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Abstract

We introduce a new exeaution paradigm called asdsted execution. In thismodel, a
set of auxiliary “assistant” threads, cdled nandhreads, is attached to each thread of an
application. Nancthreads are very lightweight threads which run on the same processor as
the main (applicaion) thread and help execute the main thread as fast as possible. Nano-
threads exploit resources that are idled in the processor because of dependencies and
memory accessdelays.

Assisted execution has the potential to alter the aurrent trade-offs between static
and dynamic execution mechanisms. Nancthreads can monitor and reconfigure the under-
lying herdware, can emulate hardware and can profile applications with little or no inter-
ference to improve the program or-line or off-line.

We demonstrate the power of asdsted exeaution with an important applicaion,
namely data prefetching to fight the memory wall problem. Simulation results on several
SFEC95 benchmarks sow that sequential and stride prefetching implemented with nano-
thread techndogy performs just as well asideal hardware prefetchers.

Keywords: Multithreading, prefetching, ILP processors



Assisted Execution

Abstract

We introduce a new exeaution paradigm called asdsted execution. In thismodel, a
set of auxiliary “assistant” threads, cdled nandhreads, is attached to eech thread of an
application. Nancthreads are very lightweight threads which run on the same processor as
the main (applicaion) thread and help execute the main thread as fast as possible. Nano-
threads exploit resources that are idled in the processor because of dependencies and
memory accessdelays.

Assisted execution has the potential to alter the aurrent trade-offs between static
and dynamic execution mecdhanisms. Nancthreads can monitor and reconfigure the under-
lying hardware, can emulate hardware and can profile applications with little or no inter-
ference to improve the program ortline or off-line.

We demonstrate the power of asdsted exeaution with an important application,
namely data prefetching to fight the memory wall problem. Simulation results on several
SFEC95 benchmarks gow that sequential and stride prefetching implemented with nano-
thread techndogy performs just as well asideal hardware prefetchers.

1. Introduction

Dynamically-scheduled superscalar processors exploit instruction-level paralelism (ILP)
to speed-up the exeaution d programs. However, because of control and data dependencies and
memory access penalties, large amounts of hardware and compiling efforts reap small perfor-
mance gains, often resulting in vast underutilization of the hardware. Processor multithreading,
and more specificdly simultaneous multithreading, is a very promising approach to deal with
these techndogical trends. In this approach, several threads are scheduled at the same time and
compete for issue sots in the processor, reducing the impact of control and data dependenciesin
each thread onthe CPI [23][24].

When the threads belong to independent tasks eadh thread may run slower because of
resource onflictswith its peers, for example, runnng more independent threads on the same pro-
cessor leads to more cahe misses and memory latency to hide, which, in turns, calls for more
threads. The threads may also be part of the same applicaion, in which case the application runs
faster. However, if a compiler decomposes an application into N concurrent threads and if each
procesor needs k threads to run efficiently, then the number of useful procesorsin a multipro-

cessor configurationis limited to N/k.



Another approach to exploit the ébundant hardware resources of a multithreaded proces-
sor is to create more work to facilitate and aacelerate the exeaution o each application thread.
This extra work is executed by a set of auxiliary “assistant” threads called nandhreads and
attached to each appli cation thread. Nancothreads are very lightweight threads which run onthe
same processor as the main (applicaion) thread, share its memory and may share its registers and
its exeaution stadk. Nanothreads exploit resources that are idled in the processor because of
dependencies and memory aacessdelays. This new execution paradigm is cdled asssted execu-

tion.

Under asgsted exeaution, the compiler or programmer can create nanothread code aus-
tomized to the dynamic properties of application programs. Nanothreads can monitor and recorn-
figure the underlying herdware, can emulate hardware and can profile appli cations with little or
no interference to improve the program on-line or off-line. In a nutshell, asssted exeaution hes

the potential to alter the current trade-offs between static and dyramic exeaution mechanisms.

In this paper, we develop the concept of asgsted execution and apply it to an important
problem: attading the memory wall problem by stride and sequential prefetching. We first intro-
ducethe exeaution model, and describe apossble architecture to suppat it in Section 2. Sections
3 and 4elaborates on the architecture simulation model, and the sequential and stride prefetching
mechanisms. The experimental methoddogy is given in Section 5. The simulation results com-
paring rencthread-based and ided hardware prefetchers are then presented and dscussed in Sec-

tion 6.Finaly, wereview related work and concludein Sedions 7 and 8.

2. Execution Model and Architecturefor Assisted Execution

2.1. Execution M ode€l

We dtach a collection of nanothreads to each main (application) thread. The main thread
carriesthe computation asin atraditional environment, whil e the nanathreads do al the work nec-
essry to monitor the main thread execution and passbly effect changes to improve its perfor-
mance. A main thread and its nanothreads run onthe same processor. Nanothreads can be started
by main thread code or, as we will see, by nandraps, a lightweight trapping mechanism. They

interact with the main thread by sharing memory, and pasibly registers and execution stack.



Figure 1. Decomposition of a Processinto Threads and Nanothreads
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Figure 1 illustrates the case where an application has been decompaosed into N main
threads running onN processors and seven nancthreads are dtached to each thread. Whereas the
figure seams to imply an hanogeneous system, nothing prevents programmers to design rano-
threads customized to dfferent compute nodesin an heterogeneous g/stem.

In conventional multithreading [21], an active threal is characterized by the state of its
register file, its program courter, and its execution stack. Since we want the main thread and its
nancthreads to interad at the lowest possble level, while allowing them to execute different
instructions, they shoud be &le to share memory, registers and execution stack, bu shoud have
independent program courters. A possble organization for the integer register file is shown in
Figure 2 for a processor supporting 7 ranothreads. The threads have accessto 32 general-purpose
registers, however 4 o these registers are private (registers 28to 31), while 28 are shared (regis-
ters0to 27). Thusthe total number of integer registersis 60. This organization gves ome private

workspace to each thread. The same organization may apply to the floating-point register file.



