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ABSTRACT 

By compiling ordinary scientific applications programs with a 

radical technique called trace scheduling, we are generating 

code for a parallel machine that will run these programs faster 

than an equivalent sequential machine - -  we expect 10 to 30 

times faster. 

Trace scheduling generates code for machines called Very 

Long Instruction Word architectures. In Very Long Instruction 

Word machines, many statically scheduled, tightly coupled, 

fine-grained operations execute in parallel within a single 

instruction stream. VLIWs are more parallel extensions of 

several current architectures. 

These current architectures have never cracked a 

fundamental barrier. The speedup they get from parallelism is 

never more than a factor of 2 to 3. Not that  we couldn't build 

more parallel machines of this type; but until trace scheduling 

we didn't  know how to generate code for them. Trace 

scheduling finds sufficient parallelism in ordinary code to 

justify thinking about a highly parallel VLIW. 

At Yale we are actually building one. Our machine, the 

ELI-512, has a horizontal instruction word of over 500 bits and 

will do 10 to 30 RISC-level operations per cycle [Patterson 82]. 

ELI stands for Enormously Longword Instructions; 512 is the 

size of the instruction word we hope to achieve. (The current 

design has a 1200-bit instruction word.) 

Once it became clear that  we could actually compile code for 

a VLIW machine, some new questions appeared, and answers 
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are presented in this paper. How do we put enough tests in 

each cycle without making the machine too big? How do we 

put enough memory references in each cycle without making 

the machine too slow? 

WHAT IS A VLIW? 

Everyone wants to use cheap hardware in parallel to speed 

up computation. One obvious approach would be to take your 

favorite Reduced Instruction Set Computer, let it be capable of 

executing 10 to 30 RISC-level operations per cycle controlled by 

a very long instruction word. (In fact, call it a VLIW.) A 

VLIW looks like very parallel horizontal microcode. 

More formally, VLIW architectures have the following 

properties: 

There is one central control unit issuing a single long 

instruction per cycle. 

Each long instruction consists of many tightly coupled 

independent operations. 

Each operation requires a small, statically predictable 

number of cycles to execute. 

Operations can be pipelined. These properties distinguish 

VLIWs from multiprocessocs (with large asynchrohous tasks} 

and datafiow machines (without a single flow of control, and 

without the tight coupling). VLIWs have none of the required 

regularity of a vector processor, or true array processor. 

Many machines approximately like this have been built, but 

they have all hit a very low ceiling in the degree of parallelism 

they provide. Besides horizontal microcode engines, these 

machines include the CDC 6600 and its many successors, such 

as the scalar portion of the CRAY-1; the IBM Stretch and 

360/91; and the Stanford MIPS [Hennessy 82]. It's not 

surprising that they didn't  offer very much parallelism. 

Experiments and experience indicated that  only a factor of 2 to 

3 speedup from parallelism was available within basic blocks. 

(A basic block of code has no jumps in except at the beginning 
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and no jumps out except at the end.) No one knew how to find 

parallelism beyond conditional jumps, and evidently no one was 

even looking. It seemed obvious that you couldn't put 

operations from different basic blocks into the same instruction. 

There was no way to tell beforehand about the flow of control. 

How would you know whether you wanted them to be executed 

together? 

Occasionally people have built much more parallel VLIW 

machines for special purposes. But these have been hand- 

coded. Hand-coding long-instruction-word machines is a 

horrible task, as anyone who's written horizontal microcode will 

tell you. The code arrangements are unintuitive and nearly 

impossible to follow. Special-purpose processors can get away 

with hand coding because they need only a very few lines of 

code. The Floating Point Systems AP-120b can offer speedup 

by a factor of 5 or 6 in a few special-purpose applications for 

which code has been handwritten at enormous cost. But this 

code does not generalize, and most users get only the standard 

2 or 3 - -  and then only after great labor and on small 

programs. 

We're talking about an order of magnitude more parallelism; 

obviously we can forget about hand coding. But where does 

the parallelism come from? 

