
Early Experience with a Commercial Hardware Transactional
Memory Implementation

Dave Dice

Sun Microsystems Laboratories

dave.dice@sun.com

Yossi Lev

Brown University and
Sun Microsystems Laboratories

levyossi@cs.brown.edu

Mark Moir and Dan Nussbaum

Sun Microsystems Laboratories

{mark.moir,dan.nussbam}@sun.com

Abstract
We report on our experience with the hardware transactional
memory (HTM) feature of two pre-production revisions of
a new commercial multicore processor. Our experience in-
cludes a number of promising results using HTM to improve
performance in a variety of contexts, and also identifies some
ways in which the feature could be improved to make it even
better. We give detailed accounts of our experiences, sharing
techniques we used to achieve the results we have, as well as
describing challenges we faced in doing so.

Categories and Subject Descriptors C.1.4 [Hardware]:
Parallel Architectures; D.1.3 [Software]: Concurrent
Programming—Parallel Programming

General Terms Design, Experimentation, Performance.

Keywords Hardware, transactional memory, synchroniza-
tion.

1. Introduction
The “multicore revoluton” occuring in the computing indus-
try brings many benefits in reducing costs of power, cool-
ing, administration, and machine room real estate, but it also
brings some unprecedented challenges. Developers can no
longer hide the cost of new features by relying on next year’s
processors to run their single-threaded code twice as fast.
Instead, for an application to take advantage of advances in
technology, it must be able to effectively exploit more cores
as they become available. This is often surprisingly difficult.

A key factor is the difficulty of reasoning about many
things happening at the same time. The traditional approach
to dealing with this problem is to use locks to make certain
critical sections of code execute without interference from

Copyright is held by Sun Microsystems, Inc.

ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
AC M 978-1-60558-406-5/09/03.

other cores, but this approach entails difficult tradeoffs: sim-
ple approaches quickly develop bottlenecks that prevent the
application from taking advantage of additional cores, while
more complex ones are error prone and difficult to under-
stand, maintain, and extend.

Transactional Memory (TM) (9) has received a great deal
of research attention in recent years as a promising tech-
nology for alleviating the difficulty of writing multithreaded
code that is scalable, efficient, and correct. The essence of
TM is the ability to ensure that multiple memory accesses
can be done “atomically”, so that the programmer does not
have to think about these acceses being interleaved with
those of another thread. Using such an approach, the pro-
grammer specifies what should be done atomically, leaving
the system to determine how this is achieved. This relieves
the programmer of the burden of worrying about locking
conventions, deadlock, etc.

TM-related techniques have been proposed in many con-
texts, ranging from the original “bounded” HTM of Herlihy
and Moss (9), to a number of “unbounded” HTM proposals
(1; 21; 23), numerous software transactional memory (STM)
approaches (7; 8; 15), and some approaches that combine
hardware and software in various ways (4; 22; 12; 2).

Proposals for unbounded HTM implementations are in-
complete and too complex and risky to appear in commercial
processors in the near future. Substantial progress has been
made in improving STM designs in recent years, and robust
and practical systems are emerging. But implementing TM
in software entails significant overhead, and there is growing
interest in hardware support to improve its performance.

If programmed directly, bounded HTM implementations
impose unreasonable constraints on programmers, who must
ensure that a transaction does not access more than a fixed,
architecture-specific number of cache lines. However, it has
been shown (4; 13; 17) that such implementations can be
useful nonetheless by combining them with software that
can exploit HTM to improve performance, but does not
depend on any particular hardware transaction succeeding.

Because such techniques do not depend on any particu-
lar transaction succeeding, they can be used with best effort

157

HTM, which differs from bounded HTM in that it may com-
mit transactions that are much larger than a bounded HTM
feature would, but it is also not required to guarantee to com-
mit all transactions up to a certain size. This added flexibility
considerably simplifies the task of integrating HTM into a
commercial processor, because the processor can respond to
difficult events and conditions by simply aborting the trans-
action. Furthermore, because the software is configured to
take advantage of whichever HTM transactons that commit
successfully, it can automatically adapt to take advantage of
future improvements to the HTM feature.

Sun’s architects (3) have built a multicore processor—
code named Rock—that supports a form of best-effort hard-
ware transactional memory. This paper reports on our re-
cent experience experimenting with this HTM feature. The
work described in this paper involved two pre-production
revisions of the Rock chip: the first, which we’ll call R1,
was the first revision that included the HTM feature and the
second—R2–was the subsequent revision, which included
changes made in response to our feedback on the first.

In each case, our first priority was to test that the HTM
feature worked as expected and gave correct results. We de-
veloped some specific tests to evaluate the functionality, and
we have also built consistency checks into all of the bench-
marks discussed in this paper. In addition to our testing,
Rock’s HTM feature has been tested using a variety of tools
that generate random transactions and test for correct behav-
ior, for example TSOTool (14). This extensive testing has not
revealed any correctness problems.

Next, we experimented with using the HTM feature. We
used the benchmarks from our work with the ATMTP sim-
ulator (5), and added a couple more, including a real appli-
cation. As with ATMTP, we achieved some encouraging re-
sults but also encountered some challenges. One set of chal-
lenges with R1 was that Rock provided identical feedback
about why a transaction failed in different situations that re-
quired different responses. Based on our feedback, the Rock
architects refined feedback about transaction failures in the
second revision R2. Our work with R2 began by repeating
the evaluation we had done with R1 and examining these
changes, which were found to behave as expected.

Because of the timing of our work relative to the various
paper deadlines, our work with the second revision is less
mature than our work with the first. In particular, our work
with R2 was with an early-run chip, which was not rated for
full-speed execution. We do not expect our results to change
qualitatively when we are able to run on a full-speed chip.
There are also a number of areas where we have not yet had
time to investigate as fully as we would like.

Roadmap We begin with some background about Rock in
Section 2. Then, in Section 3 we describe the tests we used
to determine whether transactions succeed and fail in the
cases we expect, and also what feedback Rock gives when a

transaction fails. In Sections 4 through 8, we present results
from our experiments using HTM in a number of contexts.

We use HTM to implement simple operations such as
incrementing a counter and a double compare-and-swap
(DCAS); we then use the DCAS to reimplement some com-
ponents of the JavaTM concurrency libraries. Next, we ex-
periment with transactional hash tables and red-black trees
using a compiler and library supporting Hybrid TM (HyTM)
(4) and Phased TM (PhTM) (13); these use HTM to boost
performance, but transparently revert to software if unsuc-
cessful. We then experiment with Transactional Lock Elision
(TLE), using HTM to execute lock-based critical sections in
parallel if they do not conflict; we have experimented with
this technique through simple wrappers in C and C++ pro-
grams, as well as with standard lock-based Java code using
a modified JVM. In particular, in Section 8, we report on our
success using Rock’s HTM feature to accelerate a parallel
Minimum Spanning Forest algorithm due to Kang and Bader
(10). Discussion and conclusions are in Sections 9 and 10.

