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The need for automatic storage allocation arises from desires for program 
modularity, machine independence, and resource sharing. Virtual memory is an 
elegant way of achieving these objectives. In a virtual memory, the addresses a 
program may use to identify information are distinguished from the addresses the 
memory system uses to identify physical storage sites, and program-generated 
addresses are translated automatically to the corresponding machine addresses. 
Two principal methods for implementing virtual memory, segmentation and 
paging, are compared and contrasted. Many contemporary implementations have 
experienced one or more of these problems: poor utilization of storage, thrashing, 
and high costs associated with loading information into memory. These and 
subsidiary problems are studied from a theoretic view, and are shown to be 
controllable by a proper combination of hardware and memory management 
policies. 
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INTRODUCTION 

From the earliest days of electronic com- 
puting it has been recognized that ,  because 
fast-access storage is so expensive, computer  
memories of very large overall capacity must  
be organized hierarchically, comprising at  
least two levels, "main  mem ory"  and "auxil- 
iary memory . "  A program's  information 
(i.e. instruction code and data)  can be 
referenced only when it resides in main 
memory;  thus, information having immedi- 
ate likelihood of being referenced must  
reside in main memory,  and all other infor- 
mat ion in auxiliary memory.  The storage 
allocation problem is tha t  of determining, at 
each moment  of time, how information shall 
be distributed among the levels of memory.  

During the early years of computing,  
each programmer  had to incorporate storage 
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allocation procedures into his program 
whenever the total i ty  of its information was 
expected to exceed the size of main memory.  
These procedures were relatively straight- 
forward, amounting to dividing the program 
into a sequence of "segments"  which would 
"over lay"  (i.e. replace) one another  in main 
memory.  Since the p rogrammer  was inti- 
mately  familiar with the details of both  the 
machine and his algorithm, it was possible 
for him to devise efficient "over lay se- 
quences" with relative ease. 

The picture began to change  markedly  
after the introduction of higher level pro- 
gramming languages in the mid-1950s. Pro- 
grammers  were encouraged to be more 
concerned with problem-solving and less 
concerned with machine details. As the 
complexity of their programs grew, so grew 
the magnitude of the storage overlay prob- 
lem. Indeed, by  the late 1950s it was clear 
tha t  program operating efficiency could 
suffer greatly under poor overlay strategies, 
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and it was generally agreed that storage 
allocation had become a problem of central 
importance. But, since programmers were 
shielded from machine details by .program- 
ming languages, it was increasingly diffi- 
cult to persuade them to expend the now 
relatively large effort required to devise good 
overlay sequences. This situation led to the 
appeal of computers havillg very large main 
memories [M5]. 

Two divergent schools of thought about 
solutions emerged. These have come to be 
known as the static (preplanned) and dy- 
namic approaches to storage allocation. 
These two approaches differ on their assump- 
tions about the most fundamental aspect of 
the storage allocation problem, prediction, 
both (1) of the availability of memory 
resources, and (2) of certain properties of a 
program's "reference string," i.e. its se- 
quence of references to information. 

The static approach assumes that. (1) is 
either given or can be prespecified, and that 
(2) can be determined either by preprocess- 
ing the program and recording its reference 
string, or by examining the structure of its 
text during compilation [C5, K1, O1, R1, R4]. 
The dynamic approach assumes that (1) 
cannot (or ought not) be prespecified, and 
that (2) is determinable only by observing 
the program during execution; the memory 
space in use by a program should grow and 
shrink in accordance with the program's 
needs [$1]. Computer and programming 
systems during the 1960s have so evolved 
that, in a great many cases, neither memory 
availability nor program behavior are suffi- 
ciently predictable that the static approach 
can provide a reasonable solution. The 
reasons for this can be classed as program- 
ming reasons and system reasons. 

To understand the programming reasons, 
it is useful to distinguish two concepts: 
address space, the set of identifiers that may 
be used by a program to reference informa- 
tion, and memory space, the set of physical 
main memory locations in which information 
items may be stored. In early computer sys- 
tems the address and memory spaces were 
taken to be identical, but in many con- 
temporary systems these spaces are dis- 
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tinguished. This distinction has been made 
to facilitate the eventual achievement of 
three objectives. 

1. Machine independence. There is no a 
priori correspondence between address 
space and memory space. 

The philosophy behind machine inde- 
pendence is: It  relieves the programmer 
of the burden of resource management, 
allowing him to devote his efforts fully to the 
solution of his problem; it permits equip- 
ment changes in the computer system with- 
out forcing reprogramming; and it permits 
the same program to be run at different 
installations. 

2. Program modularity. Programs may 
be constructed as collections of sepa- 
rately compilable modules which are 
not linked together to form a complete 
program until execution time. 

The philosophy behind program modularity 
is: It  enables independent compilation, test- 
ing, and documentation of the components 
of a program; it makes it easier for several 
programmers to work independently on 
parts of the same job; and it enables the 
modules constructed for one job to be used 
in another, i.e. building on the work of 
others [D4, D5, D10, D l l ,  D12, D13, 
P2, R3, W4]. 

3. List processing. Languages (e.g. LisP) 
having capability for handling problems 
involving structured data are in- 
creasingly important. 

As we suggested earlier, these three pro- 
gramming objectives invalidate reliable pre- 
dictability, upon which static storage allo- 
cation is predicated. The mechanisms that 
implement machine independence cannot 
(by definition) establish a correspondence 
between addresses and locations until exe- 
cution time, much too late for a programmer 
or a compiler to preplan memory use. Pro- 
gram modularity makes it impossible for the 
compiler of a module to know either what 
modules will constitute the remainder of a 
program or (even if it could know) what 
their resource requirements might be. List 
processing languages employ data struc- 
tures whose sizes vary during execution and 
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which, by their very nature, demand dy- 
namic storage allocation. 

The major system reasons compelling 
dynamic storage allocation result from cer- 
tain objectives arising principally in multi- 
programming and time-sharing systems: (1) 
the ability to load a program into a space of 
arbitrary size; (2) the ability to run a 
partially loaded program; (3) the ability to 
vary the amount of space in use by a given 
program; (4) the ability to "relocate" a 
program, i.e. to place it in any available 
part of memory or to move it around during 
execution; (5) the ability to begin running a 
program within certain deadlines; and (6) 
the ability to change system equipment 
without having to reprogram or recompile. 
Program texts prepared under the static 
approach require that the (rather inflexible) 
assumptions about memory availability, On 
which they are predicated, be satisfied be- 
fore they can be run. Such texts are generally 
incompatible with these six objectives. 

Even within the dynamic storage alloca- 
tion camp there was disagreement. One 
group held that the-programmer, being best 
informed about his own algorithm's opera- 
tion, should be in complete control of storage 
allocation. He would exercise this control 
by calling on system routines which would 
"allocate" and "deallocate" memory regions 
on his behalf. This thinking is at least 
partially responsible for the block struc- 
ture and stack implementation of the 
ALGOL programming language (1958) and 
subsequently the ALgoL-oriented Burroughs 
computers. It  has also influenced the imple- 
mentation of list-processing languages [B8, 
C4, K4]. 

The other group in the dynamic storage 
allocation camp advocated a very different 
approach: automatic storage allocation. Their 
thinking was influenced by their belief 
that complicated programs beget storage 
allocation problems so complicated that 
most programmers could not afford the time 
to manage memory well, and most particu- 
larly by their belief that multiprogram- 
ming would soon be a concept of great 
importance. Because the availability in 
main memory of particular parts of address 
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space may be unpredictable under multi- 
programming, a programmer's ability to 
allocate and deallocate storage regions may 
be seriously impaired. Realizing that the 
principal source of difficulty was the small 
size of programmable main memory, this 
group advanced the concept of a o~e-level 
store. In 1961 a group at MIT [M5] pro- 
posed the construction of a computer having 
several million words of main memory (an 
amount then considered vast) so that the 
storage allocation problem would vanish. 
Economic reasons prevented this from ac- 
tually being realized. 

In 1961 the group at Manchester, Eng- 
land, published a proposal for a one-level 
store on the Atlas computer [F3, K3], a 
proposal that has had profound influence 
on computer System architecture. Their 
idea, known now as virtual memory, gives 
the programmer the illusion that he has a 
very large main memory at his disposal, 
even though the computer actually has a 
relatively small main memory. At the heart 
of their idea is the notion that "address" 
is a concept distinct from "physical loca- 
tion." It becomes the responsibility of the 
computer hardware and software auto- 
matically and propitiously to move infor- 
mation into main memory when and only 
when it is required for processing, and to 
arrange that program-generated addresses 
be directed to the memory locations that 
happen to contain the information addressed. 
The problem of storage allocation (for ob- 
jects represented in virtual memory) thus 
vanishes completely from the programmer's 
purview and appears in that of the com- 
puter system. By basing memory use on 
system-observed actual use of space, rather 
than (poor) programmer estimates of space, 
virtual memory is potentially more efficient 
that preplanned memory allocation, for it 
is a form of adaptive system. 

By the mid-1960s the ideas of virtual 
memory had gained widespread acceptance, 
and had been applied to the internal design 
of many large processors--IBM 360/85 and 
195, CDC 7600, Burroughs B6500 and later 
series, and GE 645, to name a few. The 
fact of its acceptance testifies to its general- 
ity and elegance. 

The foregoing discussion has summarized 
the ideas leading to the virtual memory 
concept. By distinguishing between ad- 
dresses and locations, and automating stor- 
age allocation, virtual memory facilitates 
certain programming and system design 
objectives especially important in multipro- 
gramming and time-sharing computers. The 
discussion in the remainder of this paper 
divides into two general areas: the mecha- 
riisms for effecting virtual memory, and the 
policies for using the mechanisms. The prin- 
cipal mechanisms are: segmentation, under 
which the address space is organized into 
variable size "segments" of contiguous 
addresses; and paging, under which the 
address space is organized into fixed size 
"pages" of contiguous addresses. We shall 
compare and contrast these two mecha- 
nisms and show why systems using some 
form of paging are predominant. 

Although it has some very important 
advantages, virtual memory has not been 
without its problems. There are four of 
particular interest. (1) Many programmers, 
in their illusion that memory is unlimited, 
are unduly addicted to the old idea that time 
and space may be traded, in the sense 
that a program's running time may be re- 
duced if there is more programmable 
memory space available. But space in a 
virtual memory may be an illusion; un- 
necessarily large and carelessly organized 
programs may generate excessive overhead 
in the automatic storage allocation mecha- 
nism, inevitably detracting from tile effi- 
ciency of program operation. Nonetheless, 
as programmers and language designers 
gain experience with virtual memory, this 
problem should disappear. (2) Many paged 
systems suffer severe loss of usable storage-- 
"fragmentation"--because storage requests 
must be rounded up to the nearest integral 
number of pages. (3) Many time-sharing 
systems using "pure demand paging" (a 
policy under which a page is loaded into 
main memory only after an attempted 
reference to it finds it missing) experience 
severe costs as a program's working pages 
are loaded singly on demand at the start 
of each time quantum of execution. (4) 
Many systems have shown extreme sensi- 
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t ivi ty  to "thrashing,"  a phenomenon of 
complete performance collapse that  may  
occur under multiprogramming when mem- 
ory is overcommitted. We shall demonstrate 
that  these problems may be controlled if 
virtual memory mechanisms are governed 
by sound strategies. 

The reader should note that  these four 
observed inadequacies of many contem- 
porary systems result not from ill-conceived 
mechanisms, but  from ill-conceived policies. 
These difficulties have been so publicized 
that  an unsuspecting newcomer may be 
led erroneously to the conclusion that  vir- 
tual memory is folly. Quite the contrary;  
virtual memory is destined to occupy a 
place of importance in computing for many 
years to come. 

BASIC SYSTEM HARDWARE 

As our basic computer system, we take that  
shown in Figure 1. The memory system 
consists of two levels, main memory and 
auxiliary memory. One or more processors 
have direct access to main memory, but  not 
to auxiliary memory; therefore information 
may be processed only when in main mem- 
ory, and information not being processed 
may reside in auxiliary memory. From now 
on, the term "memory"  specifically means 
"main memory."  

There are two time parameters of interest 
here. The first, known as "memory reference 
t ime," is measured between the moments 
at which references to items in memory are 
initiated by  a processor; it is composed of 
delays resulting from memory cycle time, 
from instruction execution time, from "in- 
terference" by  other processors at tempting 
to reference the same memory module 
simultaneously, and possibly also from 
switching processors among programs. We 
take the average memory reference time to be 
,5. The second time parameter,  known as 
" t ranspor t  t ime," is the time required to 
complete a transaction that  moves infor- 
mation between the two levels of memory;  
it consists of delays resulting from waiting 
in queues, from waiting for the requested 
information transfer to finish, and possibly 
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PROCESSORS 

Fie,. 1. Basic system hardware 

AUXILIARY 
MEMORY 

also from waiting for rotating or movable 
devices to be positioned ("latency t ime").  
We take the average transport time to be T. 
Since main memories are ordinarily elec- 
tronically accessed and auxiliary memories 
mechanically accessed, ,5 is typically 1 
~sec and T is typically at least 10 msec. 
Thus speed ratios (T/h)  in the order of 104 
or more are not uncommon. 

Main memory may be regarded as a 
linear array of "locations," each serving 
as a storage site for an information item. 
Each location is identified by a unique 
"memory address." If  the memory contains 
m locations, the addresses are the integers 
0, 1, . - .  , m - 1. If  a i s  an address, the 
item stored in location a is called the "con- 
tents of a,'; and is denoted c(a). Under 
program control, a processor generates a 
sequence of "references" to memory loca- 
tions, each consisting of an address and a 
command to " fe tch"  from or " s t o r e "  into 
the designated location. 