Figure 2. Possible I nteger Register File Implementations
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R28-R31 (nancthread(6))

If the main thread and its nancothreads do nd share exeaution stacks, they can execute
unrelated pieces of code and have some level of protedionfrom each athers' exeaution. However,
this generality comes with a cost in increased complexity in terms of synchronizaion and sharing
registers acrosscontexts. On the other hand, if the main thread and its nanothreads are restricted
to sharing the same exeaution stack these issues are greatly simplified but their functionality is
limited such that a nanothread can orly execute within the scope of the functionin whichit iscre-
ated. Threads sharing the same execution stack are referred to astightly-couped whereas threads
having independent execution stacks are said to be loasely-couged. In this paper a main thread
andits nanathreads are tightly-couped.

To illustrate the problems, consider the simple Fortran DO-loop shown in Figure 3.
Asaime that we crede three nancthreads at the start of the loopto prefetch blocks of A, B, and C
and that the loopindex Nis allocated to aregister, which is known and shared by the threenano-
threads. In Figure 3(a), tightly-coupded threads will do, since the main thread remainsin the same
context and the nanothreads are smple enoughthat they do nat use function a subroutine cdls.
However, in Figure 3(b), a function FUNCT( ) is called in the main thread, which may use the
register allocated to N. Thus, if the threads are tightly-couped, the main thread must prevent its
nanothreads from accessng N during the execution d the function. Moreover, if the prefetch
algorithm is somewhat complex and requires a function call itself, sharing the same stack will

cause the executionto become unpredictable, because return addresses from diff erent nanothreads



will be mixed on the shared stack.

Figure 3. Codes lllustrating the Need for Both Tightly and L oosely-coupled Threads

DO 100 N=1, 200 DO 100 N=1, 200
N_CREATE( Pr ef et ch( Al N+1]) N_CREATE( Pr ef et ch( Al N+1])
N_CREATE( Pr ef et ch( B[ N+1]) N_CREATE( Pr ef et ch( B[ N+1])
N_CREATE( Pref et ch( ([ N+1]) N_CREATE( Pref et ch( ([ N+1])
AN =B[N +C[ N AN =B[ N] +FUNCT(C[ N )
AN =C N 1] AN =0 N 1]
BL N =Al N+1] BL N =Al N+1]

100 CONTI NUE 100 CONTI NUE

(@ (b)

The example of Figure 3(a) also ill ustrates the need to synchronizethe main thread and its
nancthreads. If the prefetching rencthreads are not executed fast enough,they could read the
index of subsequent loop iterations. General-purpose synchronization mechanisms between the
main thread and its nanathreads could include timestamps, synchronization registers, hardware

flags or memory-based locks.

2.2. Processor Architecture

Processor architectures in which multiple threads can run concurrently can suppat
asssted execution. For example, a microprocesor in which ore nanothread can be tightly-cou-
pled with a main thread is described in [7]1. The processor is a VLIW (Very Long Instruction
Word) processor, and, whenever the processor stalls on the main thread, it automatically begins
fetching instructions from the nanothread. The modifications to the processor needed to suppat
the nanathread is minimal.

Our focus in this paper is on dyramically scheduled, ILP processors, exemplified by the
MIPS R10000[13], shown in Figure 4 with some modifications to suppat assisted execution. To
allow concurrent execution d one main thread and several nancthreads, the processor must have
one main PC statically dedicated to the main thread context and several nanoPCs, dyramicdly
allocaed to nanathreads. In each cycle, the instruction fetch unt selects one of the adive threads
and fetches sveral instructions at a time from that thread. Multi ple instructions are decoded and
then sent to severa instruction queues. Once its operands are available an instruction can be

issued to its exeaution unt. Instructions finish their exeautionin the retirement buffer where they

1. The term nanothread was adopted from this paper.



wait for their turnto retire in the program order of their thread.

Figure 4. ILP Processor with Support for Nanothreads
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2.3. Nanotraps

To implement precise exceptions, the MIPS R10000identifies the faulting instruction at
the retirement stage, prevents it from retiring and aborts all subsequent instructions in program
order. The time taken by an exception is divided into four major components. The first is the
delay from the exception event to the detection in the retirement stage. The seaond is the time
required to save the processor context so that the trap hander can run. The third is the exeaution
time of the exception hander, and the fourth is the time to restore the saved process context.
Because the overhead of traditional exceptions is so large in ILP processors, they must occur
rarely, which prevents their widespread use for dynamic execution mechanisms. Anather restric-

tionisthat only one exception hander can be exeauted at atime.

With the suppat for nanothreads, we implement nandraps, a form of lightweight traps.
Nanotraps are triggered onselectable hardware events occurring in the main thread, such as cache
misses, cache invalidations, or completion signal from an autonamous hardware machine. When a
nanatrap is triggered somewhere in the processor, it is immediately taken by the hardware. The

hardware selects a nano-PC (if any oreisfree and alocates it to the nanatrap hander. Since the



hander runs in a nancthread, the processor does nat switch context at the occurrence of a nan-
otrap. Rather, the main thread continues exeauting in the pipeline if it can, while anancthread

executes the nanatrap hander using resources not held by the main thread.