2. Background
Rock (3) is a multicore SPARC R© processor that uses ag-
gressive speculation to provide high single-thread perfor-
mance in addition to high system throughput. For example,
on load misses, Rock runs ahead speculatively in order to
issue subsequent memory requests early.

Speculation is enabled by a checkpoint architecture: Be-
fore speculating, Rock checkpoints the architectural state
of the processor. While speculating, Rock ensures that ef-
fects of the speculative execution are not observed by other
threads (for example, speculative stores are gated in a store
buffer until the stores can be safely committed to memory).
The hardware can revert back to the previous checkpoint
and re-execute from there—perhaps in a more conservative
mode—if the speculation turns out to have taken a wrong
path, if some hardware resource is exhausted, or if an excep-
tion or other uncommon event occurs during speculation.

Rock uses these same mechanisms to implement a best-
effort HTM feature: it provides new instructions that allow
user code to specify when to begin and end speculation, and
ensures that the section of code between these instructions
executes atomically and in its entirety, or not at all.

The new instructions are called chkpt and commit. The
chkpt instruction provides a pc-relative fail address; if the
transaction started by the instruction aborts for any reason,
control resumes at this fail address, and any instructions ex-
ecuted since the chkpt instruction do not take effect. Aborts
can be explicitly caused by software, which is important for
many of the uses described in this paper. By convention we
use the following unconditional trap instruction for this pur-
pose: ta %xcc, %g0 + 15.

When a transaction aborts, feedback about the cause of
the abort is provided in the CPS (Checkpoint Status) register,
which has the same bits as described by Moir et al. (16), plus

158

three additional bits that are not supported by their simulator.
The full set of CPS bits is shown in Table 1, along with
examples of reasons the bits might be set. We discuss the
CPS register in more detail in the next section.

Each Rock chip has 16 cores, each capable of executing
two threads, for a total of 32 threads in the default Scout
Execution (SE) mode (3). It can also be configured to ded-
icate the resources of both hardware threads in a core to a
single software thread. This allows a more aggressive form
of speculation, called Simultaneous Scout Execution (SSE),
in which one hardware thread can continue to fetch new in-
structions while the other replays instructions that have been
deferred while waiting for a high-latency event such as a
cache miss to be resolved. (Rock has a “deferred queue”
in which speculatively executed instructions that depend on
loads that miss in the cache are held pending the cache fill; if
the number of deferred instructions exceeds the size of this
queue, the transaction fails.) In addition to providing more
parallelism, SSE mode also allows some resources of the two
hardware threads to be combined into one larger resource.
For example, the store buffer accommodates up to 16 stores
in SE mode, but this is increased to 32 in SSE mode.

All data presented in this paper is taken on a single-chip
Rock system running in SSE mode; we have briefly explored
SE mode and we discuss preliminary observations as appro-
priate. We have not yet had an opportunity to experiment
with a multi-chip system, but we hope to do so soon.

3. Examining the CPS register
Our cpstest is designed to confirm our understanding of
the circumstances under which transactions abort, and the
feedback given by the CPS register when they do. It attempts
to execute various unsupported instructions in transactions,
as well as synthesizing conditions such as dereferencing a
null, invalid, or misaligned pointer, an infinite loop, various
trap and conditional trap instructions, etc. Rather than re-
porting all of the outcomes here, we plan to open source it,
so that others may examine it in detail. Below we mention
only a few observations of interest.

First, it is important to understand that a failing transac-
tion can set multiple bits in the CPS register, and furthermore
that some bits can be set for any of several reasons; Table 1
lists one example reason for each bit, and is not intended to
be exhaustive. As part of our evaluation of R1, we worked
with the Rock architects to compile such an exhaustive list,
and together with output from cpstest, we identified sev-
eral cases in which different failure reasons requiring dif-
ferent responses resulted in identical feedback in the CPS
register, making it impossible to construct intelligent soft-
ware for reacting to transaction failures. As a result, changes
were made for R2 to disambiguate such cases. The observa-
tions below are all current as of R2, and we do not anticipate
more changes at this time.

save-restore Rock fails transactions that execute a save in-
struction and subsequently execute a restore instruc-
tion, setting CPS to 0x8 = INST. This pattern is com-
monly associated with function calls; we discuss this is-
sue further in Sections 6 and 7.

tlb misses To test the effect of DTLB misses on transac-
tions, we re-mmap the memory to be accessed by a trans-
action before executing it. This has the effect of remov-
ing any TLB mappings for that memory. When we load
from an address that has no TLB mapping, the transac-
tion fails with CPS set to 0x90 = LD—PREC. When we
store to such an address, it fails with CPS set to 0x100 =
ST. This is discussed further below. To test the effects of
ITLB misses on transactions, we copied code to mmaped
memory and then attempted to execute it within a trans-
action. When there was no ITLB mapping present, the
transaction failed setting CPS to 0x10 = PREC.

eviction This test performs a sequence of loads at cache-line
stride. The sequence is long enough that the loaded cache
lines cannot all reside in the L1 cache together, which
means these transactions can never succeed. We usually
observe CPS values of 0x80 = LD and 0x40 = SIZ. The
former value indicates that the transaction displaced a
transactionally marked cache line from the L1 cache. The
latter indicates that too many instructions were deferred
due to cache misses. This test also occasionally yields a
CPS value of 0x1 = EXOG. This happens for example if
a context switch happens after the transaction fails and
before the thread reads the CPS register.

cache set test This test performs loads to five different ad-
dresses that map to the same 4-way L1 cache set. Almost
all transactions in this test fail with CPS set to 0x80 = LD
(we discuss this further below). We also see occasional
instances of EXOG, as discussed above. More interest-
ingly, we also sometimes see the COH bit set in this test.
We were puzzled at first by this, as we did not under-
stand how a read-only, single-threaded test could fail due
to coherence. It turns out that the COH bit is set when
another thread displaces something from the L2 cache
that has been read by a transaction; this results in in-
validating a transactionally marked line in the L1 cache,
and hence the report of “coherence”. Even though there
were no other threads in the test, the operating system’s
idle loop running on a hardware strand that shares an L2
cache with the one executing the transaction does cause
such invalidations. We changed our test to run “spinner”
threads on all idle strands, and the rate of COH aborts in
this test dropped almost to zero.