Not from basic blocks. Experiments showed that the 

parallelism within basic blocks is very limited [Tjaden 

70, Foster 72]. But a radically new global compaction 

technique called trace scheduling can find large degrees of 

parallelism beyond basic-block boundaries. Trace scheduling 

doesn't work on some code, but it will work on most general 

scientific code. And it works in a way that makes it possible to 

build a compiler that generates highly parallel code. 

Experiments done with trace scheduling in mind verify the 

existence of huge amounts of parallelism beyond basic blocks 

[Nicolau 81]. Nicolau81 repeats an earlier experiment done in 

a different context that found the same parallelism but 

dismissed it; trace scheduling was then unknown and immense 

amounts of hardware would have been needed to take 

advantage of the parallelism [Riseman 72]. 

WHY NOT VECTOR MACHINES? 

Vector machines seem to offer much more parallelism than 

the factor of 2 or 3 that current VLIWs offer. Although vector 

machines have their place, we don't believe they have much 

chance of success on general-purpose scientific code. They are 

erucifyingly difficult to program, and they speed up only inner 

loops, not the rest of the code. 

To program a vector machine, the compiler or hand coder 

must make the data structures in the code fit nearly exactly the 

regular structure built into the hardware. That's hard to do in 

first place, and just as hard to change. One tweak, and the 

low-level code has to be rewritten by a very smart and 

dedicated programmer who knows the hardware and often the 

subtleties of the application area. Often the rewriting is 

unsuccessful; it's back to the drawing boards again. Many 

people hope that highly vectorized code can be produced from 

ordinary scalar code by a very intellegent compiler [Padua 80]. 

We believe that vectorizing will produce sufficient parallelism 

in only a small percentage of programs. 

And vectorizing works only on inner loops; the rest of the 

code gets no speedup whatsoever. Even if 90% of the code 

were in inner loops, the other 10% would run at the same speed 

as on a sequential machine. Even if you could get the 90% to 

run in zero time, the other 10% would limit the speedup to a 

factor of 10. 

TRACE SCHEDULING 

The VLIW compiler we have built uses a recent global 

compaction technique called trace scheduling [Fisher 81]. This 

technique was originally developed for microcode compaction, 

compaction being the process of generating very long 

instructions from some sequential source. 

Horizontal microcode is like VLIW architectures in its style 

of parallelism. It differs in having idiosyncratic operations and 

less parallel hardware. Other techniques besides trace 

scheduling have been developed for microcode compaction 

[Tokoro 78, Dasgupta 79, Jacobs 82]. They differ from trace 

scheduling in taking already compacted basic blocks and 

searching for parallelism in individual code motions between 

blocks. That might work for horizontal microcode but it 

probably won't work for VLIWs. VLIWs have much more 

parallelism than horizontal microcode, and these techniques 

require too expensive a search to exploit it. 

Trace scheduling replaces block-by-block compaction of code 

with the compaction of long streams of code, possibly 

thousands of instructions long. Here's the trick: You do a 

little bit of preprocessing. Then you schedule the long streams 

of code as if they were basic blocks. Then you undo the bad 

effects of pretending that they were basic blocks. What you 

get out of this is the ability to use well-known, very efficient 

scheduling techniques on the whole stream. These techniques 

previously seemed confined to basic blocks. 

To sketch briefly, we start with loop-free code that has no 

back edges. Given a reducable flow graph, we can find loop- 

141 



' .  1 ° 

N 
. o ° ° ' ° "  

TRACE SCHEDULING LOOP-FREE CODE 

(a) A flow graph, with each block representing a basic block 

of code. (b) A trace picked from the flow graph. (c) The trace 

has been scheduled but it hasn't been relinked to the rest of the 

code. (d) The sections of unscheduled code that allow re- 

linking. 

free innermost code [Aho77]. Part (a) of the figure shows a 

small flow graph without back edges. Dynamic information - -  

jump predictions - -  is used at compile time to select streams 

with the highest probability of execution. Those streams we 

call "traces." We pick our first trace from the most frequently 

executed code. In part (b) of the figure, a trace has been 

selected from the flow graph. 