Nanatraps can be synchronous or asynchronots. In the synchronous case, the main thread
is blocked urtil the hander is finished. An asynchronous nanctrap simply spawns a new nano-
thread. Whether an asynchronous nanotrap is blocking a nat depends on what happens when all
nano-PCs are busy at the time of the trap: It is blockingif the hardware stall s the main thread urtil
a nano-PC is available and it is nonblocking if the nanotrap is smply ignored. Blocking asyn-
chronouws nancthreads are useful when the nanatrap canna beignared, for exampleif the nanctrap
responds to the overflow of an event courter. In many cases, such as prefetching, nonblocking

asynchronous nanatraps are sufficient.

To demonstrate the eff ectivenessof asgsted exeaution, we have developed a simulator of
aprocessor for asgsted execution. Then we have implemented and evaluated sequential and stride
prefetching schemes using prefetching ranothreads triggered by nanatraps. In the next section, we

describe the specific detail s of the achitedure simulated.

3. Detailed Architecture M odd

Referring to Figure 4, we first define some terms. An instruction isready for exeaution
when al its register operands are available, either in a register or throughforwarding. A ready
instruction in an instruction queue issues when it starts execution. Arithmetic instructions are
completed when their execution is finished in the assgned exeaution unt. Load instructions are
completed when the datais returned and forwarded to the dependent instructions. Thetarget regis-
ter of an arithmetic or load instructionis not updated urtil the instructionretiresin the retirement
unit. Instructions must retire in program order. Store instructions are completed when they retire

and updite the cache.

In every cycle, the Instruction Fetch Stage (IFS) seleds one PC, deddes the number of
instructions to fetch, fetches the instructions, and sends them to the instruction decode stage. Two
simplifications have been made in our model. First, instructions always hits in the instruction

cache and, second, lranch predictionis perfect.



Theinstruction fetch scheduler selects athread based onthe number of active nancthreads
and the number of instructions in the processor for each active thread. If the number of main
thread instructions is more than 50% of the capacity of all instruction queues, or if the number of
main thread instructions in any instruction gleue is larger than 2/3 of the queue @paaty, IFS
selects a nancothread with the smallest number of instructions in the processor. The number of
instruction fetched in each cycle is less than o equal to the number of free dots in any ore

instruction queue and its maximum isfour.

The next stage is the Instruction Decode Stage (IDS), which decodes up to four instruc-
tionsin every procesor clock. When any instruction queue is full, the decoding stage stall s. The
Register Renaming and Enqueue Stage (RRES) resolves both Write-After-Write (WAW) depen-
dency and Write-After-Read (WAR) hazards by renaming registers using 128 integer registers
and 128floating pant registers.

Renamed instructions are attached to ore of three different instruction queues: integer,
float-point and address Each instruction gleue mntainsupto 12entries. Therefore, the maximum
number of instructions pending for execution is 36. Up to four instructions can be sent to the

instruction queues in each processor cycle.

In every cycle, upto five instructions are selected to issue to the exeaution urits based on
a greedy algorithm that gives a higher priority to the oldest, ready-to-issue instruction. The
instruction isaue scheduler also gves higher priority to nanathreads in the address queue in arder

to drain them as fast as possible and avoid deallocks.

Integer instructions and floating-point instructions can be issued ou-of-order, as onas
they arerealy. As oonasits exeautionis completed, an arithmetic instruction rel eases any RAW
register dependency with subsequent instructions, leaves the instruction queue, and roceeds to
the retirement stage.

The addressqueue is managed in FCFS manner. No instructionin this queue can beisued
until al instructions in front of it have been issued and have computed their memory address
Moreover aload canna issueif astore with the same addressis pendingin front of it in the queue.
As onasthe datais returned, loads forward the results to dependent instructions. All | oad/store

instructions are kept in the addressqueue until they retire.



Instructions can be issued to each execution unt at the maximum rate of one every cycle.

The exeaution time of each type of instructionis shown in Table 1.

Table 1: Execution Time of instructions

Instruction Class Exeaution Time (in cycle)
Integer Instructions 1
Floating Point Instructions (except FDIV, FSQRT) 2
Floating Point Instructions (FDIV, FSQRT) 4
AddressInstructions (FLC cade hit) 2

After their execution, instructions move to the retirement buffer where they wait their turn
to retire in the program order of their thread. Registers identify the next instruction to retire in
each thread. Each instruction is tagged with a thread identifier and a serial number. There is no
limit on the size of the retirement buffer and the number of retiring instructions in a procesor

cycle.

3.1. Support for Nanotraps

To suppat nanatraps a special register called Nanotrap Hander Address Register
(NHAR) is added to the instruction fetch stage. NHAR keeps the start addressof a @wmmon ran-
otrap hander. At the occurrence of a nanctrap, an inadive nano-PC (if any) is alocaed to the
nancthread and initialized to the mntent of NHAR. The nano-PC is returned to the inactive pod
of PCswhen areturn from trap instruction (RETT) is executed in the nancthread.

Once dispatched the nanotrap handler must identify the source of the nanctrap. This is
dore througha set of Nanotrap Status Registers (NSR). In this paper thereis only one NSR, aswo-
ciated with the second-level cache, bu, in general we can imagine multiple NSRs, associated with
other resources in the machine. Moreover, whereas at most one nanotrap may occur in every cycle
in the second-level cache, multi ple nancotraps could occur at the same time in the general case. We
therefore need a medhanism to seriaize nancotraps and to gve time to the hardware to react and

allocae a nanothread to each nanotrap withou losing any. The mechanismis snown in Figure 5.

In every processor clock, the FIFO register is dhifted forward. Whenever a new nanotrap
is detected througha valid NSR, the NSR is slected. While the NSR moves up in the FIFO, a

10



new nano PC is slected and initialized to the value in NHAR. When the NSR emerges from the
FIFO, the hardware is ready to storeit in a nancthread-speafic trap status register (NTSR). In the
next clock the newly activated nanothread is a candidate for instruction fetch. The FIFO in

Figure 5 gvesthe hardware four clocks to react to the nanaotrap.