overflow In this test, we performed stores to 33 different
cache lines. Because Rock transactions are limited by
the size of the store queue, which is 32 entries in the
configuration we report on, all such transactions fail.
They fail with CPS set to 0x100 = ST if there are no

159

Mask Name Description and example cause

0x001 EXOG Exogenous - Intervening code has run: cps register contents are invalid.
0x002 COH Coherence - Conflicting memory operation.
0x004 TCC Trap Instruction - A trap instruction evaluates to “taken”.
0x008 INST Unsupported Instruction - Instruction not supported inside transactions.
0x010 PREC Precise Exception - Execution generated a precise exception.
0x020 ASYNC Async - Received an asynchronous interrupt.
0x040 SIZ Size - Transaction write set exceeded the size of the store queue.
0x080 LD Load - Cache line in read set evicted by transaction.
0x100 ST Store - Data TLB miss on a store.
0x200 CTI Control transfer - Mispredicted branch.
0x400 FP Floating point - Divide instruction.
0x800 UCTI Unresolved control transfer - branch executed without resolving load on which it depends

Table 1. cps register: bit definitions and example failure reasons that set them.

TLB mappings (see above) and with CPS set to 0x140
= ST|SIZ if we “warm” the TLB first. A good way to
warm the TLB is to perform a “dummy” compare-and-
swap (CAS) to a memory locations on each page that
may be accessed by the transaction: we attempt to change
the location from zero to zero using CAS. This has the
effect of establishing a TLB mapping and making the
page writable, but without modifying the data.

coherence This test is similar to the overflow test above, ex-
cept that we perform only 16 stores, not 33, and therefore
the transactions do not fail due to overflowing the store
queue, which comprises two banks of 16 entries in the
test configuration. All threads store to the same set of lo-
cations. Single threaded, almost all transactions succeed,
with the usual smattering of EXOG failures. As we in-
crease the number of threads, of course all transactions
conflict with each other, and because we make no attempt
to back off before retrying in this test, the success rate is
very low by the time we have 16 threads. Almost all CPS
values are 0x2 = COH. The point of this test was to un-
derstand the behavior, not to make it better, so we did not
experiment with backoff or other mechanisms to improve
the success rate; we left this for the more realistic work-
loads discussed in the remainder of the paper.

3.1 Discussion

Even after R2 changes to disambiguate some failure cases, it
can be challenging in some cases to determine the reason for
transaction failure, and to decide how to react. For example,
if the ST bit (alone) is set, this may be because the address
for a store instruction is unavailable due to an outstanding
load miss, or because of a micro-TLB miss (see (3) for more
details of the Rock’s MMU).

In the first case, retrying may succeed because the cache
miss will be resolved. In the latter case, an MMU request is
generated by the failing transaction, so the transaction may
succeed if retried because a micro-TLB mapping is estab-

lished from higher levels of the MMU. However, if no map-
ping for the data in question is available in any level of the
MMU, the transaction will fail repeatedly unless software
can successfully warm the TLB, as described above.

Thus, the best strategy for a transaction that fails with
CPS value ST is to retry a small number of times, and then
retry again after performing TLB warmup if feasible in the
current context, and to give up otherwise. The optimal value
of the “small number” depends on the feasibility and cost of
performing TLB warmup in the given context.

One interesting bit in the CPS register is the UCTI bit,
which was added as a result of our evaluation of R1. We
found that in some cases we were seeing values in the CPS
register that indicated failure reasons we thought could not
occur in the transactions in question. We eventually realized
that it was possible for a transaction to misspeculate by exe-
cuting a branch that has been mispredicted before the load on
which the branch depends is resolved. As a result, software
would react to a failure reason that was in some sense in-
valid. For example, it might conclude that it must give up due
to executing an unsupported instruction when in fact it would
likely succeed if retried because the load on which the mis-
predicted branch depended would be resolved by then, so the
code with the unsupported instruction would not be executed
next time. Therefore, the UCTI bit was added to indicate
that a branch was executed when the load on which it de-
pends was not resolved. Software can then retry when it sees
UCTI set, hoping that either the transaction will succeed, or
at least that feedback about subsequent failures would not be
misleading due to misspeculation.

We discuss these and other challenges that have arisen
from certain causes of transaction failure and/or feedback
software receives about them throughout the paper. Design-
ers of future HTM features should bear in mind not only the
quality of feedback about reasons for transaction failure but
also how software can react to such failures and feedback.

160

4. Simple, static transactions
In this section, we briefly summarize our experience with
simple, static transactions; more details appear in (6). For
such transactions, the code and memory locations to be ac-
cessed are known in advance, and we can exploit this infor-
mation to make transactions highly likely to succeed. For ex-
ample, we can align transaction code to avoid ITLB misses
during the transaction. Similarly, we can warm the DTLB
outside the transaction as described in Section 3.

To date, we have experimented with a simple counter and
with a DCAS (double compare-and-swap) operation, which
generalizes the well known CAS operation to two locations.

For the counter, we compared CAS-based and HTM-
based implementations, each with and without backoff
(backing off in reaction to CAS failure in the former case,
and to the COH bit being set in the latter).

As expected for a highly contended, centralized data
structure, all methods showed some degradation in through-
put with increasing number of threads. All performed com-
parably, except the HTM version with no backoff, for which
degradation was so severe as to suggest livelock. This is
not surprising given Rock’s simple “requester wins” con-
flict resolution policy: requests for transactionally marked
cache lines are honored immediately, failing the transac-
tion. We have found simple software backoff mechanisms
to be effective to avoid this problem. Nonetheless we think
designers of future HTM features should consider whether
simple conflict resoluton policies that avoid failing transac-
tions as soon as a conflict arises might result in better and
more stable performance under contention.

We also used HTM-based DCAS operations to reimple-
ment two concurrent set implementations from the
java.util.concurrent library. Our results were fairly
similar to those achieved on the ATMTP simulator (5).
Briefly, the new algorithms match the performance of the
state-of-the-art, carefully hand-crafted implementations in
java.util.concurrent; see (6) for details. We believe
that this approach has strong potential to simplify and im-
prove Java libraries and other libraries.

5. Hash table
The simple hashtable experiment discussed in this section
was designed to allow us to evaluate various TM systems
under low and high contention. The hash table consists of
a large number (217) of buckets and our experimental test
harness allows us to restrict the range of keys inserted into
the table. With such a large table, we rarely encounter buck-
ets with multiple keys in them, so we can concentrate on the
common simple case. This test has been useful in evaluat-
ing the scalability of various STMs, and also supports some
interesting observations using Rock’s HTM.

