec-
ommended that the above be carried out for some threshold
point. Otherwise, the code might, under some circumstances,
become completely unwound with growth exponential in the
number of conditional jumps and rejoins.

For blocks in which we do not do the above, much of the
arbitrarily wasted space may be recoverable by an inelegant
"hunt-and-peck" method. In general, we may examine the
already formed schedule and identify conditional jumps which
are above MOP's, which will thus have to be copied into the
branch, and MOP's which were below a joining point but are
now above a legal rejoin. Since list scheduling tends to push
MOP's up to the top of a schedule, holes might exist for these
MOP's below where they were placed. We examine all possible
moves into such holes and pick those with the greatest profit.
Making such an improvement may set off a string of others;
the saving process stops when no more profitable moves re-
main. This is explained in more detail in [2].

Task Lifting
Before compacting a trace which branches off an already

compacted trace, it may be possible to take MOP's which are
free at the top of the new trace and move them into holes in the
schedule of the already compacted trace, using motion rule R6.
If this is done, the MOP's successors may become free at the
top and movable. Reference [2] contains careful methods of
doing this. This is simply the automated menu approach which
we have tried to avoid, used only at the interface of two of the
traces.

Application of the Other Menu Rules
Trace scheduling allows the scheduler to choose code motion

from among the rules RI, R3, R5, and R6 without any special
reference to them. We can also fit rules R2 and R4 into this
scheme, although they occur under special circumstances and
are not as likely to be as profitable. Rule R2 has the effect of
permitting rejoins to occur higher than the bookkeeping rules
imply. Specifically, we can allow rejoins to occur above MOP's
which were earlier than the old rejoin, but are duplicated in
the rejoining trace. This is legal if the copy in the rejoining
trace is free at the bottom of the trace. When we do rejoin
above such a MOP we remove the copy from the rejoining
trace. This may cause some of its predecessors to be free at the
bottom, possibly allowing still higher rejoins.

In the example, suppose MOP's 5 and 16 were the same. We
could then have rejoined B4 to the last microinstruction, that
containing MOP's 5 and 14, and deleted MOP 16 from block
B4. The resultant compaction would have been one cycle

shorter in terms of space used, but would have had the same
running time.

Similarly, rule R4 applies if two identical MOP's are both
free at the tops of both branches from a conditional. In that
case we do not draw an edge from the conditional jump to the
on the trace copy, even if the DAG definition would require
it. If the copy is scheduled above the conditional jump, rule R4
allows us to delete the other copy from the off the trace branch,
but any other jumps to that branch must jump to a new block
containing only that MOP.
B. Extensions of the Model to More Complex Constructs

Having used a simplified model to explain trace scheduling,
we now discuss extensions which will allow its use in many
microcoding environments. We note, though, that no tractable
model is likely to fit all machines. Given a complex enough
micromachine, some idioms will need their own extension of
the methods similar to what is done with the extensions in this
section. It can be hoped that at least some of the idiomatic
nature of microcode will lessen as a result of lowered hardware
costs. For idioms which one is forced to deal with, however,
very many can be handled by some special case behavior in
forming the DAG (which will not affect the- compaction
methods) combined with the grouping of some seemingly in-
dependent MOP's into single multicycle MOP's, which can
be handled using techniques explained below.

In any event, we now present the extensions by first ex-
plaining why each is desirable, and then showing how to fit the
extension into the methods proposed here.

Less Strict Edges
Many models that have been used in microprogramming

research have, despite their complexity, had a serious defi-
ciency in the DAG used to control data dependency. In most
machines, master-slave flip-flops permit the valid reading of
a register up to the time that register writes occur, and a write
to a register following a read of that register may be done in
the same cycle as the read, but no earlier. Thus, a different kind
of precedence relation is often called for, one that allows the
execution of a MOP no earlier than, but possibly in the same
cycle as its predecessor. Since an edge is a pictorial represen-
tation of a "less than" relation, it makes sense to consider this
new kind of edge to be "less than or equal to," and we suggest
that these edges be referred to as such. In pictures of DAG's
we suggest that an equal sign be placed next to any such edge
to distinguish it from ordinary edges. In writing we use the
symbol <<. (An alternative way to handle this is via "polyphase
MOP's" (see below), but these edges seem too common to
require the inefficiencies that polyphase MOP's would require
in this situation.) As an example, consider a sequence of
MOP's such as

MOP 1: A: B
MOP2: B:C.

MOP's 1 and 2 would have such an edge drawn between
them, since 2 could be done in the same cycle as 1, or any time
later. More formally, we now give a definition of the DAG on
a set of MOP's. This will include the edges we want from
conditional jump MOP's, as described previously.