DEFINITION OF VIRTUAL MEMORY 

As mentioned earlier, virtual  memory may 
be used to give the programmer the illu- 
sion that  memory is much larger than  in 
reality. To do this, it is necessary to allow 
the programmer t~ use a set-of  addresses 
different from that  provided by the memory 
and to provide a mechanism for translating 
program-generated addresses into the cor- 
rect memory location addresses. An address 
used by the programmer is called a "name"  
or a "vir tual  address," and the set of such 
names is called the address space, or name 
space. An address used b~,: the memory is 
called a " locat ion" or "memory  address," 
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and the set of such locations is called the 
memory space. F o r  future reference we 
denote the address space by N -- {0, 1, 
• . . ,  n -  1} and the memory space by  

M = {0, 1, . - .  , m - 1} and we assume 
n > m unless we say otherwise. 

Since the  address space is regarded as a 
collection of potentially usable names for 
information items, there is no requirement 
that  every virtual address "represent"  or 
"conta in"  any information. 

The price to be paid for there being no a 
priori correspondence between virtual  ad- 
dresses and memory locations is increa,sed 
complexity in the addressing mechanism. 
We must incorporate a way of associating 
names with locations during execution. 
T o  this end we define, for each moment  of 
time, a function f : N - +  M U {4~} such tha t  

' if i tem a is in M at location a', 
f(a) = if i tem a is missing from M. 

This function f is known as the address map, 
or the address-translation function. 

For  reasons given earlier, it is to our 
advantage to make n much larger than m, 
but  this is not  necessary. Even if n _~ m, 
virtual storage could help with the relocation 
problem [Dll] ,  i.e. tha t  of moving informa- 
tion around in memory. 

Figure 2 gives an example of a mapping 
f,  where a line (a, a') for a in N and a' 
in M indicates tha t  i tem a is stored in loca- 
tion a', and the absence of a line indicates 
tha t  i tem a is not present in M. Figure 3 
shows how a hardware device implementing 

f could be interposed between the processor 
and the memory to handle the mapping 
automatically. Note that ,  by  virtue of the 
mapping f ,  the programmer may be given 
the illusion tha t  items consecutive in N are 
stored consecutively in M, even though the 
items may in fact be stored in arbi t rary 
order. This proper ty  of address maps is 
known as "artificial contiguity" [R3]. 

The mapping device, when presented with 
name a, will generate a p = f(a) if i tem a is 
present in M, and a missing-item fault 
otherwise. The fault will interrupt  the 
processing of the program until the missing 
i tem can be secured from auxiliary memory 
and placed in M at some location a' (which 
takes one transport  time); the address map 
f is then redefined so that  f(a) = a', and 
the reference may be completed. If  M is full, 
some item will have to be removed to make 
way for the item entering, the particular 
item being chosen at the discretion of the 
replacement rule (if item b is entering and the 
replacement rule chooses the replace item a, 
where a p -- f(a), then the address map is 
redefined so tha t  f(b) becomes a' and 
f(a) becomes ¢). Contrasted with the re- 
placement rule, which decides which items 
to remove, are the fetch rule, which decides 
when an item is to be loaded, and the 
placement rule, which  decides where to 
place an item. I f  no action is taken to load 
an i tem into M until a fault for it occurs, 
the fetch rule is known as a demand rule; 
otherwise, if action is taken to load an item 
before it is referenced, the fetch rule is 
known as a nondemand or anticipatory rule. 

ADDRESS TRANSLATION MECHANISM 
-r 1 
I MAP TABLE f I 

' 
O' 

P t AOORESS } MEMORY 
I 

OPERATION:  

a loaded into VA 
if ath entry of j blank, missing-item fault 
a' loaded into MA 

FIG. 3. Implementation of address map 
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Consider briefly the implementation of 
the address map f. The simplest implemen- 
tation to visualize, called direct mapping,  
is a table containing n entries; the ath 
entry contains a' whenever f(a) = a r, and 
is blank (i.e. contains the symbol ~) other- 
wise. If, as would normally be the case, n 
is much greater than m, this table would 
contain a great many (i.e. n - m) blank 
entries. A much more efficient way to repre- 
sent f is to create a table containing only 
the mapped addresses; the table contains 
exactly the pairs (a, a ~) for which f(a) = a' 
and no pair (a, ~), and thus contains at 
most m entries. Such a table is more com- 
plicated to use; when presented with name 
a, we must search until we find (a, a') for 
some a', or until we have exhausted the 
table. Hardware associative memories are 
normally employed for storage of these 
mapping tables, thereby making the search 
operation quite efficient. (An associative, or 
"content-addressable," memory is a memory 
device which stores in each cell information 
of the form (k, e),where k is a "key"  and e 
an "ent ry ."  The memory is accessed by 
presenting it with a key k; if some cell con- 
tains (k, e) for some e, the memory returns 
e, otherwise it signals "not found." The 
search of all the memory cells is done si- 
multaneously so that  access is rapid.) 

MANUAL VERSUS AUTOMATIC MEMORY 
MANAGEMENT 

The discussion in the Introduction reviewed 
the motivation for automatic storage allo- 
cation from a qualitative view. Before open- 
ing the discussion of methods for imple- 
menting and regulating virtual memory, we 
should like to motivate automatic storage 
allocation from a more quantitative view. 
The question before us is: How well does 
automatic storage allocation compete with 
manual? 

Although the literature contains sub- 
stantial amounts of experimental informa- 
tion about program behavior under auto- 
matic storage management [B3, B9, C3, 
F2, F3, F4, K5, O2, $2], authors have reached 
conflicting conclusions. Many of these 
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experiments addressed the question "How 
do programs behave under given automatic 
storage allocation policies?" but not the 
question at hand, "How does automatic 
storage allocation compare with manual?" 
Experiments for the former question are 
clearly of a different nature than those for the 
latter. Therefore, at tempts to make in- 
ferences about the latter from data gathered 
about the former are bound to result in 
conflicting conclusions. The following dis- 
cussion is based on a paper by Sayre [$2], 
who has summarized and interpreted the 
work of Brawn and Gustavson [B9], for 
these appear to be the only published works 
addressing the latter question. 

If  the name space N is larger than the 
memory space M, it is necessary to "fold" 
N so that,  when folded, N will "f i t"  into M. 
Let g(b, t) denote the inverse of the address 
map f :  

g(b, t) = I a if f(a) = b at time t, 
undefined otherwise. 

The address space N is said to be folded if, 
for some b and tl < t2, g(b, tl) # g(b, t2). 
That  is, there is some memory location 

w h i c h  has been assigned to more than 
one address during the course of a program's 
execution. Between the instants tl and t~, 
a sequence of commands, move  o u t  and 
move  in,  must have been issued, which 
caused g(b, tl) to be replaced by g(b, t2). 
The name space N is manually folded if the 
programmer has preplanned storage alloca- 
tion, and has inserted the move  o u t  and 
move  in commands into the program text 
where needed. The name space is auto- 
matically folded if the move  o u t  and move  
in  commands are not in the program text, 
but instead are generated by the replace- 
ment and fetch rules, respectively, of the 
virtual memory mechanism. Note that  
manually folded text is intended to fit into 
some specific memory space of size So, 
whereas the automatically folded text may 
fit into any nonempty memory space. 

The question before us now is: Can auto- 
matic folding compete with manual folding? 
I t  is reasonably clear that  automatic folding 
should be competitive when the speed ratio 
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T/a between main and auxiliary memory is 
small; but is it competitive when T/h is 
large (say, 104 or greater)? Sayre reports 
affirmatively. 

Brawn and Gusta~vson, Sayre tells us, 
considered a number of programs represent- 
ing a wide range of possible behaviors, and 
the following experiment in a memory sys- 
tem with T/& in excess o f  104. For a given 
program, let Ta(so) denote the total running 
time (execution and transport time) when 
N is folded automatically into a memory 
of size So, when a demand fetch rule and a 
good replacement rule are in effect. Let 
Tm(so) denote the total running time when 
N is folded manually for a memory of size 
so. For the programs considered, 

0.8 < T~(so)/T~(so) < 1.7, 
(i) 

W[Ta(so)/Tm(so)] = 1.21, 

where E[ ] denotes expected value. In 
other words, automatic folding was (on the 
average) no more than 21 percent less 
efficient than manual folding. 

Now, let Ks(so) denote the number of 
transports issued while the program ran 
under the automatic folding conditions, and 
Kin(so) denote the number of transports 
under the manual folding conditions. For 
the programs considered, 

0.6 < K~(so)/K,,(So) < 1.05, 

E[K~(so)/Km(so)] = 0.94. 

Thus the automatic folder (i.e. the virtual 
memory) generally produced fewer moves 
than the manuM folder (i.e. the program- 
mer). A similar result was observed by the 
Atlas designers for a more restricted class of 
programs [K3]. The advantage of manual 
folding is that, unlike virtual memory with a 
demand fetch rule, processing may be over- 
lapped with transports This suggests that 
anticipatory fetch rules might result in 
ratios Ta(so)/T,~(so) consistently less than 
one [P1]. 

The experiments show also that the auto- 
matic folder is robust, i.e. it continues to 
give good performance for memory sizes 
well below the intended So. Specifically, 
T~(s)/Tm(so) was found essentially constant 

for a wide range of s, including s much less 
than So. In other words, a given program is 
compatible with many memory sizes under 
automatic folding, but only one under 
manual. 

As we shall see in the section on Program 
Behavior and Memory Management, virtual 
memory management mechanisms perform 
most efficiently when programs exhibit good 
locality, i.e. they tend to concentrate their 
references in small regions of address space. 
We shall define a measure of locality, the 
working set of information, which will be 
the smallest set of virtual addresses that 
must be assigned to memory locations so 
that the program may operate efficiently. 
Sayre reports that the running time under 
automatic folding, Ta(s0), can be very 
sensitive to programmers' having paid at- 
tention to endowing the programs with 
small working sets, and relation (i) depends 
on this having been done. Should program- 
mers not pay attention to this, very large 
Ta(so)/Tm(so) can occur. Sayre reports that 
the costs of producing good manually :folded 
text appear to exceed by 25 to 45 percent 
the costs for producing nonfolded text with 
good locality. Thus, one can tolerate as 
much as 25 percent inefficiency in the auto- 
matic folding mechanism before virtual 
memory begins to be less efficient than 
manual folding. Relations (i) indicates this 
generally is the case. 

On the basis of the experimental evidence, 
therefore, we may conclude that the best 
automatic folding mechanisms compete very 
well (and may indeed outperform) the best 
manually folded texts. Virtual memory is 
thus empirically justifiable. 

IMPLEMENTATION OF VIRTUAL MEMORY 

The table implementation for the address 
mapping f described in the section on Defi- 
nition of Virtual Memory is impractical, 
because it would require a second memory 
of size m to store the mapping table. In the 
following sections we shall examine three  
methods that result in a considerable re- 
duction in the amount of mapping informa- 
tion that must be stored. Each method 
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groups information into blocks, a block 
being a set of contiguous addresses in ad- 
dress space. The entries in the mapping 
table will refer now to blocks, which are far 
less numerous than individual addresses in 
address space. The first method--segmenta- 
tion-organizes address space into blocks 
("segments") of arbitrary size. The second 
method--paging--organizes memory space 
into blocks ("pages") of fixed size. The third 
method combines both segmentation and 
paging. 

Both segments and pages have names, 
which can be used to loeate entries in the 
map tables. Segment names are usually (but 
not always) assigned by the programmer and 
are interpreted by the software, and page 
names are usually assigned by the system 
and interpreted by the hardware. Segmenta- 
tion and paging, when combined, form an 
addressing system incorporating both levels 
of names. Otherwise, the only essential 
difference between the two schemes is 
paging's fixed block size. 

Segmentation 
Programmers normally require the ability 

to group their information into content- 
related or function-related blocks, and the 
ability to refer to these blocks by name. 
Modern computer systems have four objec- 
tives, each of which forces the system to 
provide the programmer with means of 
handling the named blocks of his address 
space: 

• Program modularity. Each program 
module constitutes a named block which is 
subject to recompilation and change at any 
time. 

• Varying data structures. The size of 
certain data structures (e.g. stacks) may 
vary during use, and it may be necessary to 
assign each such structure to its own, varia- 
ble size block. 

• Protection. Program modules must be 
protected against unauthorized access. 

• Sharing. Programmer A may wish to 
borrow module S from programmer B, even 
though S occupies addresses which A has 
already reserved for other purposes. 

These four objectives, together with 
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machine independence and list  processing, 
are not peculiar to virtual memory systems. 
They were fought for in physical storage 
during the late 1950s [W5]. 'Dynamic storage 
allocation, linking and relocatable loaders 
[M3], relocation and base registers [Dll], 
and now virtual memory, ~ll result from the 
fight's having been won. 

The segmented address space achieves these 
objectives. Address space is regarded as a 
collection of named segments, each being a 
linear array of addresses. In a segmented 
address space, the programmer references 
an information item by a two-component 
address (s, w), in which s is a segment name 
and w a word name within s. (For example, 
the address (3, 5) refers to the 5th word in 
in the 3rd segment.) We shall discuss shortly 
how the address map must be constructed 
to implement this. 

By allocating each program module to its 
own segment, a module's name and internal 
addresses are unaffected by changes in other 
modules; thus the first two objectives may 
be satisfied. By associating with each seg- 
ment certain access privileges (e.g. read, 
write, or instruction-fetch), protection may 
be enforced. By enabling the same segment 
to be known in different address spaces under 
different names, the fourth objective may be 
satisfied. 