The hashtable is implemented in C++, using a compiler
and library that can support HyTM (4) and PhTM (13), as
well as several STMs. Because the hashtable operations are

short and simple, we should be able to get them to succeed
as hardware transactions. Both HyTM and PhTM allow an
operation to be executed using a hardware transaction, but
can also use STM to complete an operation if it cannot suc-
ceed in a hardware transaction. All decisions about whether
to retry, back off, or switch to using STM are made by the
library and are transparent to the programmer, who only
writes simple C++ code for the hash table operations.

Figure 1 shows our results from experiments with 50% in-
serts/50% deletes, for key ranges of (a) 256 and (b) 128,000.
In each case, we prepopulate the hash table to contain about
half of the keys, and then measure the time taken for the
threads to complete 1,000,000 operations each, chosen at
random according to the specified operation distributions
and key ranges. An “unsuccessful” operation (insert of a
value already in the hash table, or delete of one not there)
does not modify memory; thus approximately 50% of oper-
ations modify memory in this experiment. In this and other
similar graphs, hytm and phtm refer to HyTM and PhTM
using our SkySTM algorithm (11) for the STM component,
and stm is SkySTM with no hardware support. We present
results as throughput in total operations per microsecond.

For both scenarios, we observe high hardware transaction
success rates for both HyTM and for PhTM (regardless of
which STM is used); in fact, almost all operations eventually
succeed as hardware transactions, and do not need to revert
to using the STM. Figure 1 shows that these methods clearly
outperform all software-only methods. For scenario (a), at 16
threads, the two PhTM variants outperform the single lock
implementation by a factor of about 54 and the state-of-the-
art TL2 STM by a factor of about 4.6. HyTM also does well
in this scenario, although it trails the PhTM variants by about
a factor of two.

Scenario (b) yields qualitatively similar results to sce-
nario (a), with HyTM and PhTM successfully outperforming
all software-only methods (except single threaded, as dis-
cussed below). In this case, the quantitative benefit over the
software-only methods is less—the two PhTM variants per-
forming “only” about 20 times better than a single lock and
about 2.4 times better than TL2 at 16 threads, with HyTM
trailing the PhTM variants by only a factor of 1.2 or so. This
is because the key range is large enough that the active part
of the hash table does not fit in the L1 cache, so all methods
suffer the cost of the resulting cache misses, which serves to
level the playing field to some extent. We also observed that,
with 100% lookup operations with a key range of 256, PhTM
outperforms the lock at 16 threads by a factor of about 85 and
TL2 by a factor of about 3.4, with HyTM trailing PhTM by
a factor of about 1.2 (data not shown).

Examining some of the statistics collected by the PhTM
library yielded some interesting observations that give some
insight into the reasons for transactions failing on Rock. For
example, with the 128,000 key range experiment (scenario
(b)), more than half of the hardware transactions are retries,

161

 0.1

 1

 10

 100

 1 2 3 4 5 6 8 10 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

HashTable Test: keyrange=256, 0% lookups

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

 0.1

 1

 10

 100

 1 2 3 4 5 6 8 10 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

HashTable Test: keyrange=128000, 0% lookups

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

(a) (b)

Figure 1. HashTable with 50% inserts, 50% deletes: (a) key range 256 (b) key range 128,000.

even for the single thread case (these retries explain why
the single lock outperforms HyTM and PhTM somewhat
in the single threaded case). In contrast, with the 256 key
range experiment (scenario (a)), only 0.02% of hardware
transactions are retries in the single thread case, and even
at 16 threads only 16% are retries.

Furthermore, the distribution of CPS values from failed
transactions in the 16 thread, 256 key range case is dom-
inated by COH while in the 128,000 key range case it is
dominated by ST and CTI. This makes sense because there
is more contention in the smaller key range case (resulting
in the CPS register being set to COH), and worse locality in
the larger one. Poor locality can cause transactions to fail for
a variety of reasons, including micro-DTLB mappings that
need to be reestablished (resulting in ST), and mispredicted
branches (resulting in CTI).

Finally, this experiment and the Red-Black Tree experi-
ment (see Section 6) highlighted the possibility of the code
in the fail-retry path interfering with subsequent retry at-
tempts. Issues with cache displacement, TLB displacement
and even modifications to branch-predictor state can arise,
wherein code in the fail-retry path interferes with subsequent
retries, sometimes repeatedly. Transaction failures caused by
these issues can be very difficult to diagnose, especially be-
cause adding code to record and analyze failure reasons can
change the behavior of the subsequent retries, resulting in a
severe probe effect. As discussed further in (6), the logic for
deciding whether to retry in hardware or fail to software was
heavily influenced by these issues, and we hope to improve
it further after understanding some remaining issues we have
not had time to resolve yet.

6. Red-Black Tree
Next, we report on experiments similar to those in the pre-
vious seciton, but using a red-black tree, which is consider-
ably more challenging than a simple hash table for several
reasons. First, transactions are longer and access more data,

and have more data dependencies. Second, when a red-black
tree becomes unbalanced, new insertion operations perform
“rotations” to rebalance it, and such rotations can occasion-
ally propagate all the way to the root, resulting in longer
transactions that perform more stores. Third, mispredicted
branches are much more likely when traversing a tree.

We used an iterative version of the red-black tree (5), so
as to avoid recursive function calls, which are likely to cause
transactions to fail in Rock. We experimented with various
key ranges, and various mixes of operations. In each experi-
ment, we prepopulate the tree to contain about half the keys
in the specified key range, and then measure the time re-
quired for all threads to perform 1,000,000 operations each
on the tree, according to the specified operation distribution;
we report results as throughput in total operations per mi-
crosecond. Figure 2(a) shows results for the “easy” case of
a small tree (128 keys) and 100% lookup operations. Fig-
ure 2(b) shows a more challenging case with a larger tree
(2048 keys), with 96% lookups, 2% inserts and 2% deletes.

The 100% lookup experiment on the small tree yields
excellent results, similar to those shown in the previous
section. For example, at 16 threads, PhTM outperforms the
single lock by a factor of more than 50. However, as we
go to larger trees and/or introduce even a small fraction of
operations that modify the tree, our results are significantly
less encouraging , as exemplified by the experiment shown in
Figure 2(b). While PhTM continues to outperform the single
lock in almost every case, in many cases it performs worse
than the TL2 STM system (7). A key design principle for
PhTM was to be able to compete with the best STM systems
in cases in which we are not able to effectively exploit HTM
transactions. Although we have not yet done it, it is trivial to
make PhTM stop attempting to use hardware transactions,
so in principle we should be able to get the benefit of the
hardware transactions when there is a benefit, suffering only
a negligible overhead when there is not. The challenge is in

162

 0.1

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

RedBlackTree: 100% reads, keyrange=[0,128)

 0.1

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

RedBlackTree: 96% reads, keyrange=[0,2048)

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

(a) (b)

Figure 2. Red-Black Tree. (a) 128 keys, 100% reads (b) 2048 keys, 96% reads, 2% inserts, 2% deletes.

deciding when to stop attempting hardware transactions, but
in extreme cases this is easy.