Rules for the formation of a partial order on MOP's:
Given: A trace of MI's mI, M2, *.,mn.

For each MI mi, three sets of registers, read-
regs(mi), writeregs(mi), and condreadregs(mi)
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as defined previously.
For each pair of MI's mi, mj with i < j we define edges, as

follows.
1) If readregs(mi) n writeregs(mj) 0, then mi << mj

unless for each register r E readregs(m,) n- writeregs(mj)
there is a k such that i < k < j and r E writeregs(mk).

2) If writeregs(mi) n readregs(mj) 5 0, then mi << m
unless for each register r E writeregs(mi) r- readregs(mrj)
there is a k such that i < k < j and r E writeregs(mk).

3) If writeregs(mi) n writeregs(mj) X 0, then mi <<m«
unless for each register r E writeregs(mi) n writeregs(mj)
there is a k such that i < k < j and r E writeregs(mk).

4) If condreadregs(mi) n writeregs(mj) 5 0, then mi <<

mj unless for each register r e condreadregs(mi) n write-

regs(mj) there is a k such that i < k < j and r E write-
regs(mk)-

5) If by the above rules, both mi << mj and mi <<m«, then
we write mi << mj.
The algorithm given in Section II for list scheduling would

have to be changed in the presence of equal edges, but only in
that the updating of the data ready set would have to be done
as a cycle was being scheduled, since a MOP may become data
ready during a cycle. Many of the simulation experiments
reported upon in Section II were done both with and without
less than or equal edges; no significant difference in the results
was found.

Many Cycle and Polyphase MOP's
Our model assumes that all MOP's take the same amount

of time to execute, and thus that all MOP's have a resource and
dependency effect during only one cycle of our schedule. In
many machines, though, the difference between the fastest and
slowest MOP's is great enough that allotting all MOP's the
same cycle time would slow down the machine considerably.
This is an intrinsic function of the range of complexity avail-
able in the hardware at the MOP level, and as circuit inte-
gration gets denser will be more of a factor.
The presence of MOP's taking m > 1 cycles presents little

difficulty to the within block list scheduling methods suggested
here. The simple priority calculations, such as highest levels,
all extend very naturally to long MOP's; in particular, one can
break the MOP into m one cycle sub-MOP's, with the obvious
adjustments to the DAG, and calculate priorities any way that
worked for the previous model. List scheduling then proceeds
naturally: when a MOP is scheduled in cycle C, we also
schedule its constituent parts in cycles C + 1, C + 2, * * *, C +
m - 1. If in one of these cycles it resource conflicts with an-

other long MOP already in that cycle, we treat it as if it has a

conflict in the cycle in which we are scheduling it. The resource

usages need not be the same for all the cycles of the long MOP,
it is a straightforward matter to let the resource vector have
a second dimension.

Trace scheduling will have some added complications with
long MOP's. Within a trace being scheduled the above com-
ments are applicable, but when a part of a long MOP has to
be copied into the off the trace block, the rest of the MOP will
have to start in the first cycle of the new block. The information
that this is required to be the first MOP will have to be passed
on to the scheduler, and may cause extra instructions to be
generated, but can be handled in a straightforward enough way
once the above is accounted for.

In what are called polyphase systems, the MOP's may be
further regarded as having submicrocycles. This has the ad-
vantage that while two MOP's may both use the same resource,
typically a bus, they may use it during different submicro-
cycles, and could thus be scheduled in the same cycle. There
are two equally valid ways of handling this; using either of the
methods presented here is quite straightforward. One approach
would be to have the resource vector be quite complicated, with
the conflict relation representing the actual (polyphase) con-
flict. The second would be to consider each phase of a cycle to
be a separate cycle. Thus, any instruction which acted over
more than one phase would be considered a long MOP. The
fact that a MOP was only schedulable during certain phases
would be handled via extra resource bits or via dummy MOP's
done during the earlier phases, but with the same data prece-
dence as the MOP we are interested in.
Many machines handle long MOP's by pipelining one cycle

constituent parts and buffering the temporary state each cycle.
Although done to allow pipelined results to be produced one
per cycle, this has the added advantage of being straightfor-
ward for a scheduler to handle by the methods presented
here.