Figure 5. Nanotrap Status Hardware

| Nsr@) |
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3.2. Memory Subsystem

The memory subsystem contains separate instruction cache and data cache. The instruc-
tion cacheisnot simulated. Thisis equivalent to assuming that the instruction cache never misss.
The data cache is made of aFirst Level Cache (FLC) and a SecondLevel Cache (SLC). Both are
single-ported, write-bad, direct-mapped with 32 byte blocks. FLC and SLC accesstimes are 1
pclock and 6pclocks respectively.

SLC is nonblocking. In a nondocking cache there ae two types of misses: primary and
secondary misses[9]. A primary misstriggers a block fetch from memory. A secondary missdoes
not accessmemory because a primary missfor the same block isalready in progress All accesses
misgng in SLC occupy a slot in a Pending Memory Access Queue (PMAQ). Accesses causing
secondary misses are merged with their correspondng primary missin PMAQ. Up to 32memory
accesses (including prefetches) may bein progressin the second-level cache a any oretime. The

memory accesslatency is either 50 a 200 plocks. Memory conflicts are not simulated.

4. Prefetching

We have experimented with bah sequential and stride prefetching. Only load/store pri-

mary data misses in SLC may generate nancotraps. Prefetch instructions are sent to the address

11



gueue in the processor. However, contrary to ather memory accessinstructions, they do nd wait
in the queue urtil retirement. Rather, they are sent to the second level cache when they can be
issued and are removed from the addressqueue. If a prefetch instruction hitsin SLC, it isdropped.

Otherwiseg, it isinserted in PMAQ as are other |oad/store misses.

4.1. Software sequential prefetching

In sequential prefetch, whenever a missoccurs in the secndlevel cache, the blocks fol-
lowing the missng Hock in the address gace ae prefetched into the cache. The number of
prefetched blocks can be aljusted for diff erent programs, bu remains constant for the entire exe-
cution d a given program. Software sequential prefetch executes the same nancthread code for
every miss The NTSR must be loaded with the aldressof the missng access The nancthread
does nat read any register of the main thread and there is no need to synchronize.

The nanatrap handler code for sequentia prefetching is shown in Figure 6. By simply
increasing the faulting memory address (obtained from the NTSR) by the cache block size, the
trap handler generates a number of prefetches equal topr ef et ch count .

Figure 6. Software Sequential Prefetch Handler

pref et ch_addr ess = faulting memory address

i = prefetch count;

do{
prefetch_address = prefetch_address + CACHE_LI NE_SI ZE;
isaue prefetch from pr ef et ch_addr ess;

} while (--i >0);

return from trap;

4.2. Software stride prefetching

Stride prefetch relies on the compiler to tag memory instructions which may trigger a
prefetch onamissandto identify the stride that shoud be used, as was dore in [20]. Each tagged
memory accessinstruction in the program may have its own nancotrap code. The NSTR is thus
loaded with the value of the PC for the faulting instruction. The starting addressof the prefetch is

calculated from the context of the main thread stored in registers or on the execution stack.
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Figure7. Prologue of the Softwar e Stride Prefetch Handler

pc =faulting PC;
start = start addressof hash table;
index = pc & Oxfff;
hash_t bl _addr = start +i ndex;
while (1) {
reads a hash table entry from hash_t bl _addr ;
if (pc == addressdefined at hash_t bl _addr) gototrap_start_addr;
if (the entry is blank) break;
increase hash_t bl _addr;

}

return from trap;

The software stride prefetching handler is preceded by a prologue, shown in Figure 7
which looks up a hash table using the PC value foundin NTSR. If thereisavalid entry in the hash
table, the faulting addressqualifies for prefetching and the handler jumps to the code @rrespond

ing to the specific PC value. If it does nat, the handler terminates.

Figure 8. PC-specific Part of the Software Stride Prefetch Handler

pref et ch_addr ess isloaded from the context of main thread;
i = min(prefetch count, cdculated stride count);

do{
prefetch_address = prefetch_address+ stride distance
isaie prefetch from pr ef et ch_addr ess;

} while(--i > 0);

return from trap;

The adions taken by the trap handler depends on the PC of the faulting instruction. The

part of the trap hander code that is PC-specificis hownin Figure 8. The compil er generates code

to compute the prefetch addresses based onthe iteration court and the faulting address obtained

from the main thread context.

We have simply ignared the synchronization problem between the main thread and the

prefetching rencthread. It is therefore possible that some of the prefetches are fetching useless

blocks, bu this does not aff ect program correctness The hardware simply ignares prefetches that

cause protection traps. The number of prefetches is most of the time given bythe default prefetch

court, as in sequentia prefetch, except towards the end d the loop where the number of

prefetches depends on the number of iterations left.
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4.3. | deal prefetchers

The purpose of the simulations is to evaluate the eff ectivenessof nanotraps in emulating
prefetching hardware. As areference point, we dso model ided hardware prefetchers, which gen-
erate exactly the same prefetches as the software prefetcher in the second-level cache, bu with no
overhead. This can be adieved by executing the software handers at the time of a cache miss
outside of the simulator. Thus at the occurrence of a cache miss the ideal prefetcher generates the
addresses to prefetch and inserts them in a prefetch address queue in zero simulation time. The

seandlevel cache then executes the prefetches one by ore, inside the simulator.

5. Evaluation Methodology

We have run a detail ed smulation model to experiment with asssted exeaution. The sim-
ulation environment is based ontwo separate simulators working together in a tightly-cougded
fashion. A trace-driven simulator, called super scal ar, implements a superscalar processor
with suppat for assisted exeaution. It isdriven by an execution-driven Sparc procesor simulator,
caled CacheM r e- 2 [1], which generates decoded instruction streams for main thread and ren-
othreads to super scal ar. Super scal ar sends requests for instructions to CacheM r e- 2
with instruction court and thread identifier in the instruction fetch stage. Then, CacheM r e- 2
executes the given thread bythe given number of instructions and returns the decded instructions

tosuperscal ar.