Before giving up on getting any benefit from HTM in
such cases, however, we want to understand the behavior
better, and explore whether better retry heuristics can help.

As discussed earlier, understanding the reasons for trans-
action failure can be somewhat challenging. Although the
mentioned CPS improvements have alleviated this problem
to some extent, it is still possible for different failure reasons
to set the same CPS values. Therefore, we are motivated to
think about different ways of analyzing and inferring rea-
sons for failures. Below we discuss an initial approach we
have taken to understanding our red-black tree data.

6.1 Analyzing Transacation Failures

Significant insight into the reason for a transacation failing
can be gained if we know what addresses are read and writ-
ten by it. We added a mechanism to the PhTM library that
allows the user to register a call-back function to be called
at the point that a software transaction attempts to commit;
furthermore, we configured the library to switch to a soft-
ware phase in which only the switching thread attempts a
software transaction. This gives us the ability to examine the
software transaction executed by a thread that has just failed
to execute the same operation as a hardware transaction.

We used this mechanism to collect the following infor-
mation about operations that failed to complete using hard-
ware transactions: Operation name (Get, Insert or Delete);
read set size (number of cache lines1); maximum number
of cache lines mapping to a single L1 cache set; write set
size (number of cache lines and number of words); number
of words in the write set that map to each bank of the store
queue; number of write upgrades (cache lines that were read
and then written); and number of stack writes.

1 In practice, we collected the number of ownership-records covering the
read-set. Since each cache-line maps to exactly one ownership-record, and
since the size of our ownership-table is very large, we believe that the two
are essentially the same.

We profiled single threaded PhTM runs with various tree
sizes and operation distributions. Furthermore, because the
sequence of operations is deterministic (we fixed the seed
for the pseudo random number generator used to choose op-
erations), we could also profile all operations using an STM-
only run, and use the results of the PhTM runs to eliminate
the ones that failed in hardware. This way, we can compare
characteristics of transactions that succeed in hardware to
those that don’t, and look for interesting differences that may
give clues about reasons for transaction failures.

Results of Analysis In addition to the experiments de-
scribed above, we also tried experiments with larger trees
(by increasing the key range), and found that many opera-
tions fail to complete using hardware transactions, even for
single threaded runs with 100% lookup operations. This does
not seem too surprising: the transactions read more locations
walking down a deeper tree, and thus have a higher chance
of failing to fit in the L1 cache.

We used the above-described tools to explore in more
depth, and we were surprised to find out that the problem
was not overflowing of L1 cache sets, nor exceeding the
store queue limitation. Even for a 24, 000 element tree, none
of the failed operations had a read-set that overflowed any
of the L1 cache sets (in fact, it was rare to see more than 2
loads hit the same 4-way cache set). Furthermore, none of
the transactions exceeded the store queue limitation. Putting
this information together with the CPS values of the failed
transactions, we concluded that most failures were because
too many instructions were deferred due to the high num-
ber of cache misses. Indeed, when we then increased the
number of times we attempt a hardware transaction before
switching to software, we found that we could significantly
decrease the number of such failing transactions, because the
additional retries served to bring needed data into the cache,
thereby reducing the need to defer instructions.

Even though we were able to get the hardware transac-
tions to commit by retrying more times, the additional re-

163

tries prevented us from achieving better performance than
using a software transaction. This suggests we are unlikely
to achieve significantly better performance using PhTM for
such large red-black trees. Future enhanced HTM imple-
mentations may be more successful. It is also interesting
to ponder whether different data structures might be more
amenable to acceleration with hardware transactions.

Next we explored experiments with larger fractions of
Insert and Delete operations. We profiled a run with 15%
Insert/15% Remove/70% Get operations on a 1, 024 ele-
ment tree. Most Insert and Remove operations eventually
succeeded in a hardware transaction, and none of those that
failed to software did so due to exceeding the store buffer
size. Indeed, when checking the failure ratio as a function of
the write-set size, we saw no strong correlation between the
size of the operation’s write-set and the failure ratio.

Putting this together with the CPS data, the most likely
explanations for these failures are stores that encounter
micro-DTLB misses or a store address that is dependent
on an outstanding load miss. Both of these reasons result
in a CPS value of ST, which is what we observed in most
cases. In ongoing work, we plan to add more features to our
profiling tools to help distinguish these cases.

7. TLE
In this section we report on our experience so far using TLE
to improve the performance and scalability of lock-based
code. The idea behind TLE is to use a hardware transaction
to execute a lock’s critical section, but without acquiring the
lock, so that critical sections can execute in parallel if they
do not have any data conflicts.

Rajwar and Goodman (19; 20) proposed an idea that is
closely related to TLE, which they called Speculative Lock
Elision (SLE). SLE has the advantage of being entirely trans-
parent to software, and thus has the potential to improve the
performance and scalability of unmodified legacy code. The
downside is that the hardware must decide when to use the
technique, introducing the risk that it will actually hurt per-
formance in some cases. Performing lock elision explicitly
in software is more flexible: we can use the technique selec-
tively, and we can use different policies and heuristics for
backoff and retry in different situations.

Although TLE does not share SLE’s advantage of being
transparent at the binary level, TLE can still be almost or
completely transparent to the programmer. Below we discuss
two ways in which we have tested TLE, one in which the
programmer replaces lock acquire and release calls with
macros, and one in which TLE is made entirely transparent
to Java programmers by implementing it in the JVM.

7.1 TLE with C++ STL vector

We repeated the experiment described in (5), which uses
simple macro wrappers to apply TLE to an unmodified STL
vector. This experiment uses a very simplistic policy for

deciding when to take the lock: it tries a transaction a fixed
number of times before acquiring the lock, and does not use
the CPS register to try to make better decisions.

To make a slightly more aggressive experiment, we
changed the increment:decrement:read ratio to be 20:20:60,
raher than the 10:10:80 used in (5). We also increased from
4 to 20 the number of retries before acquiring the lock be-
cause with higher numbers of threads the transactions would
fail several times, and would therefore prematurely decide to
take the lock. We have not yet conducted a detailed analysis
of the reasons for requiring more retries, but we expect to
find similar reasons as discussed in Section 5: cache misses
lead to transaction failures for various reasons on Rock, but
not on ATMTP; because the failed transaction issues a re-
quest for the missing cache line, it is likely to be in cache
on a subsequent retry. Even using the simplistic policy de-
scribed above, our results (Figure 3(a)) show excellent scal-
ability using TLE, in contrast to negative scalability without.