Preproeessing prevents the scheduler from making absolutely 

illegal code motions between blocks, ones that would clobber 

the values of live variables off the trace. This is done by 

adding new, special edges to the data  precedence graph built 

for the trace. The new edges are drawn between the test 

operations that conditionally jump to where the variable is live 

and the operations that might clobber the variable. The edges 

are added to the data precedence graph and look just like all 

the other edges. The scheduler, none the wiser, is then 

permitted to behave just as if it were scheduling a single basic 

block. It pays no attention whatsoever to block boundaries. 

After scheduling is complete, the scheduler has made many 

code motions that will not correctly preserve jumps from the 

stream to the outside world (or rejoins back). So a 

postprocessor inserts new code at the stream exits and 

entrances to recover the correct machine state outside the 

stream. Without this ability, available parallelism would be 

unduly constrained by the need to preserve jump boundaries. 

In part (c) of the figure, the trace has been isolated and in part 

(d) the new, uncompacted code appears at the code splits and 

rejoins. 

Then we look for our second trace. Again we look at the 

most frequently executed code, which by now includes not only 

the source code beyond the first trace but also any new code 

that we generated to recover splits and rejoins. We compact 

the second trace the same way, possibly producing recovery 

code. (In our actual implementation so far, we have been 

pleasantly surprised at the small amount of recovery code that 

gets generated.) Eventually, this process works its way out to 

code with little probability of execution, and if need be more 

mundane compaction methods are used so as not to produce 

new code. 

Trace scheduling provides a natural solution for loops. Hand 

coders use software pipelining to increase parallelism, rewriting 

a loop so as to do pieces of several consecutive iterations 

simultaneously. Trace scheduling can be trivially extended to 

do software pipelining on any loop. We simply unroll the loop 

for many iterations. The unrolled loop is a stream, all the 

intermediate loop tests are now conditional jumps, and the 

stream gets compacted as above. 

While this method of handling loops may be somewhat less 

space efficient than is theoretically necessary, it can handle 
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TRACE SCHEDULING LOOPS 

(a) A loop body, which might contain arbitrary flow of 

control, and the exit code it jumps to. (b) The loop body 

unwound k times. (c) Traces are picked through the unwound 

loop and it is scheduled. (d) The newly scheduled loop is re- 

linked to the rest of the code. 

FULLY 
SCHEDULED 

CODE 

arbitrary flow of control within each old loop iteration, a major 

advantage in attempting to compile real code. The figure 

above, which is generally analogous to the one before, shows 

how loops are handled. 

BULLDOG, A TRACE-SCHEDULING COMPILER 

We have implemented a trace-scheduling compiler in 

compiled Maclisp on a DEC-2060. We call it Bulldog to 

suggest its tenacity (and prevent people from thinking it was 

written at Harvard). Bulldog has 5 major modules, as outlined 

in the figure to the right. 

Our first code generator is for an idealized VLIW machine 

that  takes a single cycle to execute each of its RISC-level 

operations (not too drastic an idealization) and does unlimited 

memory accesses per cycle (entirely too drastic an idealization). 

We are using the code generator to help debug the other 

modules of the compiler and to measure available parallelism. 

Average operations packed per intruction is a spurious measure 

of speedup. Instead we divide the number of parallel cycles the 

code took to execute by the number of sequential cycles in 

running the uncompiled code. 

By comparison with the idealized code, real ELI code will 

contain many incidental small operations. Whether that  
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implies the same speedup, or less, or more, is subject to debate. 

These incidental operations may slow down the sequential code 

more than the parallel, making the speedup due to parallelism 

all the greater. Only time will tell. 

The front end we are currently using generates our RISC- 

level intermediate code, N-address code or NADDR. The input 

is a local Lisp-sugared FORTRAN, C, or Pascal level language 

called Tiny-Lisp. It was something we built quickly to give us 

maximal flexibility. We have an easy time writing sample code 

for it, we didn't have to write a parser, and we can fiddle with 

the compiler easily, which has proved to be quite useful. A 

FORTRAN '77 subset compiler into NADDR is written and 

being debugged, and we will consider other languages after 

that. Our RISC-ievel NADDR is very easy to generate code for 

and to apply standard compiler optimizatious to. 

We have two more code generators being written right now. 