Figure 4 shows the essentials of an ad- 
dress translation mechanism that imple- 
ments segmentation. The memory is a 
linear array of locations, and each segment 
is loaded in entirety into a contiguous 
region of memory. The address a at which 
segment s begins is its base address, and the 
number b of locations occupied by s is its 
limit, or bound. Each entry in the segment 
table is called a descriptor; the sth descriptor 
contains the base-limit information (a, b) 
for segment s if s is present in memory, and 
is blank otherwise. The steps performed in 
forming a location address a' from a name 
space address (s, w) are shown in Figure 4. 
Note that a missing-segment fault occurs 
if s it not present in memory, interrupting 
program execution until s is placed in 
memory; and an overflow fault occurs if w 
falls outside the allowable limit of s. Pro- 
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(s, w) loaded into segment and word registers 
if sth entry of ST blank, missing-segment fault 
if w > b, overflow fault 
(a + w) loaded into MA 

Fro. 4. Address translation for segmentation 

teetion bits (the darkened region in the 
table entry of Figure 4) can be checked 
against the type of access being a t tempted 
(i.e. read, write, or instruction-fetch) and a 
protection fault generated if a violation is 
detected. 

The segment table can be stored in main 
memory instead of being a component of 
the address translation mechanism. Figure 5 
shows the operation of the mapping mecha- 
nism when the segment table is in memory 
starting at location A. The segment table 
is itself a segment, known as the descriptor 
segment, and the segment table base register 

SEGMENT MEMORY 
- -~  AOORESS 

SEGMENT 

WORD BASE IdI~MOI~Y 
REGISTER. 

OPERATION : 

(s, w) loaded into segment and word registers 
(A + s) loaded into MA 
c(A + s) fetched into MR 
if MR blank, missing-segment fault 
a := base field of MR 
b := limit field of MR 
if w > b, overflow fault 
(a + w) loaded into MA 
Fro. 5. Segmentation with mapping table in mem- 

ory 

is known sometimes as the descriptor base 
register. 

In this case, each program-generated 
access would incur two memory-references, 
one to the segment table, and the other to 
the segment being referenced; segmentation 
would thus cause the program to run as slow 
as half speed, a high price to pay. A common 
solution to this problem incorporates a 
small high speed associative memory into 
the address translation hardware. Each 
associative register contains an entry (8, a, b) 
and only the most recently used such entries 
are retained there. If the associative memory 
contains (s, a, b) at the moment (s, w) is to 
be referenced, the information (a, b) is 
immediately available for generating the 
location address a ' ;  otherwise the additional 
reference to the segment table is required. 
I t  has been found that  8 to 16 associative 
registers are sufficient to cause programs 
to run at very  nearly full speed [$4]. (The 
exact number depends of course on which 
machine is under consideration.) 

Historically, the four objectives discussed 
at the beginning of this section haw~ been 
provided by "file systems," which permit 
programmers to manipulate named "files" 
and to control decisions that  move them 
between main and auxiliary memory. In  
principle, there is no need for the pro- 
grammer to use a file system in a virtual  
memory computer,  since auxiliary memory 
is presumably hidden from him and all his 
information may  be permanently represented 
in his address space. In practice, most 
contemporary "vir tual  memory systems" 
provide both a virtual memory and a file 
system, together with "file processing primi- 
t ives"  tha t  operate outside the virtual 
memory. In these systems, a "segment"  is a 
"file" tha t  has been moved from auxiliary 
memory into address space. Multics is the 
only documented exception to this [B7]. 

Among the earliest proposals for segmen- 
• tation, though without the use of an address 

space, was Holt 's  [H2]. Addressing schemes 
very similar to that  given in Figure 4 were 
first implemented on the Rice University 
Computer  [I1, I2] and on the Burroughs 
B5000 computer [B10, M1]. This idea was 
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expanded, its implications explored, and a 
strong case made in its favor by Dennis 
[DIO-D12]. Details of implementing seg- 
mentation and of combining segments into 
programs during execution are given by 
Arden et al. [AS], and again by Daley and 
Dennis [D1]. Dennis and Van Horn [D13], 
Johnston [J1], and also Wilkes [W4], place 
segmentation in proper perspective among 
all aspects of multiprocess computer systems. 
Randell and Kuehner [R3] place segmenta- 
tion in perspective among dynamic storage 
allocation techniques, and provide details 
for its implementation on various machines. 

Paging 

Paging is another method for reducing 
the amount of mapping information and 
making virtual memory practical. Main 
memory is organized into equal size blocks 
of locations, known as page frames, which 
serve as sites of residence for matching size 
blocks of virtual addresses, known as pages. 
The page serves as the unit both of informa- 
tion storage and of transfer between main 
and auxiliary memory. Each page frame will 
be identified by its frame address, which is 
the location address of the first word in the 
page frame. 

We suppose that each page consists of z 
words contiguous in address space, and that 
the address space N consists of n pages 
{0, 1, 2, . . . ,  n - 1} (i.e. nz virtual ad- 
dresses), and the memory space M consists 
of m page frames {0, z, 2z, . . . ,  (m -- 1)z} 
(i.e. mz locations). A virtual address a is 
equivalent to a pair (p, w), in which p is a 
page number and w a word number within 
page p, according to the relation a = pz + 
w, 0 <_ w < z, where p = [a/z], the 
integer part of a/z, and w = R,(a), the 
remainder obtained in dividing a by z. In 
machines using binary arithmetic, the 
computation that generates (p, w) from a is 
trivial if z is a power of 2 [A5, Dll].  

Figure 6 shows the essentials of the address 
translation mechanism that implements 
paging. The pth entry of the page table con- 
tains frame address p' if page p is loaded in 
frame p', and is blank otherwise. The steps 
performed in forming location address a' 

VtRTUAL 
ADDRESS 

Virtual Memory 

P ~  T ~ . E  PT 

I 
P 

2 p' ~ 

• 1 6 3  

MEMORY 
ADDRESS 

O P E R A T I O N :  

a loaded  in to  VA 
p := [a/z] 
w : =  R , ( a )  

if pth entry of PT blank, missing-page fault 
(p' + w) loaded into MA 

Fi~. 6. Address translation for paging 

from virtual address a are shown in Figure 6. 
Note that a missing-page fault occurs if p is 
not present in memory, interrupting program 
execution until p has been placed in an 
available frame of memory. Protection bits 
(the darkened area in the page table entry) 
may be compared against the type of refer- 
ence being attempted, and a protection 
fault generated if a violation is detected. 

As in the implementation of segmentation, 
the page table can be stored in memory. 
The modification of the address translation 
mechanism follows the Lsame lines as Figure 
5, and is not shown here. As before, program 
operation may be speeded up by incorporat- 
ing an associative memory into the address 
translation mechanism to retain the most 
recently used page table entries. 

Paging was first used in the Atlas compu- 
ter IF3, K3], and is presently used by almost 
every manufacturer in at least one of his 
products [R3]. As with any virtual memory 
system, it shields, the programmer from 
storage allocation problems, and is therefore 
susceptible to misuse; its performance has 
generally been encouraging [A4, 02, P1, $2], 
but occasionally discouraging [K6]. Because 
paging has received a great deal of attention 
in the literature, and its behavior nonetheless 
tends not to be widely understood, we shall 
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(s, w) loaded into segment and word registers 
if sth entry of ST blank, missing-segment fault 
if w > b, overflow fault 
p := [w/z] 
w' := R~(w) 
if pth entry of PTA blank, missing-page fault 
(p " + w') loaded into MA 

FIo. 7. Address translation for segmentation and 
paging 

devote most of the later sections of this paper 
to it. 

Segmentation and Paging 
Because paging by itself does not alter the 

linearity of address space, it does not achieve 
the objectives that motivate segmentation. 
Because segmentation by itself requires that 
contiguous regions of various sizes be found 
in memory to store segments, it does not 
result in the simple uniform treatment of 
main memory afforded by paging. To under- 
stand what is meant by "uniform treatment" 
of memory, compare the problem of loading 

new segment into memory with that of 
loading a new page into memory. Loading a 
segment requires finding an unallocated 
region large enough to contain the new 
segment, whereas loading a page requires 
finding an unallocated page frame. The 
latter problem is much less difficult than 
the former: whereas every unallocated page 
frame is exactly the right size, not every 
unallocated region may be large enough, 
even though the sum of several such regions 
may well be enough. (The question of find- 
ing or creating unallocated regions will be 
considered later.) 

It is possible to combine segmentation 
and paging into one implementation, thereby 
accruing the advantages of both. Figure 7 
shows the essentials of such an addressing 
mechanism. Each segment, being a small 

linear name space in its own right, may be 
described by its own page table. The sth 
entry of the segment table contains :~ pair 
(A, b) where A designates which page table 
describes segment s and b is the limit for 
segment s. The word address w is converted 
to a pair (p, w t) as in paging, and p is used 
to index page table A to find the frame 
address pl containing page p. As before, 
protection bits may be included in the seg- 
ment table entry. As before, the segment and 
page tables may be stored in memory, the 
addressing mechanism being appropriately 
modified. As before, associative memory may 
be used to speed up address formation; 
indeed, the associative memory is essential 
here, since each program-generated mem- 
ory reference address incurs two table 
references, and the program could run at one- 
third speed without the associative memory. 
(If the processor has a sufficiently rich 
repertoire of register*to-register operations, 
speed degradation would not be as bad as 
one-third.) 

We mentioned earlier that segmentation 
and paging combined serve to achieve the 
objective of sharing or borrowing programs 
(see the section on Segmentation .above). 
Programmer X, who owns segment s, may 
allow programmer Y to borrow s, and Y may 
choose to call s by another name s'. Then 
programmer X's segment table will contain 
(A, b) at entry s, and programmer Y's 
segment table will contain (A, b) at e, ntry s', 
where A designates a single (shared) page 
table describing the segment in question. 
The details of implementation, as well as a 
description of advantages and difficulties of 
sharing segments, are adequately described 
in [A5, B7]. 

Most addressing mechanisms use a single 
register to implement the segment and word 
registers shown separately in Figure 7. Typi- 
cally the leftmost q bits of this register con- 
tMn the segment name, and the rightmost r 
bits contain the word name; thus there may 
be as many as 2q segments and 2 ~ words 
per segment. In these implementations the 
r word-bits serve as the program counter 
(PC). Now suppose the program attempts to 
increment the program counter (i.e. PC : = 
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PC + 1) when its contents are c(PC) = 
2 * - 1; the result will be c(PC) = 0 and a 
carry from the leftmost program counter 
position. Some implementations require 
tha t  a segment's size limit b satisfy 0 _< 
b < 2 r, whereupon this carry would trigger 
an overflow fault. Other implementations 
allow the carry to propagate into the seg- 
ment field; thus if c(PC) = 2 ~ - 1 in segment 
s and the operation PC : =  PC + 1 is 
performed, the result is c(PC) = 0 in seg- 
ment s + 1 [R3]. 

STORAGE UTILIZATION 

Our previous discussion has directed atten- 
tion to the mechanisms of implementing 
segmentation, paging, or both. A virtual  
memory system, however, is more than mere 
mechanism; it necessarily includes the 
policies whereby the mechanisms are used. 
We mentioned earlier tha t  policies fall into 
three classes: 

1. Replacement policies. Determine which 
information is to be removed from memory; 
i.e. create unallocated regions of memory. 

2. Fetch policies. Determine when in- 
formation is to be loaded; i.e. on demand or 
in advance thereof. 

3. Placement policies. Determine where 
information is to be placed; i.e. choose a 
subset of some unallocated region. 

Replacement and fetch policies use es- 
sentially the same principles in both paged 
and nonpaged systems, and present the 
same degree of difficulty in either case; we 
therefore defer discussion of these topics 
until later. The placement policy for placing 
k pages in a paging system is in principle 
quite elementary; use the replacement policy 
to free k pages. Placement policies for non- 
paging systems are, however, considerably 
more involved. To investigate why this is 
so, we consider a very elementary model for 
th~ behavior of a nonpaged memory system. 

Placement Policies 
We suppose that  a linear m-word memory 

is to be used to store each segment con- 
tiguously (in the manner of the section on 
Segmentation). At certain moments in time 
transactions occur, which change the con- 

Virtual Memory * 165 

m°l 

Fio. 8. Checkerboarding of memory 

figuration of the memory. A transaction is 
either a request to insert a new segment of 
given size, or to delete some segment already 
present. We assume tha t  the system is in 
equilibrium; i.e. that ,  over a long period of 
time, the number of insertions is the same as 
the number of deletions for segments of each 
size. (For our purposes, the fetch policy is 
the source of insertion requests and the 
replacement policy the source of deletion 
requests.) After a long time, the memory will 
consist of segments interspaced with holes 
(unallocated regions); as suggested by  Figure 
8, the memory has the appearance of being 
"checkerboarded." 

The placement algorithm, which imple- 
rnents the placement policy, makes use of 
two tables: the "hole table,"  which lists all 
the holes, and the "segment table,"  which 
already exists for use by  the addressing 
mechanism. An insertion request for seg- 
ment s, which always adds entry s to the 
segment table, may increase, leave un- 
changed, or decrease the number of holes 
depending respectively on whether s is 
inserted so as to be surrounded by  two boles, 
a hole and a segment, or two segments. 
The last possibility occurs with very low 
probability and may be ignored; and the 
first possibility is usually precluded because 
placement policies make insertions beginning 
at a boundary of the hole. A deletion request 
for segment s, which always removes entry s 
from the segment table, may decrease, leave 
unchanged, or increase the number of holes, 
depending respectively on whether s is 
surrounded by two holes, by  a hole and a 
segment, or by two segments. Both the hole 
table and the segment table must be modified 
appropriately at each transaction. 