Compatible Resource Usages
The resource vector as presented in Section II is not ade-

quate when one considers hardware which has mode settings.
For example, an arithmetic-logic unit might be operable in any
of 2k modes, depending on the value of k mode bits. Two
MOP's which require the ALU to operate in the same mode
might not conflict, yet they both use the ALU, and would
conflict with other MOP's using the ALU in other modes. A
similar situation occurs when a multiplexer selects data onto
a data path; two MOP's might select the same data, and we
would say that they have compatible use of the resource. The
possibility of compatible usage makes efficient determination
of whether a MOP conflicts with already placed MOP's more
difficult. Except for efficiency considerations, however, it is
a simple matter to state that some resource fields are com-
patible if they are the same, and incompatible otherwise.
The difficulty of determining resource conflict can be seri-

ous, since many false attempts at placing MOP's are made in
the course of scheduling; resource conflict determination is the
innermost loop of a scheduler. Even in microassemblers, where
no trial and error placement occurs and MOP's are only placed
in one cycle apiece, checking resource conflict is often a com-
putational bottleneck due to field extraction and checking. (I
have heard of three assemblers with a severe efficiency problem
in the resource legality checks, making them quite aggravating
for users. Two of them were produced by major manufactur-
ers.) In [2] a method is given to reduce such conflict tests to
single long-word bit string operations, which are quite fast on
most machines.

Microprogram Subroutines
Microprogram subroutine calls are of particular interest

because some of the commercially available microprogram
sequencer chips have return address stacks. We can therefore
expect more microcodable CPU's to pass this facility on to the
user.

Subroutines themselves may be separately compacted, just
as loops are. While motion of MOP's into and out of subrou-
tines may be possible, it seems unlikely to be very desirable.
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Of greater interest is the call MOP; we want to be able to allow
MOP's to move above and below the call. For MOP's to move
above the call, we just treat it like a conditional jump, and do
not let a MOP move above it if the MOP writes a register
which is live at the entrance to the subroutine and is read in the
subroutine. Motion below a call is more complicated. If a task
writes or reads registers which are not read or written (re-
spectively) in the subroutine, then the move to below the call
,is legal, and no bookkeeping phase is needed. In case such a

read or write occurred, we would find that we would have to

execute a new "off the trace" block which contained copies of
the MOP's that moved below the call, followed by the call it-
self. A rejoin would be made below the MOP's which moved
down, and MOP's not rejoined to would be copied back to the
new block after the call. In the case of an unconditional call,
the above buys nothing, and we might as well draw edges to
the call from tasks which would have to be copied. If the call
is conditional and occurs infrequently, then the above tech-
nique is worthwhile. In that case the conditional call would be
replaced by a conditional jump to the new block. Within the
new block, the subroutine call would be unconditional; when
the new block is compacted, edges preventing the motion of
MOP's below the call in the new block would appear.

V. GENERAL DISCUSSION
Compaction is important for two separate reasons, as fol-

lows.

1) Microcode is very idiomatic, and code development tools
are necessary to relieve the coder of the inherent difficulty of
writing programs.

2) Machines are being produced with the potential for very
many parallel operations on the instruction level-either mi-
croinstruction or machine language instruction. This has been
especially popular for attached processors used for cost ef-
fective scientific computing.

In both cases, compaction is difficult and is probably the
bottleneck in code production.
One popular attached processor, the floating point systems

AP- 120b and its successors, has a floating multiplier, floating
adder, a dedicated address calculation ALU, and several va-

rieties of memories and registers, all producing one result per
cycle. All of those have separate control fields in the micro-
program and most can be run simultaneously. The methods
presented here address the software production problem for
the AP- 1 20b.

Far greater extremes in instruction level parallelism are on

the horizon. For example, Control Data is now marketing its
Advanced Flexible Processor [15], which has the following
properties:

a 16 independent functional units, their plan is for it to be
reconfigurable to any mix of 16 from a potentially large
menu;

a all 16 functional units cycle at once, with a 20 ns cycle
time;

a large crossbar switch (16 in by 18 out), so that results
and data can move about freely each cycle;

* a 200 bit microinstruction word to drive it all in par-
allel.

With this many operations available per instruction, the goal
of good compaction, particularly global compaction, stops
being merely desirable and becomes a necessity. Since such

machines tend to make only one (possibly very complex) test
per instruction, the number of instruction slots available to be
packed per block boundary will be very large. Thus, such
machines will contain badly underused instructions unless
widely spread source MOP's can be put together. The need to
coordinate register allocation with the scheduler is particularly
strong here.
The trend towards highly parallel instructions will surely

continue to be viable from a hardware cost point of view; the
limiting factor will be software development ability. Without
effective means of automatic packing, it seems likely that the
production of any code beyond a few critical lines will be a
major undertaking.
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