7.2 TLE in Java

A particularly interesting opportunity is to use TLE to im-
prove the scalability of existing code, for example by elid-
ing locks introduced by the synchronized keyword in the
Java programming language. This use of the TLE idea dif-
fers from the one described above in several ways.

First, we can be more ambitious in this context because
the JIT compiler can use run-time information to heuristi-
cally choose to elide locks for critical sections that seem
likely to benefit from doing so, and in cases in which lock
elision turns out to be ineffective, we can dynamically re-
vert to the original locking code. Furthermore, a TLE-aware
JIT compiler could take into account knowledge of the HTM
feature when deciding what code to emit, what optimizations
to apply, and what code to inline. However, our prototype
TLE-enabled JVM attempts TLE for every contended criti-
cal section, and the JIT compiler does not yet use knowledge
of the HTM feature to guide its decisions.

In contrast to the earlier prototype described in (5), our
TLE-aware JVM does make use of the CPS register to guide
decisions about whether to retry, or backoff and then retry,
or give up and acquire the original lock.

For our initial experiments with our modified JVM,
we chose two simple collection classes, Hashtable and
HashMap, from the java.util library. Both support key-
value mappings. Hashtable is synchronized; HashMap is
unsynchronized but can be made thread-safe by a wrapper
that performs appropriate locking.

As in our previous work (5), we experimented with a sim-
ple read-only benchmark using Hashtable (slightly modi-
fied to factor out a divide instruction that caused transac-
tions to fail) and HashMap. After initialization, all worker
threads repeatedly look up objects that are known to be in
the mapping. We have also conducted more ambitious tests
that include operations that modify the collection. Results

164

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

STLVector Test: initsiz=100, ctr-range=40

htm.oneLock
noTM.oneLock

htm.rwLock
noTM.rwLock

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/u

s)

threads

TLE with Hashtable in Java

0:10:0-locks
0:10:0-TLE
1:8:1-locks
1:8:1-TLE

2:6:2-locks
2:6:2-TLE

4:2:4-locks
4:2:4-TLE

(a) (b)

Figure 3. (a) TLE in C++ with STL vector (b) TLE in Java with Hashtable.

for Hashtable are shown in Figure 3; a curve labeled with
2-6-2 indicates 20% puts, 60% gets, and 20% removes.

With 100% get operations, TLE is highly successful,
and the throughput achieved scales well with the number
of threads. As we increase the proportion of operations that
modify the Hashtable, more transactions fail, the lock is
acquired more often, contention increases, and performance
diminishes. Nonetheless, even when only 20% of the opera-
tions are gets, TLE outperforms the lock everywhere except
the single threaded case. We hope to improve performance
under contention, for example by adaptively throttling con-
currency when contention arises.

We also conducted similar experiments for HashMap. As
before (5), we found that HashMap performed similarly to
Hashtable in the read-only test. When we introduced op-
erations that modify the collection, however, while we still
achieve some performance improvement over the lock, so far
our results are not as good as for Hashtable. We have made
some interesting observations in this regard.

We observed good performance with HashMap compara-
ble to Hashtable, but noticed that later in the same experi-
ment, performance degraded and became comparable to the
original lock. After some investigation, we determined that
the difference was caused by the JIT compiler changing its
decision about how to inline code. At first, it would inline the
synchronized collection wrapper together with each of the
HashMap’s put, get and remove methods. Thus, when the
JVM converted the synchronized methods to transactions,
the code to be executed was all in the same method.

Later, however, the JIT compiler revisited this decision,
and in the case of put, instead inlined the synchronized col-
lection wrapper into the worker loop body and then emit-
ted a call to a method that implements HashMap.put().
As a result, when the TLE-enabled JVM converts the syn-
chronized method to a transaction, the transaction contains
a function call, which—as discussed in Section 3—can of-
ten abort transactions in Rock. If the compiler were aware

of TLE, it could avoid making such decisions that are detri-
mental to transaction success.

We also tested TreeMap from java.util.concurrent,
another red-black tree implementation. Again, we achieved
good results with small trees and read-only operations, but
performance degraded with larger trees and/or more muta-
tion. We have not investigated in detail.

We are of course also interested in exploiting Rock’s
HTM in more realistic applications than the microbench-
marks discussed so far. As a first step, we have experimented
with the VolanoMarkTM benchmark (18). With the code for
TLE emitted, but with the feature disabled, we observed
a 3% slowdown, presumably due to increased register and
cache pressure because of the code bloat introduced. When
we enabled TLE, it did not slow down the benchmark fur-
ther, as we had expected, and in fact it regained most of the
lost ground, suggesting that it was successful in at least some
cases. However, a similar test with an internal benchmark
yielded a 20% slowdown, more in line with our expectation
that blindly attempting TLE for every contended critical sec-
tion would severely impact performance in many cases.

This experience reinforces our belief that TLE must be
applied selectively to be useful in general. We are working
towards being able to do so. As part of this work we have
built a JVM variant that includes additional synchronization
observability and diagnostic infrastructure, with the purpose
of exploring an application and characterizing its potential
to profit from TLE and understanding which critical sections
are amenable to TLE, and the predominant reasons in cases
that are not. We hope to report in more detail on our experi-
ence with the tool soon.

8. Minimum Spanning Forest algorithm
Kang and Bader (10) present an algorithm that uses trans-
actions to build a Minimum Spanning Forest (MSF) in par-
allel given an input graph. Their results using an STM for
the transactions showed good scalability, but the overhead

165

of the STM was too much for the parallelization to be prof-
itable. They concluded that HTM support would be needed
to achieve any benefit. We report below on our preliminary
work using Rock’s HTM to accelerate their code.

We begin with a brief high-level description of the as-
pects of the MSF benchmark most relevant to our work; a
more precise and complete description appears in (10). Each
thread picks a starting vertex, and grows a minimum span-
ning tree (MST) from it using Prim’s algorithm, maintain-
ing a heap of all edges that connect nodes of its MST with
other nodes. When the MSTs of two threads meet on a ver-
tex, the MSTs and the associated heaps are merged; one of
the threads continues with the merged MST, and the other
starts again from a new vertex.