We shall derive now two simple but  im- 
portant  relationships for placement policies 
having the properties described above. The 
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first is the "fifty percent rule" (due to Knuth 
[K4]), which states that the average number 
of holes is half the average number of seg- 
ments. The other is the "unused memory 
rule," which establishes a relation between 
the difficulty of placing a segment and the 
amount of unused memory. 

FIFTY PERCENT RVL~ [K4]. Suppose the 
memory system described above is in equilib- 
rium, having an average of n segments and h 
holes, where n and h are large. Then h is 
approximately n /2.  

To establish this, we find the probability p 
that an arbitrarily chosen segment has a hole 
as right neighbor ("right" has meaning 
according to Figure 8). Over a segment's 
lifetime in memory, half the transactions 
applying to the memory region on its im- 
mediate right are insertions, half are dele- 
tions; thus p = ½. Therefore, the number of 
segments with holes as right neighbors is 
np = n/2,  i.e. the number of holes is ap- 
proximately n/2.  

UNUSED MEMORY RULE. Suppose the 
memory system described above is in equilib- 
rium, and let f be the fraction of memory 
occupied by holes. Suppose further that the 
average segment size is So and that the average 
hole size is at least kSo for some k > O. Then 
f >_ k / (k  + 2). 

To establish this result for an m-word 
memory we note that, by the fifty percent 
rule, there are n /2  holes in memory; since 
each segment occupies an average space of 
size so, the amount of space occupied by 
holes is m -- nso, and the average space per 
hole (hole size) is x = (m -- nso)/h = 
2(m - nso)/n. But we assume x ~ ks0, 
which implies 

(him)so < 2/(k + 2). 

Then 

f = ( m - - n s o ) / m  = 1 -  (n/m)so 

_> ~ - 2 / ( k  + 2) = k / ( k  + 2). 

In other words, if we wish to limit place- 
ment algorithm overhead by maintaining 
large holes, we must be prepared to "pay" 
for this limitation by "wasting" a fraction f 
of memory. This is not quite as serious as it 

might seem, for simulation experiments 
[K4] show that there is a large variance in 
hole sizes, and it is often possible to make f 
as small as 10 percent (i.e. k approximately 
¼). Even so, it is not possible to reduce f to 
zero. 

Of the many placement algorithms having 
the properties described above, there are two 
of special interest. The first is appealing 
because it makes best use of holes, and the 
second is appealing because it is simple to 
implement. Assume there are h holes of sizes 
xl ,  x2, • •.,  xh, and an insertion request of 
size s arrives. 

1. Best fit. The hole table lists holes in 
order of increasing size (i.e. xl ~_ x2 _< . . .  
_< xh). Find the smallest i such that s _< xi.  

2. First fit. The hole table lists holes in 
order of increasing initial address. Find the 
smallest i such that s < xl. (After a long 
time, small holes would tend to accumulate 
at the head of the hole list, thereby increas- 
ing the search time. To prevent this, the 
hole table is implemented as a circular list 
with a "start pointer"; each search advances 
the pointer and begins searching with the 
designated hole.) 

Knuth [K4] reports detailed simulation 
experiments on these and other placement 
policies. He finds that the first-fit algorithm 
is the most efficient of a large class of al- 
gorithms, including the best-fit. He finds also 
that the memory size must be at least ten 
times the average segment size for efficient 
operation. Similar conclusions are also 
reported by Collins [C6]. 

Knuth reports also on another algorithm 
which he found slightly better than first-fit 
but which, being not in the class of placement 
policies described above, does not follow the 
fifty percent rule and the unused memory 
rule. This policy is called the "buddy sys- 
tem." Its dynamic properties have not yet 
been completely deduced [K4]. 

3. Buddy system. Assume that the re- 
quest size is s = 2 ~ for some i ~ ,~. This 
policy maintains k hole-lists, one for each 
size hole, 21, 2 ~, . . . ,  2 k. A hole may be re- 
moved from the (i + 1)-list by splitting it in 
half, thereby creating a pair of "buddies" of 
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sizes 2 i, which are entered in the /-list; 
conversely, a pair of buddies may  be removed 
from the/ - l i s t ,  coalesced, and the new hole 
entered in the (i + 1)-list. To find a hole of 
size 2 ~, we apply this procedure recursively: 

procedure gethole(i) 
begin if i ~ k + 1 then report failure; 

if/-list empty then 
begin hole := gethole(i + 1); 

split hole into buddies; 
place buddies in/-list; 

end 
gethole := first hole in/-list; 

end 

Overflow and Compaction 
The unused-memory rule tells us that ,  in 

equilibrium, we must tolerate a significant 
loss of memory. In terms of Figure 8, the 
memory has become so checkerboarded that  
there are many small holes, collectively 
representing a substantial space. Indeed, it 
is possible that ,  when we scan the hole sizes 
x~, x~, • •. ,  xh for a request of size s, we find 
s > x~, 1 < i < h (i.e. the request can- 
not be satisfied) even though s < ~]~=1 x~ 
(i.e. there is enough space distributed among 
the holes). What  can be done about this? 

The solution usually proposed calls for 
"compacting memory,"  i.e. moving seg- 
ments around until several holes have been 
coalesced into a single hole large enough to 
accommodate the given request. Knuth  [K4] 
reports that  simulation experiments showed 
that ,  when the first-fit algorithm began to 
encounter overflow, memory was nearly full 
anyway; thus compacting it would provide 
at best marginal benefit. In other words, a 
good placement policy tends to obviate the 
need for a compacting policy. 

A somewhat different point of view can be 
adopted regarding the role of memory com- 
paction. Instead of using a sophisticated hole 
selection policy and no compaction, we may 
use a sophisticated compaction policy and 

n o  hole selection. Just as overhead in main- 
taining the hole list previously limited our 
ability to use memory fully, so the overhead 
in running a compaction policy limits our 
ability to use memory fully. To show this, 
we consider the compaction scheme sug- 
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Fio. 9. Configuration of memory after compaction 

gested in Figure 9. At certain moments in 
t ime--"compact ion  ini t ia t ions"--computer  
operation is suspended and all segments are 
moved together at the low end of memory, 
creating one large hole at the high end of 
memory. Each insertion request is placed at 
the low end of the hole, thereby moving the 
boundary rightward; when the boundary 
reaches the high end of memory, the next 
compaction initiation occurs. 

COMPACTION RESULT. Suppose the mem- 
ory system described above is in equilibrium, 
a fraction f of the memory being unused; 
suppose that each segment is referenced an 
average r times before being deleted, and that 
the average segment size is So. Then the fraction 
F of the time system expends on compaction 
satisfies F ~ (1 -- f) / [1 -- f + (f/2)(r/so)]. 
To establish this result, observe tha t  a refer- 
ence occurs to some segment in memory each 
time unit, and that  one segment is deleted 
every r references. Because the system is in 
equilibrium, a new segment must be inserted 
every r references; therefore the rate of the 
boundary's  movement is so/r words per unit 
time. The system's operation time to is then 
the time required for the boundary to cross 
the hole, i.e. to = fmr/so. The compaction 
operation re~luires two memory references--  
a fetch and a s tore--plus overhead for each 
of the (1 - f )m words to be moved, i.e. the 
compaction time t~ is at least 2(1 -- f)m. 
The fraction F of the t ime spent compacting 
is F = 1 - to/(to + t~), which reduces to the 
expression given. 

Figure 10 shows a plot of F versus f,  from 
which it is evident that ,  if we are to avoid 
expending significant amounts of t ime com- 
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Fro. 10. Inefficiency of compaction 

pacting, we must tolerate a significant waste 
of memory. Because of the relative slowness 
of compaction compared to searching a well- 
organized hole list, the former tends to be 
less efficient than the latter, and compaction 
is not often used. 

In summary, nonpaged memory requires 
an "investment," i.e. a certain amount of 
unused memory and overhead in placement 
policies, for efficient operation. Some sys- 
tems, notably the Burroughs B5000 series 
[R3] and certain CDC 6600 installations 
[B1], have chosen to make this investment; 
but most have elected to use paged memory, 
which can be fully utilized by pages at all 
times. Many of the techniques discussed in 
this section have been used with great suc- 
cess in applications of a less general purpose 
nature, particularly in list-processing sys- 
tems [BS, C4, K4]. 

£¢,) 

Fro. 11. Probability of external fragmentation 

Fragmentation 
Our discussion in the previous section 

unveiled a problem of some importance in 
virtual memory systems; storage fragmenta- 
tion, the inability to assign physical locations 
to virtual addresses that contain informa- 
tion. 

There are three major types of storage 
fragmentation. The first is external frag- 
mentation [R2], which occurs in nonpaged 
memories when checkerboarding becomes so 
pronounced that every hole is too small to 
be used. (More precisely, external frag- 
mentation occurs for segments of size s with 
probability E(s), the probability that 
s > max{xl}, where {xi} are the hole sizes. 
E(s) follows the curve suggested in :Figure 
11.) The second is internal fragmentation 
[R2], which results in paged memories be- 
cause storage requests must be rounded up 
to an integral number of pages, the last part 
of the last page being wasted (Figure 12). 
(More precisely, if z is the page size and s a 
segment size, then s is assigned to k pages, 
where (k -- 1)z < s < kz; then kz - s 
words are wasted inside the last page.) The 
third is table fragmentation, which occurs in 
both paged and nonpaged memories because 
physical locations are occupied by mapping 
tables and are therefore unavailable for 
assignment to virtual addresses. 

Randell [R2] reports simulation experi- 
ments showing that fragmentation raay be 
serious, and that internal fragmentation is 
more troublesome than external. His experi- 
ments rely on three assumptions: (1) each 
segment is entirely present or entirely 
missing from memory, (2) each segment 
begins at a new page boundary, and (3) 
segments are inserted or deleted one at a 
time. Many systems violate (1), there being 
some nonzero probability that a segment's 
final page is missing. Many systems violate 
(2) and (3) by providing facilities theft allow 

I ~  I 2 k 

L I - l  a o 
v !  

F~a. 12. Internal fragmentation 
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many small segments to be combined into 
one large contiguous region of address space 
(e.g. a "relocatable loader" for virtual 
memory, or a file system separate from 
virtual memory). Thus fragmentation is not 
as serious in practice as it could be, but  then 
again it cannot be ignored. 

Page Size 
Two factors primarily influence the choice 

of page size: fragmentation, and efficiency 
of page-transport operations. 

There is a page size optimal in the sense 
that  storage losses are minimized. As the 
page size increases, so increases the likeli- 
hood of waste within a segment's last page. 
As the page size decreases, so increases the 
size of a segment's page table. Somewhere 
between the extremes of too large and too 
small is a page size tha t  minimizes the total  
space lost both to internal fragmentation 
and to table fragmentation. 

OPTIMAL PAGE SIZE RESULT. Let z be 
the page size and so the average segment size; 
suppose el is the cost of losing a memory word 
to table fragmentation and c2 the cost of losing 
a memory word to internal fragmentation, 
and let c = c~/c~ . I f  z << so, the optimal page 
size Zo is approximately (2cs0) t. 

To establish this result, suppose segment 
size s is a random variable with expectation 
E[s] = so. A segment may be expected to 
occupy approximately so/z pages, each being 
described by one page table word; the page 
table cost for this segment is therefore ap- 
proximately ClSo/Z. If z << so, the expected 
loss inside the last page is approximately 
z /2;  the internal fragmentation cost for this 
segment is therefore approximately c~z/2. 
The total  expected cost for fragmentation is 
then 

E i C  I z] = (So/Z)C~ + (z/2)c~ . 

If  we set d E [ C ] z ] / d z  = 0 and solve for z, 
we obtain the expression given for z0. 

These results presume that  each segment 
begins on a page boundary (as suggested by 
Figure 12), and tha t  both the segment and 
its page table are entirely present in memory. 
Many  virtual memory computers provide 
mechanisms for loading or relocating a col- 
lection of segments contiguously in address 
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space, in which the internal fragmentation 
will occur only in the last page of the last 
segment in a such collection. I f  there are k 
segments in such a collection on the average, 
then the foregoing results are modified by 
replacing so by ks0, whence zo = (2ckso) ~. 

These results are by no means new. In  
fact, the problem of choosing page size to 
minimize fragmentation is identical to tha t  
of choosing block size in variable length 
buffers to minimize space lost to internal 
fragmentation and to chaining information. 
Wolman [W7] has studied this issue in some 
detail; he gives a detailed account of the 
accuracy of the approximation z0 ~= (2s0) ½. 

What  might be a typical value for z0? 
The available data on segment size [B2] 
suggests tha t  so g 1000 words in most cases; 
taking this and c = 1, we find z0 _~ 45 words. 
This is rather startling when we consider 
that  pages of 500-1000 words are commonly 
used. 

When we consider the other fac tor - -  
efficiency of page-transport operat ions--we 
discover the motivation for using a large 
page size. Each page-transport operation 
takes one transport  t ime T (see the section 
on Basic System Hardware above) to be 
completed. The following expressions for T 
on typical devices are lower bounds because 
in deriving them, we have ignored queueing 
delays and processor overhead expended on 
name conversion and auxiliary memory 
control. 

1. Drums.  To obtain a page from a 
drum, one must wait an average of half a 
drum revolution time t~ for the initial word 
of the desired page to rotate  into position. 
If there are w words on the circumference 
of the drum, the page transfer time tt is 
t rz/w. Therefore 

T = tr/2 + tt = t , (1/2 + z /w) .  