5.1. Benchmarks

We have run seven benchmarks from the SPEC95 kenchmark suite [22]: two SPECint95
applicaions (go, conpress) and five SPECfp95 applications (swi m appl u, su2cor,
ngri d, waveb). The code used for stride prefetching is generated by the Napai compil er devel-
oped at Halmstad University by Jonas Skeppstedt’s group [15]. This compiler produces highly
optimized code [20]. Each benchmark binary has a prologue and PC-spedfic trap handers for
stride prefetching, as well as a separate file for the hash table. The hash table contains 4096
entries but, in most cases, orly abou 10% of the entries are defined and corflicts are rare. The
same benchmark binaries are used for the different prefetching strategies. For stride prefetching
schemes, the content of the hash table isread into the data aeg and the aldressof the prologuweis

14



saved in NHAR (Figure 4) at the beginning d the simulation.

We simulate 100 million instructions of each benchmark (not courting rencothread code).
The cadhe sizes are scaled differently for each benchmark. They are given in Table 2.

Table 2: Data Cache Sizes

applu compress go mgrid su2cor swim waveb
FLC Size 4KB 16 KB 16 KB 4KB 2KB 2KB 4KB
SLC Size 32KB 64 KB 64 KB 32KB 8 KB 8 KB 16 KB

For each benchmark and each memory latency, we report the results for the best prefetch

court, which is snown in each figure.

5.2. Performance Metrics

The execution time is the main measure of performance. However, to gain better insight
into the behavior of each benchmark, we also measure memory blocking time, degree of bad

prefetch, nanotrap resporse time, nancthread activity, and thread concurrency.

The memory blocking time is the part of the execution time in which noinstruction d the
main thread makes progress in the pipelines. The degree of bad pefetches is the fraction o
prefetched blocksthat are never accessed before they are replaced o before the end d the smula-
tion.Nanarap resporse time is the average time between a primary cache missandthe sending o
thefirst prefetch to the secondlevel cache. Nanathread ectivity isthe ratio between the number of
nanathread instructions and the number of main thread instructions executed. Thread concurrency
indicates the number of threals runnng concurrently. In every processor cycle, we record the
number of threads active in the procesor. At the end d the simulation, we compute the fradion

of cyclesthat agiven nunber of threads were adive.

6. Smulation Results
6.1. Sequential Prefetch

Figure 9 compares g/stems with software andideal sequential prefetching to the same sys-
tem with no pefetching. It appeas that software sequential prefetch is as effedive & the ideal

hardware prefetchers. We first comment on the dfediveness of prefetching onthe benchmark
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case for swi m Because swi nis data missrate is extremely low (see Table 3), its performance
improves less than 26 with prefetching. Two benchmarks, appl u and ngri d, show larger
improvements due to prefetching. Even with a latency as low as 50 pclocks, the execution times
improves by upto 13% in the simulations with prefetching. Other programs $iow moderate

improvements. Similar trends were also olserved and reported in [2].

The quality of the prefetches affeds the performance directly. Table 3 and Table 4 show
the missrates and the degree of bad prefetches for the latency of 50 pclocks. The missrates of
ided and software prefetching dffer because the timing d the prefetchesis different. Forngri d
the missrate with prefetchingis cut down to lessthan 20% and the degree of bad prefetchesisrel-
atively low (54.63%0) considering the prefetch court of 16. Even thoudh sequential prefetching
does not use goplication-specific stride information when deciding the blocks to prefetch, it is
most effective for ngri d.

Sequential prefetching reduces exeaution time 1) by cutting the number of primary miss
and 2 by turning some primary misss into secondary misses. As shown in Figure 10, in the case
of waveb5, the number of primary datamissesis sarply reduced uncer prefetching.

Figure 10. Normalized Primary Miss and Secondary Miss Counts (L atency=50pclocks)
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For swi mandwave5, the number of secondary misses increases under prefetch whil e the
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number of primary misses decreases. However, secondary misses do nd affect performance
much. Most of the time, the average penalty seen by secondary misss in prefetching cases is
amost equal to the memory latency, which implies that most secondary cache misses tend to hap-
pen right after a primary cadhe misson the same block. Accesses causing secondary misses must
still wait in the address queue urtil the preceding primary missretires and would have to wait
even if they were hits. Thisexplainswhy Appl u with software prefetching experiences more sec-
ondary cache misses than with ideal prefetching bu the executiontimeis not affected.

Table 3: Miss Rate (primary + secondary) (%) (L atency = 50 pclocks)

swim su2cor compress applu go mgrid waveb
No Prefetch 0.28 3.29 3.66 3.55 213 4.29 2.70
Ideal Prefetch 0.36 321 3.25 1.96 1.56 0.65 2.22
SW Prefetch 0.40 2.97 3.50 2.61 1.56 0.66 2.38

Table 4: Degree of Bad Prefetches (%) (Latency = 50 pclocks)

swim su2cor compress applu go mgrid waves

Bad Prefetch 75.87 79.60 79.16 40.87 57.60 $4.63 79.04

These observations agree with previously pulished resultsin dff erent environments. It is
known, for example, that the execution time of ILP processorsis not that sensiti ve to the penalty
experienced byindividual memory aacessinstructions [19]. Similarly, in [16] software-controlled
prefetching[14] is $rown to be lesseffective in reducing the memory blocking comporent of exe-

cutiontime than in traditional processor.