A full ELI-512 generator is quite far along - -  a subset of it is 

now being interfaced to the trace picker and fixup code. We 

are also writing a FPS-104 code generator. The FPS-164 is the 

successor to the Floating Point Systems AP-120b, probably the 

largest-selling machine ever to have horizontal microcode as its 

only language. There is a FORTRAN compiler for the 

FPS-164, but our experience has been that it finds little of even 

the small amount of parallelism available on that machine. A 

compiler that competes with hand code would really change the 

potential usability of that machine (it's very difficult to hand 

code) and would demonstrate the versatility of trace scheduling. 

MEMORY ANTI-ALIASING ON BULLDOG 

Trace scheduling makes it necessary to do massive numbers 

of code motions in order to fill instructions with operations that 

come from widely separated places in the program. Code 

motions are restricted by data precedence. For example, 

suppose our program has the steps: 

(I) Z := A ÷ X 

(2) A := V + ¥ 

Our code motions must not cause (2) to be scheduled earlier 

than (1). So the trace scheduler builds a data-precedence edge 

before scheduling. 

But what happens when A is an array reference? 

(1 )  Z := A[exprl] + X 
C2) A[expr2] := Y + ¥ 

Whether (2) may be done earlier than (1) is ambiguous. If 

e x p r l  can be guaranteed to be different from expr2, then the 

code motion is legal; otherwise not. Answering this question is 

the problem of anti-aliasing memory references. With other 

forms of indirection, such as chasing down pointers, anti- 

aliasing has little hope of success. But when indirect references 

are to array elements, we can usually tell they are different at 

compile time. Indirect references in inner loops of scientific 

code are almost always to array elements. 

The system implemented in the Bulldog compiler attempts to 

solve the equation exprl = expr2. It uses reaching definitions 

[Aho 77] to narrow the range of each variable in the 

expressions. We can assume that the variables are integers and 

use a diophantine equation solver to determine whether they 

could be the same. Range analysis can be quite sophisticated. 

In the implemented system, definitions are propagated as far as 

possible, and equations are solved in terms of simplest variables 

possible. We do not yet use branch conditions to narrow the 

range of values a variable could take, but we will. 

Anti-aliasing has been implemented and works correctly (if 

not quickly). Unfortunately, it is missing a few of its abilities 

- -  very few, but enough to slow it down badly. In this case the 

truism really holds: The chain is only as strong as its weakest 

link. So far we get speedups in the range of 5 to 10 for the 

practical code we've looked at. Good, but not what we want. 

Examining the results by hand makes it clear that when the 

missing pieces are supplied the speedup will be considerable. 

A MACHINE TO RUN TRACE-SCHEDULED CODE 

The ELI-512 has 16 clusters, each containing an ALU and 

some storage. The clusters are arranged circularly, with each 

communicating to its nearest neighbors and some 

communicating with farther removed clusters. (Rough sketches 

of the ELI and its clusters are on the next page.) 

The ELI uses its 500+ bit instruction word to initiate all of 

the following in each instruction cycle: 

10 ALU operations. 8 will be 32-bit integer operations, 

and 8 will be done using 04-bit ALUs with a varied 

repertoire, including pipelined floating-point calculations. 

8 pipelined memory references - -  more about these later. 

32 register accesses. 

Very many data movements, including operand selects for 

the above operations. 

A multiway conditional jump based on several 

independent tests - -  more about these later too. (With 

this much happening at once, only a maniac would want to 

code the ELI by hand.) 

To carry out these operations, the ELI has 8 M-clusters and 8 
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GLOBAL INTERCONNECTION SCHEME OF THE ELI-512 
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TYPICAL M AND F CLUSTER BLOCK DIAGRAMS 

F-clnsters. Each M-cluster has within i t:  

A local memory module (of so far undetermined size). 

An integer ALU which is likely to spend most of its time 

doing address calculations. The exact repertoires may 

vary from cluster to cluster, and won't be fixed until we 

tune the architecture using actual code. 

A multiport integer register bank. 

A limited cluster crossbar, with 8 or fewer participants. 

Some of the participants will be off-clnster busses. Some 

of the crossbar connections will not be made. 