Typically, t~ = 16 msec and w = 4000 
words. 

2. Disks  (moving arm). A disk access is 
just like a drum access except there is an 
additional "seek t ime" t~ required to move 
the arms into position. Therefore 

T = t~ + tr/2 + tt = t, + t~(1/2 + z /w) .  
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FIG. 14. Upper bound transport efficieneies 

Typically, t8 = 100 msec, t~ = 30 msec, 
and w = 4000 words. 

3. Large capacity storage (LCS). This is 
nothing more than a slow-speed core mem- 
ory. If its cycle time is tc, then 

T = t~ = ttz. 

Typically,  t~ = 10 psec. 
4. Extended core storage (ECS). This is a 

form of core memory with special transmis- 
sion facilities; after an initial "access t ime" 

ta, it delivers v words per main memory 
cycle. Therefore 

T = t~, + t , .=  ta + (Z/v)tc. 

Typically, t~ = 3 psec, tc = 1 psec, and v = 
10 words. 

Figure 13 shows these four lower bound 
transport  time expressions plotted for various 
values of z. Note  the several orders of magni- 
tude differences at small page sizes. Figure 
14 shows the corresponding upper bound 
efficiencies e = t t / T  plotted for various 
values of z. I t  is immediately apparent  from 
these figures tha t  moving-arm disks should 
never be used, neither for paging applications 
nor for any other heavy-traffic auxiliary 
memory applications [D3]. I t  is also apparent 
tha t  drums should be used with care [C2, 
D3]; and that  if drums are used, a page size 
of at least 500 words is desirable. ']?his is 
why most paging systems use drums instead 
of moving-arm disks for auxiliary storage, 
why page sizes of 500-1000 words are com- 
mon in these systems, and why some systems 
have been experimenting with LCS [F1], 
ECS [F5], and other [L2] auxiliary stores. 

I t  is equally apparent  tha t  there is a great 
discrepancy between the page size for maxi- 
mizing storage utilization and the page size 
for maximizing page-transport efficiency-- 
about two orders of magnitude discrepancy. 
I t  is easy to see that  the poor performance of 
some of these systems [K6] is at least par- 
tially at tr ibutable to this factor. 

I t  is sometimes argued that  another factor 
inhibiting small page sizes is the additional 
hardware cost to accommodate the larger 
number of pages. Whereas this hardware cost 
is an initial one-shot investment, the in- 
creased storage utilization provides a con- 
tinuing long-term payoff, and the extra 
hardware is probably worthwhile. The 
cache store on the IBM 360/85 is an ex- 
ample of a system where this investment 
has been made, with apparently good effect. 

One approach to constructing a system in 
which a page size z0 is feasible would be to 
use a much faster device, such as LCS or 
ECS, to handle the traffic of pages in and 
qut of main memory. Some systems have 
adopted this approach IF1, F5, L2]. 
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Another approach--"par t i t ioned segmen- 
t a t ion" - -has  been suggested by Randell 
[R2]. I t  effects a compromise between the 
large page size required for transport  effi- 
ciency from rotating auxiliary devices and 
the small page size required for good storage 
utilization. We shall describe a slight variant 
to Randell 's scheme. The memory system 
uses two page sizes: a "major  page" whose 
size is chosen to make transports efficient, 
and a "minor page" whose size is chosen 
close to z0. Suppose the major page size is 
Z and the minor page size z, where Z is a 
multiple of z. A segment of size s is assigned 
a "head"  consisting of K major pages such 
that  Z K  < s < Z ( K  + 1), and a " ta i l"  
consisting of k minor pages such that  
zk < s -  Z K  < z(k-4- 1 ) , a n d K q - k _ >  1. 
Internal  fragmentation thus occurs only 
within the last minor page. An address 
translation mechanism that  implements 
partit ioned segmentation is shown in Figure 
15. A major drawback to this scheme is 
that ,  to operate effectively, segments must 
be large enough so that  they consist mostly 
of major pages. Available data [B2] suggests 
tha t  this need not be the case. 

Compression Factor 
During any given run, certain sections of 

a program's code will never be referenced 
because conditional branch instructions will 
have unfavorable outcomes. In other words, 
an n-word program will, on a given run, 
have occasion to reference only n' < n of 
its words, and n '  - n addresses will have 
been unreferenced. These n'  - n unrefer- 
eneed words are said to be superfluous [K5]. 
Storage losses due to loading superfluous 
words into main memory are less serious in 
paged memories using small page sizes 
because, for small page size, unreferenced 
blocks of code will tend to be isolated on 
their own pages, which need never be 
brought into memory. Belady's simulations 
[B3] and O'Neill's data [02] confirm this. 

The more are superfluous words isolated 
on their own pages, the less space will a 
program require, and the more "compres- 
sible" will it be. For  page size z and a given 
run of the program, define the compression 
factor c(z) to be the ratio of the number of 
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SEGMENT PAGE 
TABLE ST TABLE p'r a 

OPERATION : 

(s, w) Loaded into segment and word registers 
if sth entry of ST blank, missing-segment fault 
if w > b, overflow fault 
p := [w/Z] 
p" :-=O 
if pth entry of FT, marked by *, 

p" := [(w - ZK)/z.] 
if (p ÷ p")-th entry of PT~ blank, missing-page 

fault 
vo' := R,(w -- ZK) 
(p' ÷ w') loaded into MA 

Fro. 15. Partitioned segmentation 

referenced pages to the total  number of 
pages. Tha t  c(z) -- x implies tha t  at  least a 
fraction 1 - x of a program's words are 
superfluous, or conversely that  x is the 
maximum relative amount  of memory space 
a program needs on a given run. Note that  
c(n) = 1 and c(1) = n ' / n .  According to the 
data  presented by Belady [B3] and O'Neill 
[02], the compression factor is approximated 
by the expression 

c(z) = a -~ b log2z, 25 < z _< 2", 

where a .~ 0 and b > 0. The data  suggests 
the following properties of c(z): 

1. Halving the page size tends to decrease 
the compression factor by  10 to 15 percent; 
thus 0.10 ~ b ~ 0.15 [B3]. 

2. For small z, 1 < z < 25, the expression 
a + b log2 z is a lower bound on c(z), and in 
particular c(1) = n ' / n  _> a. Extrapolating 
the data, a in the range 0.1 ~ a < 0.4 
appear typical. 

3. For  page sizes z ~ 29, c(z) > 0.8 
appear typical. 

These results are significant. They  reveal 
a frequently overlooked potential advantage 
of virtual  memory: small page sizes permit a 
great deal of compression without loss of 
efficiency. Small page sizes will yield signifi- 
cant improvements in storage utilization, 
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TABLE I. COMPARISON OF PAGED AND NONPAGED MEMORY 

Factor .Paged Nonpaged 

Segmented name space 

Number of memory accesses per pro- 
gram reference: 

1. With paging 
2. With segmentation 
3. With both 
4. With associative memory mapping 

Replacement policy 

Fetch policy 

Placement policy 

Memory compaction 

External fragmentation 

Internal fragmentation 

Table fragmentation 

Compression factor 

Feasible Feasible 

2 

3 

Required 

Usually demand 

Required, but simple 

Not required 

None 

Yes, but can be controlled by 
proper choice of page size 

Yes 

Can be much less than 1 with 
small page sizes 

2 

Required 

Usually demand 

Required, but complicated 

Optional; of marginal value 

Yes; controlled by placement 
policy and memory size at 
least ten times average 
segment size 

None 

Yes 

Usually 1 

over and above those gained by minimizing 
fragmentation. Nonpaged memory systems 
(or paged systems with large page sizes) 
cannot enjoy this benefit. 

COMPARISON OF PAGED AND NONPAGED 
MEMORIES 

As we have discussed, the various imple- 
mentations of virtual memory fall into two 
classes: paged and nonpaged. We have 
discussed a great number of facts pertaining 
to each. Table I summarizes these facts and 
compares the two methods. 

According to Table I, paging is superior 
to nonpaging in all respects save suscepti- 
bility to internal fragmentation; hut  internal 
fragmentation can be controlled by proper 
choice of page size. Not  listed in the table 

is an aspect of paged memory that  makes 
its implementation more elegant and much 
"cleaner" than implementations of non- 
paged memory: its "uniform" t reatment  of 
fnemory. Whereas paging regards main 
memory simply as a pool of anonymous 
blocks of storage, segmentation regards it 
as a patchwork of segments and holes of 
various sizes. The same statement  holds 
for auxiliary memory. Therefore (fixed 
length) page transports are much simpler 
to manage than (variable length) segment 
transports. The  difficulty of transporting 
variable length segments is compounded 
by  overhead in watching out for the specific 
segment length in order not to overrun 
buffers. I t  is no surprise that  some form 
of paging is used in almost all virtual mem- 
ories. 
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DEMAND PAGING 

Because paging is so commonly used and so 
frequently discussed in the literature, the 
remainder of our discussions center around 
this topic. Demand paging, the simplest 
form, is the most widely used. Demand 
paging has--unfairly--been subjected t o  
widely publicized criticism [F2, F4, K6, R3], 
before anyone has had enough experience 
to evaluate it properly. 

In order to avoid maintaining a large 
number of lightly used resources, time- 
sharing and multiprogramming systems 
attempt to increase the load factors on 
resources by sharing them. To do this, time 
is partitioned into disjoint intervals, each 
program being allocated resources during 
certain intervals but not during others. 
(This is sometimes called resource multi- 
plexing.) These intervals are defined either 
naturally, by the alternation between 
running states and input-output waiting 
states of processing, or artificially, by time 
quanta and preemption. The latter method is 
used primarily in time-sharing systems, 
where response-time deadlines must be 
satisfied. We restrict attention to this case 
throughout this section. 

At the beginning of its allotted time 
quanta, a program's working information 
must be loaded into main memory. Older 
time-sharing systems employed swapping 
to do this, i.e. they would transport 'a pro- 
gram's working information as a contiguous 
unit into memory just before each time 
quantum began, and o u t  of memory just 
after each time quantum ended. Demand 
paging systems transport just one page (that 
containing the next instruction to be exe- 
cuted) into memory just before a program's 
time quantum begins, and "page in" addi- 
tional pages as the program demands them; 
at time quantum end, no immediate action 
will be taken to remove a program's pages 
from memory, that being left up to the 
replacement policy. 

One occasionally hears proposals to the 
effect that paging systems could be improved 
markedly if swapping were used to load 
(unload) a program's working information 
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at the beginning (end) of a time quantum, 
and demand paging were used within a time 
quantum. We shall show that swapping is 
at best of marginal value in systems using 
either a nonmoving auxiliary store or a 
specially organized drum, the paging drum. 
Prepaging, however, may have some value 
when properly managed from a paging drum. 

Paging Drum 
We pointed out in the section on Page 

Size above that among all rotating or moving 
auxiliary stores, only drums (or drumlike 
stores [A1]) may be suitable for handling 
page traffic through main memory. Even 
then, a particular drum organization is 
required for efficient operation. A paging 
drum [A1, C2, D3, W1] consists of a drum 
memory together with hardware (or soft- 
ware) implementing an optimal scheduling 
policy. As shown in Figure 16, the drum 
surface is laid out into equal areas, each 
capable of storing one page ;each such "drum 
page" is identified by its "sector address" 
i and its "field address" j. Each field is 
equipped with a set of read-write heads. As 
shown in Figure 17, the scheduler sorts 
incoming requests into s separate "sector 
queues" according as which sectors are 
requested. Within a given sector queue, 
service is in order of arrival (i.e. "first-come- 
first-served"). The rotary switch arm re- 
volves synchronously with the drum, point- 
ing to queue i whenever sector i is under 
the read-write heads. Suppose a read (write) 
request for drum page (i, j) is at the head 
of sector queue i. Just as the switch arm 

SECTOR | FIEiD j DROM .PAGE O,j) 

READ-WRITE 
HEADS 

FiG. 16. Layout of paging drum 
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Fio. 17. Paging drum queue organization 

reaches sector queue i, the heads for field j 
are set to read (write) status and connected 
to the drum channel. Then transmission 
begins. 

Paging drums are sometimes known as 
"slotted drums" or "shortest-access-time- 
first" drums. Some manufacturers market 
drumlike "paging disks," which are fixed- 
head disks with one head per track• These 
are equivalent to paging drums. 

The paging drum stands in contrast to its 
historical predecessor, the "first-come-first- 
serve" (FCFS) drum, which collects all 
incoming requests into a single, order-of- 
arrival queue. To compare these, we imagine 
two systems: System P is a paging drum, 
and System F an FCFS drum. In both 
systems, the drum revolution time is t~ and 
the number of sectors is s. Since most drum 
allocation policies do not attempt to group 
contiguous pages of a given program on 
contiguous sectors, we may assume that 
each request selects a sector at random 
[A1, C2, D3, W1]. The "drum load" L is 
the number of requests waiting in the drum 
queue(s). 

DRUM EFFICIENCY RESULT. Let ep(L) 
denote the expected e~ciency of System P 

and ep(L) that of System F, when the drum 
load is held fixed at L. Then 

ep(L) = (L + 1)/(s --k L -k 1), 
L > i .  