6.2. Nanothread Activity

The nancthread adivity is displayed in Table 5. This adivity is quite low and we believe
that nanathreads could efficiently implement much more complex mechanisms than sequential
prefetching. Nanothreads work harder in favor of su2cor because most cache misss in

su2cor are primary misses (Figure 10) andits missrateis highas shown in Table 3.

Table5: Nanothread Activity (%)

swim su2cor compress applu go mgrid waveb

Activity 0.67 9.11 211 3.87 198 5.99 3.96
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Table 6: Thread Concurrency (%)

swim su2cor compress applu go mgrid waveb

1 thread 95.59573 | 79.30009 | 92.72737 | 89.96152 | 91.65257 | 92.77511 | 88.23303

2 threads 3.09828 | 16.17952 | 3.65240 7.49005 7.96112 3.60884 534133

3threads 0.56539 | 442414 | 277154 | 252565 | 0.29383 | 285355 | 4.92720

4 threads 0.66068 | 0.07493 | 060405 | 002088 | 0.04541 | 0.39372 135182

5 threads 0.07615 0.00905 0.24452 0.00119 0.02178 0.16088 0.12832

6 threads 0.00199 0.00243 0.00004 0.00008 0.01537 0.05362 0.01186

7 threads 0.00112 0.00039 0.00004 0.00027 0.00921 0.06212 0.00377

8 threads 0.00066 0.00045 0.00005 0.00036 0.00071 0.09215 0.00266

Nancthreads compete with the main thread in the instruction fetch scheduler and the
ingtruction issue scheduler, and cause structural hazards. However Figure 9 comparing the execu-
tiontimes of nanothread-based prefetching and ideal prefetching shows that these conflictsdo nd
slow down the main thread significantly, even in the ase of su2cor . Thereasonis that most of
the time the main thread runs aone or concurrently with a few nancthreads. Table 6 shows the
thread concurrency. i thread means that the main thread plus (i -1) nancthreads are active. We
observe that the time during which less than three nancthreads are working with the main thread
covers 99% of the total executiontime, and that the main thread runs alone more than 8% of the
time. Four nano-PC would have been sufficient to suppat sequential prefetchingin this architec-
ture.

Table 7: Latency in pclocksuntil the First Prefetch (M emory L atency=50 pclocks).

swim su2cor compress applu go mgrid waves
Ideal Prefetch 4.00 4.03 4.04 4.34 4.06 7.23 4.83
SW Prefetch 4551 35.88 21.55 56.93 37.02 47.51 52.73

Table 7 shows the nanotrap resporse time. The latency between the primary miss and the
first prefetch request in the ideal case is not affected drectly by procesor activity because the
prefetches are triggered and executed in the cade controller. The only delay in this case is the
gueueing timein the prefetch queue and passble badkup d PMAQ.

By contrast, prefetching nanothreads must first get throughthe instruction gueues. If any

instruction queue is full at the occurrence of a nanatrap, the instruction fetch stage stalls and the
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nancthread is also delayed. Hence, longer memory access latencies further delay the response

time of nancthreads. This delay may have some effeds onthe executiontimes

6.3. Stride Prefetch

The speedup dwe to prefetching is dependent uponthe dficiency of the prefetching algo-
rithm. Table 8 shows the mmparison between four different prefetch configurations: no prefetch-
ing, idea stride prefetching, software stride prefetching and software sequential prefetching for
the case of appl u. When applicable, the numbersin parenthesis are relative to the correspondng
value for the system with no pefetch, except for the memory blocking time, which is relative to

the executiontime of the system with no pefetch.

The nanothread resporse times are 194.4 and 237.9pclocks for sequential and stride
prefetching respectively. The main reason why the resporse times are so longis that, most of the
time, instruction queues are saturated, especiadly the aldress queue. In appl u, the average
address queue occupancy is abou 11 entries out of the queue size of 12 entries throughou the
execution time. This implies that the addressqueue is very likely to be full when a cache miss
occurs, and the proces=or stalls. In this case, nancthread instructions can be fetched only after the
missng data returns from memory and the instruction retires to make room for other instructions.
The stride prefetching handler executes much more instructions than the sequential prefetch han-
dler, which explains the difference in prefetch latencies of these two approaches.

Table 8: Comparison of Stride and Sequential Prefetch (for appl u, Latency=200 pclocks)

appl u No Prefetch Ideal Stride Software Stride Software Sequential
Exeaution time 145335277 (100.00%)| 119257176 (82.06%)| 119951074 (82.53%)| 121273373 (83.44%)
Memory blockingtime | 69345696 (47.71%)| 43201454 (29.73%)| 43870084 (30.19%)| 45068436 (31.01%)
Missrate 3.55 (100.00%) 219 (61.69%) 221 (64.51%) 2.68 (75.49%)
Primary missrate 2.14 (100.00%0) 0.93 (43.46%) 1.04 (48.60%) 0.82 (38.32%)
Degree of bad prefetch (%) (NA) 18.3 19.3 40.3
Issue rate 0.688 (100.00%) 0.839 (121.95%) 0.834 (121.22%) 0.825 (119.91%)
Instruction dependency 7.559 (100.00%) 6.827 (90.32%) 6.739 (89,15%) 6.819 (90.21%)
Nanothreal activity. (%) (NA) (NA) 7.941 3873
Nanothread response time (NA) (NA) 237.9 194.4

Amongall the benchmarks appl u isthe one for which stride prefetching works best. As
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indicated by the missrate and the degree of bad prefetches, stride prefetching is more accurate
than sequentia prefetching. Althoughthe stride prefetching hander executes more instructions
than the sequential prefetching handler, this added work is mostly hidden bythe highly concurrent

execution d instructions in the processor [16].

7. Related Work

Thework previously puldished andrelevant to this paper fallsin three caéegories. memory

informing operations, prefetching and simultaneous multithreading.