And each F-cluster has within it: 

A floating point ALU. The repertoires of the ALUs will 

vary from cluster to cluster and won't be f'Lxed until we 

tune the architecture. 

A multiport floating register bank. 

A limited cluster crossbar, with 8 or fewer participants. 

Some of the participants will be off-clnster busses. Some 

of the crossbar connections will not be made. 

Do not be deceived by occasional regularities in the structure. 

They are there to make the hardware easier to build. The 

compiler doesn't know about them, and it doesn't attempt to 

make any use of them. When we start running scientific code 

through the compiler, we will undoubtedly further tune the 

architecture. We will want to remove as many busses as we 

can, and many of the regularities may disappear. 

Current plans are to construct the prototype ELI from 100K 

ECL logic, though we may opt for Shottkey TTL. 

PROBLEMS 

Nobody's ever wanted to build a 512-bit-wide instruction 

word machine before. As soon as we started considering it, we 

discovered that there are two big problems. How do you put 

enough tests in each instruction without-making the machine 

too big? How do you put enough memory references in each 

instruction without making the machine too slow? 

Comparing VLIWs with vector machines illustrates the 

problems to be solved. VLIWs put fine-grained, tightly 

coupled, but logically unrelated operations in single 

instructions. Vector machines do many fine-grained, tightly 

coupled, logically related operations at once to the elements of 

a vector. Vector machines can do many parallel operations 

between tests; VLIWs cannot. Vector machines can structure 

memory references to entire arrays or slices of arrays; VLIWs 

cannot. We've argued, of course, that vector machines fail on 
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general scientific code for other reasons. How do we get their 

virtues without their vices? 

VLIWs NEED CLEVER JUMP MECHANISMS 

Short basic blocks implied a lack of local parallelism. They 

also imply a low ratio of operations to tests. If we are going to 

pack a great many operations into each cycle, we had better be 

prepared to make more than one test per cycle. Note that this 

is not a problem for today's statically scheduled operation 

machines, which don't pack enough operations in each 

instruction to hit this ratio. 

Clearly we need a mechanism for jumping to one of several 

places indicated by the results of several tests. But not just 

any multiway jump mechanism will do. Many horizontally 

mierocodable machines allow several tests to be specified in 

each microinstruction. But the mechanisms for doing this are 

too inflexible to be of significant use here. They do not allow 

for multiple independent tests, but rather offer a hardwired 

selection of tests that may be done at the same time. Some 

machines allow some specific set of bits to alter the next 

address calculation, allowing a 2n-way jump. This is used, for 

example, to implement an opcode decode, or some other 

hardware case statement. 

Another approach that won't suffice for us is found in VAX 

11/780 microcode [Patterson 79]. There, any one of several 

fixed sets of tests can be specified in a given instruction. A 

mask can be used to select any subset of those tests, which are 

logically ANDed into the jump address. Unfortunately, the 

probability that two given conditional tests appear in the same 

set in the repertoire is very low. In compacting it is extremely 

unlikely that one can place exactly the tests one wants to in a 

single instruction, or even a large subset of them. Instead, 

combinations are hardwired in advance. One would guess that 

the combinations represent a convenient grouping for some 

given application program, in the case of the VAX, presumably 

the VAX instruction set emulator. 

The most convenient support the architecture could possibly 

provide would be a 2n-way jump based on the results of testing 

n independent conditions. This is not as unrealistic as it 

sounds; such a mechanism was considered in the course of 

developing trace scheduling [Fisher 80], and seemed quite 

practical. It turned out, however, to be more general than we 

needed. 

After we had actually implemented trace scheduling, a 

surprising fact emerged: What trace scheduling requires is a 

mechanism for jumping to any of n + l  locations as the result of 

n independent tests. The tests should be any combination of n 

from the repertoire of tests available on the machine. 