Kang and Bader made judicious choices regarding the
use of transactions, using them where necessary to keep the
algorithm simple, but avoiding gratuitous use of transactions
where convenient. For example, transactions are used for the
addition of new nodes to the MST, and for conflict resolution
on such nodes. But new edges are added to the threads’ heaps
non-transactionally, and when two MSTs are merged, the
associated heaps are merged non-transactionally.

Our work focuses on the main transaction in the algo-
rithm, which is the largest one, and accounts for about half
of the user-level transactions executed. It takes the following
steps when executed by thread T.

• Extract the minimum weighted edge from T’s heap, and
examine the new vertex v connected by this edge.

• (Case 1) If v does not belong to any MST, add it to T’s
MST, and remove T’s heap from the public space for the
purpose of edge addition.

• (Case 2) If v already belongs to T’s MST, do nothing.

• If v belongs to the MST of another thread T2:

(Case 3) If T2’s heap is available in the public space,
steal it by removing both T and T2’s heaps from the
public space for the purpose of merging.

(Case 4) Otherwise, move T’s heap to the public
queue of T2, so that T2 will later merge it once it
is done with the local updates for its own heap.

After a short investigation using our SkySTM library, we
noticed that the main transaction was unlikely to succeed
using Rock’s HTM, for two main reasons: first, the transac-
tion becomes too big, mostly because of the heap extract-
min operation. Second, the extract-min operation is similar
to RBTree, traversing dynamic data that confounds branch
prediction. However, we note that in two of the four cases
mentioned above (Cases 1 and 3) the transaction ends up
removing the heap from the public space, making it unavail-
able for any other threads. In these cases, it is trivial to avoid
extracting the minimum inside the transaction, instead doing
it right after the transaction commits and the heap is privately

 1

 10

 100

 1000

 1 2 3 4 6 8 12 16

R
un

ni
ng

 ti
m

e
(s

)

Threads

MSF -- Eastern USA Roadmap

msf-orig-sky
msf-opt-sky

msf-orig-lock
msf-opt-lock

msf-orig-le
msf-opt-le

msf-seq

Figure 4. MSF

accessed. Fortunately, Case 1 is by far the most common sce-
nario when executing on sparse graphs, as conflicts are rare.

We therefore created a variant in which we only exam-
ine the minimum edge in the heap inside the transaction,
and then decide, based on the result of the conflict resolu-
tion, whether to extract it transactionally (in Cases 2 and
4) or non-transactionally (in Cases 1 and 3). This demon-
strates one of the most valuable advantages of transactional
programming. Extracting the minimum non-transactionally
in all cases would significantly complicate the code. Using
transactions for synchronization allows us to get the bene-
fits of fine grained synchronization in the easy and common
cases where transactions are likely to succeed, without need-
ing to modify the complex and less frequent cases.

8.1 Evaluation results

So far, we have only experimented with protecting all trans-
actions with a single lock, and then using Rock’s HTM fea-
ture to elide this lock, as described previously. To this end,
we evaluated 7 versions of the MSF benchmarks on Rock:

msf-seq a sequential version of the original variant, run sin-
gle threaded, with the atomic blocks executed with no
protection.

msf-{orig,opt}-sky : the original and new variants of the
benchmark, respectively, with the atomic blocks executed
as software transactions, using our SkySTM library.

msf-{orig,opt}-le the original and new variants of the bench-
mark with the atomic blocks executed using TLE. We
try using a hardware transaction until we get 8 failures,
where a transaction that fails with the UCTI bit set in the
CPS register is only counted as half a failure; then fail to
use a single lock.

msf-{orig,opt}-lock : the original and new variants of the
benchmark, respectively, with the atomic blocks executed
using a single lock.

To date we have only experimented with the “Eastern
Roadmap” data set from the 9th DIMACS Implementation

166

Challenge (http://www.dis.uniroma1.it/˜challenge9), which
has 3,598,623 nodes and 8,778,114 edges. Figure 4 shows
the results. Note that both axes are log scale, and that the
msf-seq runtime is shown across the whole graph for com-
parison, although it was only run single threaded. Each data
point in the graph is the average result of 6 runs, with a stan-
dard deviation of less than 3% for all data points.

The single-thread runs with msf-orig-sky and msf-opt-
sky pay a 31x and a 6.5x slowdown, respectively, comparing
to the sequential version, while the single-thread slowdown
with the msf-opt-le version is only 1.37x. We also found that
the fraction of user-level transactions that ended up acquir-
ing the lock in single-threaded runs was over 33% with msf-
orig-le, and only 0.04% with msf-opt-le. These observations
demonstrate the value of our modifications to extract the
minimum edge from the heap non-transactionally in some
cases, as well as the significant performance improvement
gained by executing transactions in hardware.

Both STM versions and msf-opt-le scale linearly up to 16
threads. With 16 threads, the msf-opt-le version outperforms
the sequential version by a factor of more than 11, while
msf-opt-sky only outperforms it by a factor of 1.95 and msf-
orig-sky is unable to improve on the performance of msf-seq.

Finally, note that even though the optimized variant sig-
nificantly reduces the average size of the main transaction,
the transaction is still not small enough to scale well with a
single-lock solution: even though msf-opt-lock scales further
than msf-orig-lock, they both stop scaling beyond 4 threads.
Thus, even though the software-only version that achieves
the lowest running time is the msf-opt-lock with 4 threads,
this running time is still almost 5 times longer than the best
time achieved by the msf-opt-le version.

Finally, we also ran the experiments on Rock configured
in SE mode. As we expected, in SE mode, the smaller store
buffer caused many transactions to fail (CPS values for failed
transactions were dominated by ST|SIZ), even in the opti-
mized variant. Therefore, in the single thread execution of
msf-opt-le in SE mode, the fraction of user-level transac-
tions that resorted to acquiring the lock is more than 300
times higher than that of the same run in SST mode. As a
result, in SE mode msf-opt-le provides “only” a 9x speedup
with 16 threads, and stops scaling at all after this point. Still,
even in SE mode, the optimized variant scales better than the
original one, and with 16 threads is almost 3x faster than any
of the software methods at any number of threads.

9. Discussion
Our investigation to date is very encouraging that we will
be able to exploit Rock’s HTM feature to improve perfor-
mance and scalability of existing libraries and applications,
in some cases without changes to the source code and in oth-
ers with only small changes. Furthermore, at a time when
transactional programming models are beginning to emerge,

we have shown that we can exploit Rock’s HTM to enhance
performance of software transactional memory.

HTM-aware compilers may be able to make code more
amenable to succeeding in hardware transactions. However,
it is unlikely that there will be widespread support in com-
monly used compilers in the near future. Therefore, it is im-
portant that HTM is able to execute ordinary code, generated
by any compiler. Rock’s HTM interface was designed with
this requirement in mind.