Horowitz, et al. [8] propased memory informing operations to help software observe the
memory referencing kehavior by trapping on selected first-level cache misses and by taking
actions when nealed in the trap hander. Throughsimulations, they showed that the overhead of
the memory informing trap handler is less than 40% of the total exeaution. One of the major rea-
sons that memory informing operations are penali zed bythis overheal is that the processor model
suppatsonly ore single thread at atime. Moreover, traps are expensive. In some sense we could
say that nanatraps implementing sequential and stride prefetching are extensions of the memory
informing operations to ILP processors with simultaneous multithreading. However, nanctraps
and ranothreads are more general since they are not restricted to deal with events caused by the

memory system.

Skeppstedt and Dubds [20] exploited the idea of memory informing operations in atradi-
tional pipelined processor exeauting a single thread at atime to propose ahybrid software/hard-
ware stride prefetching scheme in multi processors. Second-level cache misses trigger traps which
either program and start an autonamous hardware stride prefetcher or isaue the stride prefetches.
The trap hand ers run whil e the processor waits on memory access misses in a sequentialy con-
sistent system, which is not passblein an ILP procesor. In this paper we have adopted the same
stride prefetching algorithm in nanothreads. With asssted execution, the scheme becomes feasi-

ble and efficient in ILP processors.

Dahlgren and Stenstrom [4] compared sequentia and stride prefetching for shared-mem-
ory multiprocessors. They showed that sequentia prefetching ouperforms stride prefetching for
many applications, because most strides are shorter than the block sizeif the cahe block islarge

enough and bkecause sequential prefetching can exploit the locality of misses with nonstride
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accesses. Becuse sequential prefetching raises the traffic in the memory system stride prefetch-
ing may be superior to sequentia prefetching uncer limited bandwidth. In a uniprocessor environ-
ment, where memory bandwidth issues are different, we have also olserved that stride
prefetching is more accurate but is nat always as goodas squentia prefetch. In the best case for
stride prefetching, the case of appl u, the software sequentia prefetching is gill very competi-

tive, as fiown in Table 8. However we did nd simulate memory conflicts.

In [2], Charney and Puzak show instruction and cata cache missrates for the SPEC 95
benchmark suite on atraditional processor and evaluate two prefetching algorithms: next-sequen-
tial prefetching (NSP) and shadow-directory prefetching (SDP). The former approad isvery sim-
ilar to ou sequentia prefetch algorithm. Since they skip the first billion instructions in the
program and simulated the next 500 million instructions, a direct comparison of their results with
oursis difficult. However, some observations are consistent with ous. They show that prefetch-
ingislesseffective for conpr ess and go because these goplications lack anext-sequential miss
pattern. We dso olserved that the performance of these programs is worse as the prefetch count
increases. The degree of bad prefetch of conpr ess is the highest among all the benchmarks
even with a small prefetch court. On the other hand, mgr i d and appl u do very well under the
NSP scheme as well asin nanothread based sequentia prefetch.

Ranganathan, et al. [16] show that software-controlled non-binding prefetching can be
very effective for some applications in ILP processors. The overhead of prefetch instructions is
lessthan in traditional procesors because the execution of prefetch instructions is overlapped
with other computation a memory accesses. Instead of adding prefetch instructions in the pro-
grams, we rely on nanatraps, which generate prefetches on cache misses only, tracking the
dynamic application behavior. The dfect of data misses in ou-of-order superscalar procesors
was also studied by André Seznec and Fabien Lloansi [19].

The original goal of multithreaded procesors was to eliminate processor blocking time
due to program dependencies, which leads to a vast waste of hardware resources. Simultaneous
multithreaded (SMT) processors were introduced by Tullsen et al. in[23]. SMT relies onthe abil -
ity of parallelizing compiler to produce enoughthreads to exploit the procesor resources and on
the degree of parallelism embedded in application programs [5] [24] [6]. Pedro Marcuello and
Antonio Gonzdez's multithreaded processor exploits the parallelism foundin highly predictable
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branches such asloops withou relying an special instructions or parallelizing compilers[12]. The
asgsted execution model is based onthe general SMT model in that multiple threads runs concur-
rently by sharing the given processor resources but the parall elism comes from work added to the

computation.

8. Conclusions and Future Research

Asgsted exeaution is a new execution paradigm. Asgstant threads called nanothreals are
attached to appli cation threals. In the context of 1L P processors and simultaneous multithreading,
these nanothreads can bocst the exeaution speed of the main thread while their instruction over-
head is hidden by the @ncurrent exeaution d instructions in the processor. Asdsted exeaution
generalizes previous proposals sich as memory informing operations and hylrid software/hard-

ware prefetching strategies and provides a framework in which they can be more efficient.

Static, compil e-time execution mechanisms are often preferred because dynamic medha-
nisms require alditional work, which can easily offset their potential gains. We believe that
asgsted execution dfers brand rew oppatunities for dynamic mechanisms. In a multiprocessor
environment, nanotraps can be used to execute mherence protocol handers [10]. By monitoring
and predicting data and instruction accesspatterns based oncompil e-time knowledge nancthread
may help reduce the st of condtional branches and d data accesspenaltiesin irregular applica-
tions. Systems with adaptive hardware such as adaptive protocols, variable ade block size, or
configurable interconnects may become feasible, since the overhead of monitoring and configur-
ing is hidden in nancthreads. Dynamic execution profiling and software reconfiguration can also
be dore dficiently with nanothreads; in this approach cdled adaptive executionin [18], profiling
information is gathered dyramically and is fedbad to the main thread to affect its execution by
selecting a different code segment. Finally, nancthreads could be used for other purposes than
enhancing performance, such as low-overheal orine diagnasis, and fault-tolerance by low-over-

head online fault detedion and hardware reconfiguration.