• e F ( i )  = 2 / ( s  -b  2), 
Consider System P. The expression for 

ee(L) is an approximation derived as follows. 
Let to, h , ' " ,  t k , . . ,  be a sequence of 
time instants at which requests csmplete 
service and depart from the drum system. 
(Since L is assumed fixed, a new request is 
added to the drum system at each time 
tk .) Then xk = tk - tk-1 denotes the service 
time of the kth request, Since the requested 
sector positions are statistically independent 
and L is fixed, the service times x, have a 
common distribution with expectation E[x]. 
Now, E[x] can be written E[x] = t -~- E[r], 
where t = t~/s is 'a transmission time and 
E[r] an expected rotational delay. To ap- 
proximate E[r], we imagine a circle with 
circumference tr having L -b 1 points dis- 
tributed randomly about its perimeter; one 
of these points represents the drum position 
at the moment a request departs, and the 
remaining L points represent the positions 
of the requested sectors. The expected 
distance between two of these points is 
tr/(L q- 1) = E[r]. The efficiency is ep(L) = 
t/E[x] = t/(t + E[r]), which reduces to the 
expression given. In System F, each request 
in the queue must complete its service 
before the next may begin, and each selects 
its sector randomly. Therefore eF(L) is 
independent of L, and indeed el(L) = 
e , 0 )  = e~(1) = 2 / ( s  + 2). 

Several facts follow from this result. (1) 
For small page sizes (large s) the efficiency 
e~ is always small. (2) For any page size 
there are always values of L that make ee 
close to 1. (3) Whereas eF is constant, 
ee(L -b 1) > ee(L); in other words, the 
paging drum is "self-regulating," becoming 
more efficient under heavier loads. (4) For 
L > 1 and s ~_ 1, ee(L) > eF(L). 

As one would suspect, the paging drum 
(System P) gives smaller transport times 
than the less efficient FCFS drum (System 
F). 

DRUM TRANSPORT TIME RESULT. Sup- 
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pose a page request arrives when the drum 
load is L. The time each system delays this 
request is 

Tp = t~(L/s + (s + 2)/2s), 
L ~ O .  

T~ = t ,(L + 1)(s -4- 2)/2s, 

The incoming request will be known as 
the "tagged" request. In System P, the 
tagged request enters a sector queue whose 
expected length is L'  = L/s.  Before com- 
pleting service the tagged request experi- 
ences the following additive delays: L/2 for 
the drum to begin serving the first request 
in the queue; L't ,  for the drum to begin 
serving the tagged request; and t~/s for its 
own transmission. Thus T~ = t~(L' -4- 
½ + 1/s). In System F, the tagged request 
joins the single queue with L requests ahead 
of it. There are now L + 1 requests in the 

t 1 queue, each requiring time r(~ + 1/S) to 
complete. 

From these two results we see that, under 
normal drum loads (L > 0), ee > e~ and 
T~ < TF, with the greatest differences 
occurring at heavy loads. For these reasons, 
paging systems using FCFS drums may 
experience severe loss of efficiency. 

Cost 
To evaluate the "cost" of demand paging, 

two concepts are useful: "space-time prod- 
uct" and "working set." Suppose a program 
occupies re(t) pages of memory at time t; 
the space-time product of memory usage 
across an interval (t~, t2) is defined to be 

C(t~,h) = re(t) dt. 
1 

Since memory usage charges are usually 
based both on the extent and duration of 
memory usage, C(t~, t~) relates to the actual 
dollar cost of using memory, and is often 
termed "cost." Space-time cost has become 
an important aid in determining the efficacy 
of memory allocation strategies [B5, B6, D5, 
D9, F1, L1, P1, R3]. The working set of a 
program at a given time is the smallest 
collection of its pages that must reside in 
memory to assure some level of efficiency 
(~ more precise definition will be given later) 
[D4, D5]. 
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Let Cd(A) denote the space-time cost 
of loading a working set into memory under 
demand paging from auxiliary memory A, 
and Ca(A) the cost of loading a working set 
into memory under swapping from auxiliary 
memory A. We shall establish f()ur asser- 
tions: 

• Under demand paging, the paging drum 
costs significantly less than the FCFS drum 
(i.e. Cd(F) -- Cd(P) is large). 

• With nonmoving auxiliary storage 
(e.g. A is LCS or ECS), demand paging never 
costs more than swapping (i.e. Ca(A) _< 
Cs(A)). 

• The combined swapping and demand 
paging strategy is at best of questionable 
value when compared to "pure" demand 
paging with a paging drum. 

• Unless predictions can be made with 
little error, prepaging, even from a paging 
drum, may not be advantageous. 

These assertions are considered in the 
following paragraphs. Assume that a working 
set of size w is to be loaded, that a single 
transport operation requires processor time 
to, and that the drum has revolution time 
tr and s sectors. 

The cost Cd(A) is determined as follows. 
Suppose k - 1 of the w pages have already 
been loaded and a fault for the kth page 
occurs; we must reserve one more page of 
memory and stop the program for the kth 
transport time Tk. Since there is no correla- 
tion between the order of page calls and 
their order of storage on the drum, Tk = T 
for 1 < k <: w. Thus 

Cd(A) = 5~ kTk = k T  
~ 1  (i) 

= T(w(zo + 1)/2). 

Now if A is the paging drum system P (see 
the section on Paging Drum above), then 
T = to + Te. Similarly, T = to + TF for 
the FCFS drum system F. Applying the 
Drum ~Fransport Time Result for load L, 

Cd(F) - Cd(P) = (W(W. + 1)/2) t~(L/2). 

As long as L >_ 1 (the usual case) the cost 
difference grows as the square of the working 
set size. This establishes the first assertion. 
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The cost Ca(A) is determined as follows. 
We reserve w pages of memory, then trans- 
port  the entire working set as a unit in a 
t ransport  t ime T t. Thus 

Ca(A) = wT' .  (ii) 

If A is ECS with access time t~ (see the 
section on Page Size above) and page trans- 
mission time t t ,  then 

T = t 0 +  t~ + t~, 

T' = to + t~ "b w t t .  

Substituting these vMues into (i) and (ii) 
respectively, we find 

C~(A) - Cd(A) 

= (w(w - 1)/2)(tt  - to - t,). 

This expression is positive if tt ~_ to -q- t~, 
which normally is the case. If A is LCS, 
then t~ = 0, and the same conclusion follows. 
This establishes the second assertion. 

A "swapping d rum"  is an FCFS drum F 
for which the system guarantees tha t  each 
working set's pages are stored on contiguous 
sectors. Suppose a request for a working 
set of w pages arrives when L other requests 
of sizes ~ ,  • • • , vL are in the drum queue; 
the swapping drum transport  t ime is given 
by  

1 

(The argument to derive T '  is analogous to 
tha t  for deriving Tp .) We are interested 
in comparing 

Cd(P) = (w(w + 1)/2)(to + Te), 

C,(F) = wT ' .  

We shall ignore to since to << t~. Consider 
two extremes of the drum load v~, . . .  , vL • 
At the one, each v~ is a request to swap in a 
full working set; taking w as the average 
working set size and each v~ = w, we find 
(after some algebra) tha t  for all w > 0, 
C,(F) > Cd(P). At the other extreme, each 
v~ is a request for a single page; taking each 
v~ = 1, we find (after some algebra) tha t  

w >  wo = I + 2Ls / (2L  + s - -  2) 

is necessary for Ca(F) < Cd(P). For the 
normally heavy drum loads (L large) found 
in paging systems, w0 _--~ s q- 1 is slightly 
more than a full drum circumference.. If  we 
repeat the analysis to include the cost of 
swapping w pages out again at time quantum 
end, we find w0 ~ 2s; for typical drums 2s 
is approximately 8000 words, a substantial 
working set. To sum up: as the drum load 
varies from the former extreme to the latter,  
the system enters and exits states unfavor- 
able to swapping; even in favorable states, 
swapping is cheaper only when working 
sets of substantial size are moved. Our 
analysis does not account for two other 
factors: it may be expensive to find or main- 
tain a supply of contiguous sectors into 
which working sets may be swapped, and 
it may be expensive to implement both a 
swapping policy and a demand paging 
policy in the same system. Swapping thus 
appears at best to be of marginal value in a 
demand paging system. This establishes the 
third assertion. 

Now, let Cp(P) denote the cost of pre- 
paging from drum system P,  and suppose 

> 0 is the probabili ty tha t  a prepaged 
page is not  used. To prepage from drum P,  
we would specify the w pages as a group 
and add them to the drum load L. Ignoring 
to,  this costs approximately wTp',  where 
Tr '  is Tp evaluated at  load L + w. Of these 
w pages, ew were preloaded erroneously, so 
there will be ew additional page faults; 
assuming each of these replaces an erroneous 
page with a correct one, the cost for each 
is w T e .  Thus, 

Cp(P) = wTp'  + ~w(wT~). 

After some algebra, we find 

w ~ w0 = (2L + s +  2) /  

((1 -- 2e)(2L + s q- 2) -- 4) 

is sufficient for Cp(P) < Cd(P) to hold. This 
has two consequences. First, if • is small and 
L large, then w0 ~ 1, and prepaging would 
almost always be advantageous. Second, in 
order tha t  the denominator of the expression 
for w0 be positive, we require 

e < ½(2L -b s -- 2) / (2L + s zr- 2). 
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If e is not small and L is small, then w0 would 
be large, and prepaging would not be ad- 
vantageous. Since the foregoing argument 
is very qualitative and based on average- 
value arguments, we must be careful not to 
attach too much significance to the particu- 
lar expressions given. Our intention is 
showing that the advantage of prepaging 
may be very sensitive to the relations among 
e, L, and s, and that careful analysis would 
be required to assess its value in a given 
system. (See [P1].) This establishes the 
fourth assertion. 

The foregoing discussion establishes also 
that the performance of virtual memory 
may depend strongly on the capacity of the 
channel carrying the traffic of pages through 
main memory. Although we have not studied 
it, the reader should realize that several 
parallel channels between main and auxiliary 
memory (contrasted with the single channel 
presumed above) would provide further 
increases in capacity. 

In general, the smaller the ratio of paging 
traffic through memory to the system's 
capacity for handling it, the better the 
performance of the virtual memory. To 
minimize this ratio, we must (1) choose a 
memory management policy to minimize the 
rate at which a given program load generates 
page faults, (2) modify program structure 
to reduce the rate at which a given program 
generates new page faults, and (3) provide 
hardware support to increase the system's 
capacity for handling page traffic. These 
three aspects are examined in detail in the 
following sections. 

PROGRAM BEHAVIOR AND MEMORY 
MANAGEMENT 

Program behavior is among the least under- 
stood aspects of computer system design 
and analysis. And yet we need to model 
program behavior if we are to have a sound 
basis on which to predict a program's future 
memory needs or if we are to understand 
how close resource allocation policies are to 
being optimal. 
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Replacement Algorithms 
From now on we shall use N = {1, 2, 

• . . ,  n} to denote the pages of a given 
program. A program's dynamic behavior 
may be described in machine independent 
terms by its reference string 

¢o -= r l r 2 . . . r k . . . ,  rk E N,  k > 1, 

which is a sequence of those pages from N 
which are referenced by the program (not 
necessarily distinct). We suppose this pro- 
gram has been allocated a memory space of 
size m, where 1 < m < n, and is to operate 
in that space under paging. If t(rk) denotes 
the time instant at which page rk is refer- 
enced, then the expected time E[t(r~+l) - 
t(rk)] is h if rk is present in memory and 

-~ T otherwise (see the section on Basic 
System Hardware). Therefore the expected 
increment in space-time cost is 

{ m~ if rk in 
memory, 

C(t(rk), t(rk+l)) = m(A q- T) otherwise. 

When the page size is fixed and T > h 
(typically, in fact, T >> ~), minimizing the 
total cost of running a program under 
paging requires minimizing the number of 
page faults. To understand what this en- 
tails, we need a precise definition of replace- 
ment algorithm. 

A subset S of N such that S contains 
m or fewer pages (written [S[ < m) is a 
possible memory state, and 9lZ,, is the set 
of all such S. A replacement algorithm 
generally keeps records about the program's 
behavior; the status of its records will be 
called a control State q, and Q is the set of 
all such q. A replacement algorithm con- 
figuration is a pair (S, q). If the configura- 
tion is (S, q) and page i is referenced, a 
new configuration (S/, qt) is entered. We 
describe this behavior b y  the allocation 
mapping 

g: ~Zm X Q X N - +  ffg,~ X Q, 

where 

g(S, q, i) = (S', q') 

and i is in S'. Starting from an initial con- 
figuration (So, q0), a replacement algorithm 
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processes the references rlr2 . . .  rk by gen- 
erating a sequence of  configurations. 

(So, qo), (S,,  q~), . . .  , (S~, qk), 

where 

(Sk , qk) = g(Sk-1,  qk-~ , r~), k > 1. 

Thus a replacement algorithm A may be 
described by specifying the 3-tuple A = 
(Q, q0, g). 

Now if A is a demand paging replace- 
ment algorithm, then whenever (S', q') = 
g(S, q, i),  the memory state S p must satisfy 
these properties: 

• If i E S then S ~ = S (no page fault). 
• If i ~ S and IS[  < m, then S'  = 

S [J {i} (page i added to memory). 
• I f i  ~ S a n d  ISI  = m, t henA selects 

somej E S andS '  = (S - {j}) (J {i} (page 
i replaces j). 

It can be shown that, for any nondemand 
paging algorithm A, one may construct a 
demand paging algorithm A'  that produces 
no more faults than A on every reference 
string [A2, M2]. We are therefore justified 
in restricting attention to demand paging 
algorithms. From now on, the term "al- 
gorithm" specifically means "demand paging 
replacement algorithm." 