The jump works just the way a COND statement works in 

LISP. For simplicity, we will pretend that a test's FAILing 

means failing and wanting to stay on the trace and that 

SUCCEEDing means succeeding and wanting to jump off the 

trace. A statement to express the multiway jump might appear 

a s :  

(COND ( t e s t l  label 1) 
( test2 label2) 

( testk labelk) 

( testn labeln) 
(SUCCEED labe l - f a l l - t h rough )  ) 

If the first test, t e s t l .  FAILs, it wants to stay on the trace 

and the second test, tes t2 ,  is made. If that FAILs, it too 

wants to stay on the trace. If a test, tes tk ,  SUCCEEDs, then it 

wants to jump off the trace to labelk; no on-trace tests after 

tas tk  will be made. If all the tests FAIL, we finally get to the 

last address in the instruction and fall through. 

We find that n + l  target labels suffice; 2 n aren't needed. We 

sort all the tests for one instruction in the order in which they 

appeared in the trace. Then when a test SUCCEEDs we are glad 

that we already executed the tests that came earlier in the 

source order but we don't much care about the ones that came 

later since we're now off the trace. 

It is not hard to build a n+l-way jump mechanism. The 

figure shows that all we need is a priority encoder and n test 

multiplexers. The wide instruction word selects each of the n 

tests with n j-bit (where j is log the number of tests) fields. 

The first of the n tests (in sequence order) that wants to jump 

off the trace in effect selects the next instruction. 

But how do we actually produce the next address? We could 

place n + l  candidates for the post of next address in full in each 

instruction. But even on the ELI using so many instruction 

bits for that would seem like overkill. The idea of using the 

select bits as part of the next address (as in the restricted 

multiway jumps referred to above) seems right, if we can 

overcome a small packing problem. 

For example, if n=3 ,  and if the current instruction has a 

next instruction address field of, say, 0DO00011, then we have 

the following situation: 

TEST CONDITION ADDRESS IF TEST IS 
FIELD SELECTED FIRST TO SUCCEED 

0 t e s t l  O0 00000011 
1 test2 01 00000011 
2 test3 10 00000011 
3 SUCCEED 11 00000011 
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00000011, and the test fields are filled in as below. 

TEST CONDITION ADDRESS IF TEST IS 
FIELD SELECTED FIRST TO SUCCEED 

0 tes t1  O0 00000011 
1 SUCCEED 01 00000011 
2 don ' t  care won ' t  happen 
3 SUCCEED won' t  happen 

After INSTR2, we jump to either 10 00000011 or to 11 

00000011. So it looks like: 

TEST CONDITION ADDRESS IF TEST IS 
FIELD SELECTED FIRST TO SUCCEED 

0 FAIL won ' t  happen 
1 FAIL won ' t  happen 
2 TEST2 10 00000011 
3 SUCCEED 11 00000011 

Since we don' t  have an incremented program counter and 

can rearrange addresses at will, these allocations can be done in 

a straightforward matter  in a postpass program. A little space 

may be wasted at code rejoins, but not much. 

Our previous work on 2n-way jumps applies also to n + l - w a y  

jumps and contains a more complete explanation of these ideas 

[Fisher 80]. 

In this scheme we do not increment a program counter to get 

the next address, though that  could be fit ted in if there were 

some advantage in speed for a particular hardware 

implementation. 

What  happens when we pack fewer than n tests in a cycle? 

From the example above, with n = 3 ,  it might seem that  we 

need to spend four program memory locations for each set of 

target addresses. But what if we have straightline code, or 

want to do only one or two tests in some cycles (as we surely 

will)? Do we have to waste the unused slots? We can avoid 

wasting slots if we include a test that  always SUCCEEDs and 

another that  always FAILs. With  these tests, we can cause two 

instructions which each want to pack one test to share an 

address slice, or  we can pack an instruction that  does two tests 

with an instruction that  wants to do no test. For example, 

take two instructions, INSTR1, which wants to do TEST1, and 

INSTR2, which wants to do TEST2.  We can arrange to have 

them both jump to a label in the address slice 00000011 (and 

thus both have 00000011 as their next-address field) as follows: 

After INSTR1, we jump to either 00 00000011 or to 01 

00000011. As a result, the next address field of INSTR1 is 

T H E  J U M P  MECHANISM ON THE ELI-512 

The ELI-512 will have an n + l - w a y  jump mechanism like the 

one described above. During the time when we are tuning the 

machine design and the compiler, we will determine how many 

tests are appropriate; it seems likely that  n will be 3, 4, or 5. 