The difficulty of diagnosing reasons for transaction fail-
ures in some cases clearly points to the importance of richer
feedback in future HTM features. Apart from further dis-
ambiguating different failure reasons, additional informa-
tion such as program counter of failing instructions, ad-
dresses for data conflicts and TLB misses, time spent in
failed transaction, etc. would be very useful. Furthermore,
eliminating certain restrictions on hardware transactions will
make the feature much easier to use in more contexts. The
save-restore limitation in Rock is a key example.

We often hear claims that people claim that TM is going
to solve all the world’s problems. We even occasionally hear
people make such claims. It’s not going to, certainly not in
the near future. We hope our paper helps set expectations
appropriately about what Rock’s HTM feature can and can-
not achieve. We also emphasize that this is the first step, and
that software that uses this feature will automatically benefit
from improvements in future HTM features.

There is plenty more work to do, both to maximize the
benefit we can extract from Rock’s new feature, and to guide
the development of future HTM features.

10. Concluding remarks
We have described our experience evaluating the hardware
transactional memory feature of Sun’s forthcoming Rock
multicore processor. This feature has withstood rigorous
testing, which has revealed no correctness bugs. Further-
more, we have demonstrated successful use of this feature in
a number of contexts. We conclude that Sun’s architects have
made a groundbreaking step towards sophisticated hardware
support for scalable synchronization in multicore systems.

We have discussed techniques we used, challenges we
faced, and some ways in which Rock could be improved
to be even better. We hope our paper will be useful both
to programmers who use Rock’s HTM, and to architects
designing related features in the future.

Acknowledgments: The work described in this paper would
not have been possible without the hard work of many in-
dividuals who have been involved in the design and imple-
mentation of Rock’s HTM feature, and also those involved
in the Rock bringup effort. Among others, we are grateful to
Richard Barnette, Paul Caprioli, Shailender Chaudhry, Bob
Cypher, Tom Dwyer III, Quinn Jacobson, Martin Karlsson,
Rohit Kumar, Anders Landin, Wayne Mesard, Priscilla Pon,
Marc Tremblay, Babu Turumella, Eddine Walehiane, and

167

Sherman Yip. We are grateful to Peter Damron, who devel-
oped the HyTM/PhTM compiler. We thank David Bader and
Seunghwa Kang for providing their MSF code and for useful
discussions about it, and Steve Heller for bringing this work
to our attention. We are also grateful to our coauthors on the
two Transact papers (16; 5) on the ATMTP simulator and
techniques developed to exploiting HTM in Rock.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,

and S. Lie. Unbounded transactional memory. In Proc. 11th
International Symposium on High-Performance Computer Ar-
chitecture, pages 316–327, Feb. 2005.

[2] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware
memory protection to build a high-performance, strongly-
atomic hybrid transactional memory. In ISCA ’08: Proceed-
ings of the 35th International Symposium on Computer Archi-
tecture, pages 115–126, Washington, DC, USA, 2008. IEEE
Computer Society.

[3] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin,
S. Yip, H. Zeffer, and M. Tremblay. Rock: A high-
performance SPARC CMT processor. IEEE Micro, 2009. To
appear.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
and D. Nussbaum. Hybrid transactional memory. In Proc.
12th Symposium on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.

[5] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco,
W. Mesard, M. Moir, K. Moore, and D. Nussbaum. Appli-
cations of the adaptive transactional memory test platform.
Transact 2008 workshop.
http://research.sun.com/scalable/pubs/TRANSACT2008-
ATMTP-Apps.pdf.

[6] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experi-
ence with a commercial hardware transactional memory im-
plementation. Technical Report TR-2009-180, Sun Microsys-
tems Laboratories, 2009.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In Proc. International Symposium on Distributed Computing,
2006.

[8] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for supporting dynamic-sized
data structures. In Proc. 22th Annual ACM Symposium on
Principles of Distributed Computing, pages 92–101, 2003.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proc. 20th
Annual International Symposium on Computer Architecture,
pages 289–300, May 1993.

[10] S. Kang and D. A. Bader. An efficient transactional memory
algorithm for computing minimum spanning forest of sparse
graphs. In PPoPP ’09: Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and practice of parallel pro-
gramming, New York, NY, USA, 2009. ACM. To appear.

[11] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum,
and M. Olszewski. Anatomy of a scalable software transac-
tional memory, November 2008. Under submission.

[12] Y. Lev and J.-W. Maessen. Split hardware transactions: true
nesting of transactions using best-effort hardware transac-
tional memory. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, pages 197–206, New York, NY, USA, 2008.
ACM.

[13] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased trans-
actional memory. In Workshop on Transactional Computing
(Transact), 2007.
http://research.sun.com/scalable/pubs/TRANSACT2007-
PhTM.pdf.

[14] C. Manovit, S. Hangal, H. Chafi, A. McDonald, C. Kozyrakis,
and K. Olukotun. Testing implementations of transactional
memory. In PACT ’06: Proceedings of the 15th international
conference on Parallel architectures and compilation tech-
niques, pages 134–143, New York, NY, USA, 2006. ACM.

[15] V. Marathe, W. Scherer, and M. Scott. Adaptive software
transactional memory. In 19th International Symposium on
Distributed Computing, 2005.

[16] M. Moir, K. Moore, and D. Nussbaum. The Adaptive
Transactional Memory Test Platform: A tool for experi-
menting with transactional code for Rock. In Workshop on
Transactional Computiung (Transact), 2008.
http://research.sun.com/scalable/pubs/TRANSACT2008-
ATMTP.pdf.

[17] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and
C. Zilles. Hardware atomicity for reliable software specula-
tion. In ISCA ’07: Proceedings of the 34th annual interna-
tional symposium on Computer architecture, pages 174–185,
New York, NY, USA, 2007. ACM.

[18] J. Neffenger. The volano report, May 2003.
http://www.volano.com/report/index.html.

[19] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In Proc.
34th International Symposium on Microarchitecture, pages
294–305, Dec. 2001.

[20] R. Rajwar and J. R. Goodman. Transactional lock-free exe-
cution of lock-based programs. In Proc. Tenth Symposium on
Architectural Support for Programming Languages and Op-
erating Systems, pages 5–17, Oct. 2002.

[21] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Proc. 32nd Annual International Symposium
on Computer Architecture, pages 494–505, Washington, DC,
USA, 2005.

[22] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architec-
tural support for software transactional memory. In MICRO
39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 185–196, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[23] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling
hardware transactional memory from caches. In HPCA ’07:
Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 261–272,
Washington, DC, USA, 2007. IEEE Computer Society.

168

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