Optimal Paging Algorithms 
Suppose r~ . . -  rk - . .  rK is the reference 

string generated by a given run of a pro- 
gram, and the reference moment t(rk) is 
that of a page fault. If algorithm A requires 
precise knowledge of the future (rk+l --.  r~) 
to make its replacement decision at t(rk), 
A is an "unrealizable" algorithm. Otherwise, 
if A bases its decision at t(rk) only on as- 
sumptions about the future (e.g. probabil- 
ities), A is a "realizable" algorithm. In 
most practical applications, we must be 
content with realizable algorithms; un- 
realizable ones would require "preprocess- 
ing" the program and recording its refer- 
ence string. Not only is this operation costly, 
but the record so obtained may well be 
invalid, due to conditional branching. 

As discussed in the previous section, we 
take as our  optimality criterion the mini- 

mization of the number of faults generated. 
Since the days of the earliest paging machine, 
people have reasoned that, to minimize the 
number of faults, it is necessary to maxi- 
mize the times between faults [K3]. There- 
fore the following has been the accepted 

PRINCIPLE OF OPTIMALITY. Let S = 
{1 ~, 2 t, " "  , m p} be the memory state at time 
t, the moment of a page fault,  and let t(i  ~) > t 
be the earliest moment at which page i '  is 
next referenced. Define v(i ')  = t(i ')  -- t. 
Replace that page i '  for which ~.(i t) is maxi-  
mum.  I f  the future is not precisely known, 
replace that page i '  for which the expected 
time E[r(ir)] is max imum.  

In the case that we maximize E[~.(i')]-- 
the case of realizable algorithms--we are 
attempting only to minimize the expected 
number of faults, rather than the actual 
number of faults. Thus an optimal un- 
realizable algorithm would produce fewer 
faults than an optimal realizable algorithm. 

The principle of optimality has great 
intuitive appeal. Belady [B3] has used it to 
develop an optimal unrealizable algorithm. 
Many other authors have developed various 
optimal realizable algorithms, each depend- 
ing on the particular assumptions used to 
determine E[r(i')]; for example, the Atlas 
machine's algorithm assumed most pro- 
grams were looping and therefore generating 
periodic reference strings [K3], and several 
systems used an algorithm that supposes 
E[r(i')] = t - t ' ( i ' )  where t ' ( i ' )  < t is the 
time i '  was most recently referenced (this 
rule is called "least recently used"). We 
shall not attempt to survey the multitude 
of paging algorithms that have been pro- 
posed and studied, these being amply treated 
in the literature [B3, B4, B6, C3, (38, D4, 
D5, D9, H1, K5, J2, K3, 02, S2, S3, $5]. 

Despite its intuitive simplicity, the Prin- 
ciple of Optimality is known not to hold for 
arbitrary assumptions about reference string 
structure and statistics. Even when it does 
hold, proofs of this are difficult, and are 
known only in simple cases [A2, M2]. 

Even though the Principle of Optimality 
may not in fact be always optimal, it is a 
good heuristic, and experience and experi- 
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mental evidence indicate that  algorithms 
based on this principle give nearly optimal 
performance. This evidence, suggested in 
Figure 18, is abstracted from the work of 
Belady [B3], and of Coffman and Varian 
[C3]. Let F(A, m, oo) denot~ the number of 
faults generated as algorithm A processes 
the reference string ,o under demand paging 
in an initially empty memory of size m, 
and define the fault probability 

f(A, m) = ~E~11 ~ Pr[oo](F(A, m, ~)/I oo I), 

where Pr[~] denotes the probability of oc- 
currence of ~, and I~[  denotes the length 
of oo. The curves f(A, m) for "reasonable" 
algorithms A lie in the shaded region of 
Figure 18 (by "reasonable" we mean that  
the assumptions used to determine E[r(i')] 
in the Principle of Optimality are reason- 
able). For comparison we have shown the 
relative position of f(A, m) for Belady's 
optimal unrealizable algorithm [B3]. The 
point is: for reasonable A, f(A, m) is much 
more sensitive to m than to A. Therefore, 
although the choice of paging algorithm is 
important, the choice of memory size is 
critical. 

Figure 18 brings out one other point. 
Occasionally in the literature one finds 
analyses of program behavior based on the 
assumption of randomness, i.e. that  each 
page of a given program is equally likely to 
be referenced at any given reference. This is 
equivalent to the assumption that  E[r(i')] = 
E[r(j ')] in the Principle of Optimality. If 
this were so, the fault probability for every 
realizable algorithm A would have to be 
f(A, m) = (n -- m)/n. This simply is not 
the case. Programs tend to reference certain 
pages heavily, others lightly, still others 
rarely. 

Contrary to intuition, increasing the 
memory size m may not always result in a 
corresponding decrease in f(A, m); that  is, 
f(A, m) mhy not be decreasing in m, as 
suggested by Figure 18. The FIFO (first-in- 
first-out) replacement algorithm, for 'ex- 
ample, is known to exhibit an increasing 
section in its fault probabihty curve, for 
certain reference strings [B6]. Mattson et 
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Fro. 18. Fault probability 

al. [M2] have discovered a very interesting 
class of replacement algorithms, called 
stack algorithms, whose f-curves are always 
decreasing in m. These algorithms are de- 
fined as follows. Let ¢o be a reference string, 
and let S(A, m, ¢o) denote the memory state 
after A has processed ~ under demand pag- 
ing in an initially empty memory of size m. 
Algorithm A is a stack algorithm if 

S(A, m, oo) ~ S(A, m Jr 1, oo), 
(i) 

l < m < n ,  

for every reference string w. That  is, the 
contents of the m-page memory are always 
contained in the (m + 1)-page memory, so 
that  the memory states are "stacked up"  
on one another. The LRU (least-recently- 
used) replacement algorithm, for example, 
is a stack algorithm (to see this, note that  
S(LRU, m, ~) always contains the m most 
recently used pages). Consider a stack 
algorithm A and a reference string ~x. If  
x is in S(A, m, w)--there is no fault when 
x is referenced--then by (i) x is also in 
S(A, m Jr- 1, w); thus increasing the mem- 
ory size can never result in more page 
faults, and f(A, m) must be decreasing in 
m for every stack algorithm A. The class 
of stack algorithms contains all the "reason- 
able" algorithms, and two algorithms known 
to be optimal [A2, M2]. They are particu- 
larly easy to analyze [M2]. 
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The Principle of Locality and the Working 
Set Model 

An important program property, alluded 
to in previous sections, is locality. Infor- 
mally, locality means that  during any inter- 
val of execution, a program favors a subset 
of its pages, and this set of favored pages 
changes membership slowly. Locality is an 
experimentally observed phenomenon mani- 
festing itself partly as a tendency for refer- 
ences to a given page to cluster, partly in 
the shape of the f (A ,  m) curve in Figure 18 
[B3, B4, D4, D5, D9], and partly in the 
rapidity with which a program acquires 
certain pages on demand at the beginning 
of a time quantum [C3, F2]. Locality is not 
unexpected, by the very nature of the way 
programs are constructed: 

--Context. At any given time a program 
is operating in one of its modules, which 
causes a concentration of references in cer- 
tain "regions" or "localities" of address 
space. For example', its instructions are 
being fetched from within the pages of some 
subroutine, or its data  are being fetched 
from the content of some specific data  seg- 
ment. 

--Looping. Programs tend often to loop 
for a long time within a small set of pages. 

In order to render the statement of 
locality more precise, we introduce the 
notion of the "reference density" for page i: 

ai(k) = Pr[reference rk = i], i E N. 

Thus 0 _< a~(k) _~ I and ~ at(k) = 1. Al- 
though a program's reference densities are 
unknown (and perhaps unknowable), the 
definition of "working set" given below 
obviates the need for attempting to measure 
them. By a "ranking" of a program's pages 
we mean a permutation R(k) = (1', 2', 
• . . , n ' )  such that  a , (k)  ~ . . .  ~_ a~,(k); 
a ranking R(k) is "str ict" if a , (k)  > . - .  > 
a~,(k). A "ranking change" occurs at refer- 
ence k if R(/c - 1) ~ R(k); a "ranking life- 
t ime" is the number of references between 
ranking changes. Ranking lifetimes will 
tend to be long if the a~(k) are slowly vary- 
ing functions of k. 

PRINCIPLE OF LOCALITY. The rankings 

R(k) are strict and the expected ranking life- 
times long. 

From the principle of locality comes the 
notion of "working set." A program's work- 
ing set at the kth reference is defined to be 

W(k, h) = {i E N I page i appears among 

rk-h+l ".- rk}, h ~ 1. 

In other words, W(k,  h) is the "contents" 
of a "window" of size h looking backwards 
at the reference string from reference rk. 
The working set at time t is W(t, h) = 
W(k, h) where t(r~) < t < t(rk+l). Page i is 
expected to be a member of the working set 
if it is referenced in the window, i.e. if 

k 
ai(j) ~ 1. 

j~k--h+l 

(This equation, together with assumptions 
about the at(k), could be used to determine 
a value for h. For example, if it were as- 
sumed that  ai(k) = al and it were declared 
that  pages with a~ < a0 for some given a0 
ought not be expected as members of the 
working set, then h = 1/ao .) Therefore, a 
working set is expected to contain the "most 
useful" pages; by the principle of locality it 
changes membership slowly. 

Now suppose locality holds and R(k) = 
(1 p, 2', . . .  , n ') .  If i '  is ranked higher than 
j '  (i.e. a~,(k) > aj,(k)) then E[r(i ')] < 
E[r(j')], and because ranking lifetimes are 
long, this relation is expected not to change. 
Since i '  is more likely than j '  to be in 
W(k, h), there follows: 

WORKING SET PRINCIPLE. Suppose mem- 
ory management operates according to the 
following rule: A program may run if  and 
only i f  its working set is in memory, and a 
page m a y  not be removed if it is the member 
of a working set of a running program. Then, 
according to the principle of locality, this rule 
is an implementation of the principle of opti- 
mality. 

The working set principle is more than a 
memory management policy, for it implies 
a strong correlation between processor and 
memory allocation. Its implementation does 
not depend on measurement of reference 
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densities. This principle is used explicitly in 
at least one computer system, the RCA 
Spectra 70/46 [D2, O3, Wl]. 

Working sets exhibit a number of impor- 
tant properties. Let w(h) denote the expected 
working set size, i.e. w(h) = E[ I W(t, h) I]. 
It is shown in [D5] that, for h P_ 1, 

(1) 1 _< w(h) < min {n, h}, 
(2) w(h) < w(h t- 1) (nondecreasing), 
(3) w(h -q- 1) -q- w(h - 1) < 2w(h) (con- 

cave down), 

which give w(h) the general character of 
Figure 19. The following is also shown in 
[D5]. Let g(h) denote the probability that a 
page, when referenced, is not in W(t, h). 
Suppose h is increased by 1, so that a new 
reference (rL-h) is included in the window; 
the resulting change in the working set size 
is 

Z x W = { :  otherwise.ifrt-hisn°tinW(t'h)' 

But then E[5W] = g(h), and we have the 
important result that 

~(h) = w(h  + 1) - w(h) .  

This suggests that measurements of a pro- 
gram's working set size function can be used 
to obtain approximations to f(A, m), for 
m = w(h) and working set strategy A. It  is 
possible to relate w(h) to certain properties 
of reference strings [D5], and to use w(h) in 
determining how much memory is required 
in a given computer system [D7]. Finally, 
let w(h, z) denote the expected working set 
size (in pages) when the page size is z, and 
apply the compression results of the section 
on Compression Factor: 

zlw(h, zl) _< z~w(h, z2) if zl < z2. 

That is, a working set will comprise fewer 
words for smaller page sizes. 

The definition given above is not, of 
course, the only possible definition for work- 
ing set. As specified, the method for measur- 
ing a working set is after the fact and its 
reliability depends on the slowly varying 
assumption about reference densities. The 
method will fail to predict the imminent 

w(h) 

I 
/ I 

/ 

i i 

~ h  
O 

FiG. 19. Expected working set si~e 

presence in the working set of a page which 
was not referenced in the window. This 
definition is designed for systems where the 
future is unknown, where the principle of 
locality holds most of the time, and where a 
"maximum likelihood" estimate of the 
future is sufficient. A still open question 
concerns how to use "context" and "loop- 
ing" properties, together with knowledge of 
program structure, to predict before it is 
referenced that a page will shortly become a 
member of the working set. 

Multiprogramming and Thrashing 
Paging algorithms for multiprogrammed 

memories normally lie at or between two 
extremes: 

1. Locally. The memory is partitioned 
into "work spaces," one for each program. 
The paging algorithm is applied independ- 
ently in each work space. In particular, a 
page fault in a given program can cause a 
replacement only from its own work space. 
The size of a work space remains fixed until 
allowed to change by the system. 

2. Globally. The paging algorithm is 
applied to the entire collection of running 
programs, as if that collection were one 
large program, without regard for which 
pages belong to which programs. In particu- 
lar, a page fault in a given program may 
cause a replacement from arty program in 
memory. The size of a program's work space 
is therefore randomly variable. 

The working set principle, so formulated 
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that  it tells how memory is to be managed 
under multiprogramming, is a form of a 
local policy. Indeed, global policies are in 
general suboptimal, partly because there is 
no way to determine when memory is "over- 
crowded," and partly because there is no 
way to guarantee that  a program's work 
space is large enough to contain its working 
set even if memory is not "overcrowded." 

Multiprogramming under a global policy 
is susceptible to thrashing, a collapse of 
performance that  may occur when memory 
(or parts of memory) is overcommitted 
[D6]. Thrashing is a complicated phenome- 
non. At the risk of oversimplification, we 
shall derive a condition that  estimates when 
it will occur. We assume (1) that  the i th  
program in memory has average work space 
m~ and fault probability f i(ml) under the 
given global policy, where f~ is stationary 
over the time interval under consideration; 
and (2) for each i, f i (m')  ~ f~(m) whenever 
t o t e m .  