We have two instruction-fetch mechanisms under consideration. 

Delayed branches are an old microeode instruction-fetch trick 

that  works particularly well here for [Gross 82, Patterson 82]. 

In a delayed-branch mechanism the address of instruction M+k 

is determined by the result of a test in instruction M. The k 

instructions between M and M + k  are done whether the test 

succeeds or fails. Using trace scheduling, we know which way 

most jumps go; so we can fill the gap with instructions that  

will probably be in the execution stream. The current compiler 

handles delayed jumps as a mat ter  of course, but  we've taken 

no measurements on whether or how much they slow down the 

code. 

The alternative is to fetch an entire slice at once. We would 

have n + l  banks of instruction memory and would fetch all the 

next candidate words, using the next-instruction address of an 

instruction as soon as it is selected. Then, when the tests have 
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settled down, the bits coming out of the priority encoder can 

multiplex from among the n + l  choices. The large words on 

the ELI may make this technique difficult. 

VLIW COMPILERS MUST PREDICT MEMORY BANKS 

With so many operations packed in each cycle, many of them 

will have to be memory references. But (as in any parallel 

processing system} we cannot simply issue many references each 

cycle; two things will go wrong. Getting the addresses through 

some kind of global arbitration system will take a long time. 

And the probability of bank conflict will approach 1, requiring 

us to freeze the entire machine most cycles. 

But here we can rely (as usual) on a combination of smart 

compiler and static cede. We ask our compiler to look at the 

code and try to predict what bank the reference is in. When 

we can predict the bank, we can use a dedicated address 

register to refer to it directly. To make several references each 

cycle, we access each of the memory banks' address registers 

individually. No arbitration is necessary, since the paths of the 

addresses will never cross. 

When we ask the compiler which bank a reference is going to 

be in, what are the chances of getting an answer? In the static 

code we expect to run on a VLIW, very good. Scalars always 

have known locations. What about arrays! The same system 

that does anti-aliasing can attempt to see which bank a 

reference is in . .As  you'll recall, loops get unwound to increase 

parallelism. In fact, it's the anti-aliasing system that does the 

unwinding, since it knows which are induction variables and 

which aren't. (It renames non-induction variables that appear 

in successive unwound iterations to avoid unnecessary data- 

precedence.) By unrolling so that the array subscripts increase 

by a multiple of the number of banks every iteration, the anti- 

aliasing system often makes it possible to predict banks. 

What about unpredictable references.~ Two kinds of 

unpredictable references muddy up this scheme. 

First of all, we might simply have no chance to predict the 

bank address of a reference. For example, we might be chasing 

down a pointer and need access to the entire memory address 

space. But such accesses are assumed to be in the tiny 

minority; all we have to do is be sure they don't excessively 

slow down the local, predictable accesses. Our solution is to 

build a shadow memory-access system that takes addresses for 

any bank whatsoever and returns the values at those addresses. 

This requires our memory banks to be dual-ported and have 

lockout capabilities. The allocation of hardware resources 

should favor predictable access; unpredictable access can be 

made slower. And the predictable accesses should have priority 

in case of bank conflict; we can make the machine freeze when 

an unpredictable reference doesn't finish in time. If there are 

too many of these references, the machine will perform badly. 

But in that case conservative data-precedence would have 

destroyed any chance at large amounts of parallelism anyway. 

The second problem is that even when we have arrays and 

have unrolled the loops properly, we might not be able to 

predict the bank location of a subscript. For example the 

subscript value might depend on a loop index variable with a 

data-dependent starting point. Unknown starting values don't  

ruin our chances of doing predictable references inside the loop. 

All we have to do is ask the compiler to set up a kind of pre- 

loop. The pre-loop looks like the original loop, but it exits 

when the unknown variable reaches some known value modulo 

the number of banks. Although it may itself be unwound and 

compacted, the pre-loop has to use the slow unpredictable 

addressing system on the unpredictable references. But it will 

execute some short number of cycles compared to the very long 

unwound loop. The situation given B banks is illustrated on 

the next page. 