For the nancthread algorithms evaluated in this paper, synchronization was not a problem.
In general however efficient synchronizatiion mechanisms between nanothreads and main thread

must be designed and evaluated, in the light of more mmplex dynamic exeaution mechanisms.

Another problem nat addressed in this paper is the programming problem. Namely we
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need to creae aprogramming environment in which nanothreads can be developed and attached

to main threads. Whether a compiler can do this automaticdly is of course the main challenge.
Acknowledgment

This work was funded by the National Science Foundation undr Grant No. MIP-
9633542 We want to thank Mary Hall of the Information Science Institute and Rafad Saavedra
from the Computer Science Department at U.S.C. for many lively discussons on the topic of
asgsted execution and for helping in shaping the main ideas in this paper. Also, Jonas Skeppstedt
from Halmstad University (Sweden) provided us with compiled code withou which this work

would have been impossible.

9. References

[1] M. Brorsoon, F. Dahlgren, H. Nilsson, and P. Stenstrom, “The CacheMire Test Bench - A
Flexible and Effective Approach for Simulation o Multiprocessors,” Proceedings of 26th Annud
Smulation Sympasium, pp. 4149, March 1993.

[2] M. J. Charney and T. R. Puz&k, “Prefetching and memory system behavior of the SPEC95
benchmark suite,” Performance andysisanditsimpact on design, Vol. 41,No. 3, 199

[3] T-F Chen and JL Baer, “A Performance Study d Software and Hardware Prefetching
Schemes,” Proceedings of the 21th Internationa Symposium on Computer Architedure, pp. 223
232,May 1994.

[4] F. Dahlgren and P. Stenstrém, “Evaluation o Hardware-Based Stride and Sequentid
Prefetching in Shared-Memory Multiprocesors,” IEEE Transactions on Parallel andDistributed
Systems, Vol. 7,No. 4, pp. 3858398,April 1996.

[5] S. J. Eggers, et d., “ Smultaneous Multithreading: A Platform for Next-generation Processors,”
IEEEMicro, pp. 1218, September/October 1997.

[6] B. Goossens, “Tipi: The Threads Processor,” MTEAC ‘98 Conference, 1998.

[7] L. Gwenlapp,“Dansoft Develops VLIW Design,” Microprocessor Report, Vol. 11,No. 2,Feb.
17,1997, ppl8-22.

[8] M. Horowitz, M. Martongsi, T. C. Mowry, and M. D. Smith, “Informing Memory Operations:
Providing Memory Performance Feedback in Modern Processors,” Proceedings of the 23rd
Annud Internationd Symposium on Computer Architecture, pp. 2®-270,May 1996.

[9] D. Kroft, ”Lockup-free Instruction Fetch/Prefetch Cache Organizaion,” Proc. of the 8th Int.
Symposium on Computer Architedure, pp. 8187, May 1981

[10] J. Kuskin et a. The Standford FLASH Multi processor. Proc. of the 21st Annud Internationd
Sympaosium on Computer Architedure, pages 302313, April 1994.

[11] C. Luk and T.C. Mowry, “Compiler-Based Prefetching for Recursive Data Structures,”
Proceedings of ASPLOS 96, Oct. 1996.

24



[12] P. Marcuello and A. Gonzdez, “ Control and Data Dependence Speaulation in Multit hreaded
Procesoors,” MTEAC ‘98 Conference, 1998.

[13] MIPS Technologies Inc., “R10000Microprocessor User's Manual-Version 2.07 December
1996.

[14] T. Mowry. Tolerating Latency Through Sdtware-Controlled Data Prefetching. PhD thesis,
Stanford University, Computer Systems Laboratory, Stanford, CA, March 1996.

[15] “The Napai Compiler Project” Halmstad University, Sweden, http://www.hh se/staff/jonas/
napai/i ndex.html.

[16] P. Ranganathan, V. S. Pai, H. Abdel-Shafi, and S. V. Adve. “The Interadion d Software
Prefetching with ILP Focesrs in Shared-Memory System,” Proceedings of the 24th Annud
Internationd Sympasium on Computer Architecture, June 1997.

[17] SK. Reinhardt, JR. Larus, and D.A. Wood. Tempest and Typhoon User-Level Shared
Memory. Proc. of the 21st Annud International Symposiumon Computer Architedure, pages 325
337,April 1994,

[18] R.H. Saavedra and D. Park, “Improving the Effectiveness of Software Prefetching with
Adaptive Execution,* 1996 Parallel Architecture and Compilation Techniques (PACT 96), Oct.
1996.

[19] A. Seznec andF. Lloansi, “Abou Effedive Cache Miss Penalty on Out-Of-Order Superscdar
Procesors,” TR IRISA-970 November 1995.

[20] J. Skeppstedt and M. Dubas, “Hybrid Compiler/Hardware Prefetching for Multiprocesors
Using Low-Overhead Cadche Miss Traps,” Proc. of the 1997 Int. Conf. on Parallel Processng,
pp.298305.

[21] P. Song, “Multithreading Comes of Age,” Microprocessor Report, Vol. 11, No. 9,Jul. 14,
1997, pp. 13418.

[22] The SPEC Corporation, The SPEC95 Benchmark Sute, 1995.

[23] D. M. Tullsen, S. J. Eggers, andH. M. Levy, “ Simultaneous Multithreading: Maximizing On-
Chip Paralelism,” Proceedings of the 22rd Annud Internationd Symposium on Computer
Architedure, pp. 392403, June 1995.

[24] D. M. Tullsen, et a., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” Proceedings of the 23rd Annud Internationd
Sympasium on Computer Architedure, pp.191202, May 1996

25