MEMORY ACCESSING IN THE ELI-512 

The current design of the ELI counts on the system outlined 

above: bank prediction, precedence for local searches, and pre- 

looping. Each of the 8 M-clusters has one memory access port 

used for times when the bank is known. We will start one 

pipelined access per cycle per M-clnster (which may require us 

to be able to distinguish among at least 16 physical banks, 2 

per module, depending upon the design of the memory). This 

will give us a potential data memory access bandwidth of about 

400 Mbytes/see. if our cycle time is in the neighborhood of 150 

ns. To implement pre-looping, we will have tests for addresses 

modulo the number of banks. 

In addition, the ELI will have two access ports that address 

memory globally. When they are ready, the results of a global 

fetch are put in a local register bank. When a reference is 

made to the data, the system freezes if the data isn't in the 

registers, and all the pending global references sneak in while 

they have a chance. We expect this state of affairs to be quite 

infrequent. 

WHAT WE ARE DOING AND NOT DOING 

This paper offers solutions to the problems standing in the 

way of using Very Long Instruction Word architectures to 

speed up scientific code. These problems include highly parallel 

code generation, multiple tests in each cycle, and multiple 

memory references in each cycle. 
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(a) 

for  I = k t o  n 
do { l o o p  body) 

(b) 

LOOP: 
l = k  
{ l o o p  body) 
i f  I >= n gobo FALLTHROUGH 
I := 1+1 
{ l o o p  body} 
i f  I >= n got, o FALLTHROUGH 
I := 1+1 
{ l o o p  body} 
i f  I >= n got, o FALLTHROUGH 
I := I+1 
{ l o o p  body} 

(c) 

PRELOOP: 

LOOP: 

I = k  
i f  I = 0 mod(B) got, o LOOP 
{ l o o p  body} 
I := I+1 
i f  I • n go to  FALLTHROUGH 
go to  PRELOOP 

{ l o o p  body) * deduce I=0 
• mod (B) 

i f  I >= n got, o FALLTHROUGH 
I := I+i 
{ l o o p  body) 
i f  I >= n go to  FALLTHROUGH 
I := I+l 
{ loop body} 
i f  I >= n got, o FALLTHROUGH 
I := I+ i  
{ l o o p  body} 

i f  I < n go to  LOOP 

FALLTHROUGH: 
i f  I < n go to  LOOP 

FALLTHROUGH: 

ADDING A PRE-LOOP 

Adding a pre-loop to cause unknown bank references to start 

the loop with known values, modulo the number of banks. (a) 

contains a source loop. Note that  we are using FORTRAN 

loop style with the test at the end. In (b) the loop is unwound. 

In (c) we have added a pre-loop that xecutes until I is a known 

value modulo the number of banks. 

The Bulldog compiler and experiments done on real code 

have demonstrated that a large degree of parallelism exists in 

typical scientific code. Given that the existence of this 

parallelism makes VLIW machines desirable, we are building 

one: the ELI-512, a very parallel attached processor with a 

500+ bit instruction word. We expect the ELI to speed up 

code by a factor of 10-30 over an equivalent sequential 

machine. We will be generating good code for the ELI before 

we build it. We are also writing a compiler for the FPS-164, a 

much less parallel but otherwise similar architecture. 

Our code generators use trace scheduling for locating and 

specifying parallelism originating in far removed places in the 

code. The n+l -way jump mechanism makes it possible to 

schedule enough tests in each cycle without making the 

machine too big. Bank prediction, precedence for local 

searches, and pre-looping make it possible to schedule enough 

memory references in each cycle without making the machine 

too slow. 

ways. ELI will be an attached processor - -  no I/0, no 

compilers, no ELI simulators, no user amenities. Rather we will 

choose a sane host. ELI will not be optimized for efficient 

context switch or procedure call. The EL1 will be running 

compute-bound scientific code. It is difficult to extend VLIW 

parallelism beyond procedure calls; when we want to, we can 

expand such calls in line. Any VLIW architecture is likely to 

perform badly on dynamic code, including most systems and 

general-purpose code and some scientific code. We will be 

content to have ELI perform very well on most scientific code. 
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Partly to reduce the scope of the project and partly because 

of the the nature of VLIWs, we are limiting ourselves in various 
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