A "du ty  factor" d(m) for a program occu- 
pying a work space of average size m may 
be defined as follows: if f(m) is the program's 
fault probability, then the expected number 
of references between faults is l / f  (m); if each 
memory reference takes expected time 5 
(see the section on Basic System Hardware) 
and each page transport takes expected 
time T, then the expected fraction of time 
this program spends in execution is 

d(m) [5/ f (m)l /[5/ f (m)  + T], 
o~ = T / ~ .  

= 1 / [1  --~ af (m)] ,  

Using condition (2) above, it is not difficult 
to show that ,  if m'  < m, 

0 ~ d(m) -- d(m')  < a( f (m' )  -- f (m)) .  (i) 

If d(m) -- d(m')  is near its upper bound and 
a is large, a relatively small change in work 
space size will be reflected as a large change 
in d. This is necessary to induce thrashing. 

Now imagine the following conditions 
holding for an M-page multiprogrammed 
memory using a global policy. Initially there 
are k - 1 programs in memory, the i th pro- 
gram occupies a work space of average size 
mi ~ 1, and ml -b " -  + mk-1 = M. When 

the kth program is introduced, it is granted 
mk' pages and the global policy changes the 
remaining mi to mi' < m~. Letting Dj de- 
note the total expected processing efficiency 
when j programs are in memory, we .have 

k--1 

Dk-, = ~ d,(mi), 

k 

Dk = ~ di(m~'). 
i=l 

Thrashing occurs if Dk << D~_1,1 i.e. the 
addition of one more program triggers a 
collapse of processing efficiency. Using (i) 
we find 

k--1 

Dk-j -- Dk < a ~ (f~(m~') -- f~(m~)) 
i~l  

-- dk(mk') (it) 

aFo -- dk(mk'). 

Now if the quanti ty Dk_~ -- Dk is near its 
upper bound and aF0 is not small, then it is 
possible to obtain Dk_l << Dk. Experiments 
on the RCA Spectra 70/46 computer sys- 
tem, for which a > 104 (a drum auxiliary 
memory), show that  this condition is easy 
to induce [D2]. Conversely, we can prevent 
thrashing if we can guarantee tha t  aF9 is 
small, which may be done by using faster 
auxiliary memory or by operating programs 
with space allocations which vary only in 
ranges where F0 is small. 

Now suppose a working set policy is in 
effect. Let the random variable ~(h~) denote 
the working set size of program i for window 
size h~, and let g~(h~) denote the probability 
that  a page is not in the working set. Be- 
cause the pages with highest reference den- 
sities are most likely to be members of the 
working set, gi is decreasing, i.e. gi(hi) > 
g~(h~ + 1). The duty  factor d~(h~) for pro- 
gram i under a working set policy satisfies 

d,(h~) > 1/[1 + age(hi)I, 

where the inequality holds because a page 
not in the working set may still be in the 
memory, so tha t  g~(h~) is at least as large 
as the  fault probability. Since g~ is decreas- 

Notation x << y means "x is much less than y." 
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ing, we may always choose h~ large enough 
so that g~(hO _< go for some given go, 0 < 
go <_ 1 ; therefore we may guarantee that 

do ~ 1/(1 + ago) _~ ddh~) _< 1. 

In other words, we may always choose h~ 
large enough that program i operates at or 
above the desired level do of efficiency. 
(Normally, we would choose do so that the 
relation do ~ 1 is false.) This implies that 

l~do < Dk _< k. (iii) 

If we are considering adding the kth pro- 
gram to memory, we may do so if and only if 

k--1 

w,(hk) _< M - ~ ~i(h~), 
i--1 

i.e. there is space in memory for its working 
set. Assuming that do << 1 is false, the addi- 
tion of the kth program cannot cause thrash- 
ing. Suppose it does, i.e. suppose Dk << 
Dk_~ ; by (iii) we have 

kdo < Dk << Dk-1 < lc, 

which yields the contradiction do << 1. 
Thus working set policies may be used to 
prevent thrashing. Experiments on the RCA 
Spectra 70/46 computer system appear to 
verify this [D2]. 

PROGRAM STRUCTURE 

Careful attention to algorithm organization 
and program structure can improve the 
performance of virtual memory systems. 
There are two ways in which this can be 
accomplished: distributing program code 
properly into pages, and improving pro- 
gramming style. 

Program code is normally assigned to 
pages simply by assigning the first z words 
to page 1, the next z words to page 2, and 
so on. There is considerable evidence that 
this may be far from satisfactory. Comeau 
[C7] describes an experiment in which a 
program consisting of many subroutines 
was paged, first with the subroutines in 
alphabetic order, then with the subroutines 
grouped together according as they were 
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likely to call one another; there was a re- 
markable reduction in the number of page 
faults using the latter method. McKellar 
and Coffman [M4] have studied how matrix 
elements should be assigned to pages and 
how standard matrix operations could be 
organized to give better performance under 
paging; they too report a rather remarkable 
improvement in certain cases. 

Informally, the code distribution problem 
is: How can the compiler (or the subroutine 
linker) be employed to distribute program 
code and data into pages in order to improve 
locality and obtain small, stable working 
sets? Formally, the code distribution prob- 
lem may be stated in the following way. 
A program is regarded as a directed graph 
G whose nodes represent instructions or 
data and whose edges represent possible 
single-step control transfers. With edge 
(i, j) is associated a cost c~i >_ 0 of travers- 
ing that edge (c~ might, for example, repre- 
sent the probability that (i, j) will be used). 
Given a page size z ~ 1, a pagination of the 
program is a partition of the nodes of G 
into disjoint sets X~, . . .  , Xr such that Xk 
contains at most z nodes, 1 < k < r. Each 
X~ will be placed on its own page. For a 
given pair of pages (X, X/), let 

v(x, x ' ) =  52 52 c,j 
i E X  j E X  ~ 

denote the total cost of MI edges passing 
between X and X/. The cost of the pagina- 
tion X1, • • • , X~ is then 

C(X,, . . . , X r )  = ~ V(X, ,Xj ) .  

A pagination is optimal if it achieves mini- 
mal cost. Calculating an optimal pagination 
for a given program is in general a hope- 
lessly complex computation, and relatively 
simple algorithms are known only in special 
cases [K2, R1]. Even then, the prospective 
user of such a scheme would be faced with 
the problem of deciding whether he would 
be executing the optimized code sufficiently 
often that the long-term savings would 
balance the initial high cost of obtaining 
the optimized code. 

One must be careful with this sort of 
approach. However attractive the mathe- 
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matics involved, the results may not be 
particularly useful except in certain obvious 
cases such as those mentioned above. If the 
trend toward increased use of modular 
programming continues, the value of using 
a compiler to determine an optimal pagina- 
tion is questionable: (1) program modules 
tend to be small, and very often fit on their 
own pages; and (2) in contradiction to the 
assumption that the code optimizer must 
know the connectivity structure of the 
entire program, the compiler of a module 
may not know the internal structure of any 
other module. (If it did, the very purpose of 
modular programming would be defeated.) 
The optimization process cannot, therefore, 
be invoked prior to loading time; and if the 
trend toward data dependent program 
structures continues, there is some question 
whether even the loader can perform mean- 
ingful optimization. 

Improving programming style to improve 
locality is an almost intangible objective 
and is something about which little is known 
or can be said [K6]. A few experiments 
show that locality (and therefore paging 
behavior) is strongly a function of a pro- 
grammer's style, and it is possible to im- 
prove many programs significantly by rela- 
tively minor alterations in strategy, altera- 
tions based on only a slight knowledge of 
the paging environment [B9, $2]. It is not 
known, however, whether programmers can 
be properly educated and inculcated with 
the "right" rules of thumb so that they 
habitually produce programs with "good" 
locality. If any such education is to be 
fruitful for a large class of programmers, it 

PROCESSOR 

....... S L k V E  CONNECTIONS 
- - -  DISTRIBUTIVE CONNECTIONS 

Fro. 20. Memory hierarchy structure 

must teach techniques that may be applied 
without knowledge of machine details (page 
size, memory size, and the like). Highly 
structured programming languages, where 
the "context" (see the section on The Prin- 
ciple of Locality and the Working Set 
Model) is readily detectable at the machine 
level, may be the answer; in other words, 
the programming language would "force" 
the programmer into the "correct" style. 
The programming language ALGOL, which 
makes heavy use of a stack during execu- 
tion, is an example of this; the working set 
will surely contain the information near the 
top of the stack, and is therefore easily 
measured. Much more sophisticated ap- 
proaches have been conceived [D14]. 

HARDWARE SUPPORT 

We have seen that the three principal po- 
tential difficulties with multiprogrammed, 
paged memory systems are fragmentation, 
thrashing, and the high space-time cost of 
loading working sets into memory under 
demand paging. These three problems are 
partially attributable to the large speed 
ratio T/A between the main and auxiliary 
memory; if this ratio is large, it forces large 
page sizes in order to make page transport 
operations efficient, it makes processing 
efficiency very sensitive to fluctuations in 
fault probability, and it causes the space- 
time cost of a single page-transport opera- 
tion to be very high. Therefore, one aspect 
of improving hardware for virtual memory 
concerns the reduction of this ratio. 

The literature reports two directions in 
which approaches to reducing the ratio 
T/A have proceeded, to which we shall 
refer as slave memory ("cache" memory) 
[F5, L2, W3, W4] and distributive memory 
[A3, D8, F1, L1, V1]. Both approaches 
employ a memory hierarchy (Figure 20) 
consisting of k "levels"; levels M1, . . .  
Mk_l are electronically accessed (e.g. core 
memory, thin film memory, or silicon- 
register memory), and level Mk is mechan- 
ically accessed (e.g. drum or disk). The 
electronic levels may be accessed without 
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latency time. Generally, the lower the num- 
ber of the level, the faster its speed, the 
higher its cost, and the lower its capacity. 
The distinguishing feature is that slave 
memory permits processing only from level 
M1, whereas distributive memory allows 
processing from any of the electronic levels 
M1, - . .  , Mk-1. 

Typically, the combined capacity of the 
electronic levels in these approaches is large 
enough to hold all the information of all 
active programs. Therefore, the transport 
time for a page among the electronic levels 
is small, because the speed ratios between 
adjacent levels can be made small. Accord- 
ingly, a hierarchical memory organization 
of this kind can achieve the objectives re- 
quired to make paged virtual memory per- 
form well. 

The slave memory approach [W3] was 
first implemented as the "cache store" on 
the IBM 360/85 [L2]. This approach is so 
named because information transfers among 
levels are entirely controlled by activity in 
the ("master") level M~ . The rules of opera- 
tion are: 

1. Whenever a page is stored in Mi ,  there 
is a copy of it in each of M~+i, • • • , Mk-1. 
Whenever a page in M1 is modified, all 
copies of it in the lower levels must be 
modified likewise. 

2. Whenever a page not in Mj is refer- 
enced, a request for it is sent to the lower 
levels; the retrieval time depends on the 
"distance" to the "nearest" level containing 
a copy of the required page. 

3. Whenever M~ is full and a new page is 
brought in from M~+j, a replacement policy, 
usually least recently used, is invoked to 
select a page to be deleted (since there is 
already a copy in M~+i, there is no need to 
move the displaced page). 

The principal advantage of this organiza- 
tion is that a program's working set will 
rapidly accumulate in M~ and be retained 
there; accesses will thus be completed at 
nearly the speed of Mj . A second advantage 
is that, because transport times are small, 
pages may be small, and all the advantages 
of small pages are accrued. A third ad- 
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vantage is that the mechanism is simple 
enough to be implemented almost entirely in 
hardware [W3]. A fourth advantage is the 
possibility of implementing certain associa- 
tive processing operations in the main 
level [$6]. 

Many modern processors employ an 
"instruction stack," which is a small num- 
ber of registers (usually no more than 32) 
that store the most recently referenced in- 
structions of a program. Not only does this 
stack permit "lookahead," it' acts as a small 
slave memory that allows processing to 
proceed at nearly register speed for loops 
that are contained in the stack [W3]. The 
most notable examples of slave memory 
implemented as discussed above are the 
cache memory [L2] on the IBM 360/85, 
IBM 360/195, and CDC 7600. These sys- 
tems use k = 3, Mj being a silicon-register 
memory with cycle time about 0.1 gsec and 
Ms a core memory with cycle time about 
1 gsec. The level Mj is about 32K bytes 
capacity, and has been found substantial 
enough to accumulate the working sets of 
all but the largest programs. Even if the 
working set cannot be contained in M1, 
performance is not appreciably degraded 
because the speed ratio between M1 and 
M2 is small. 

In the distributive memory approach, the 
processor may access information stored in 
any of the electronic levels. Thus the pages 
of a given program may be distributed 
among the various levels while being proc- 
essed. Generally, the more frequently a 
page is referenced, the higher should be the 
level in which it is stored. The most notable 
example of such a system is that at Carnegie- 
Mellon University IF1, L1, V1], which uses 
k = 3; M~ is a standard core memory with 
cycle time about 1 ~sec and Ms a large 
capacity store (LCS) with cycle time about 
8 ~sec. 

The distributive memory system presents 
certain sticky implementation problems not 
found in the slave memory system. The 
worst is a requirement that there be a policy 
to determine when a page should be moved 
to a higher (or lower) level. These policies 
are generally based on a tradeoff between 
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the cost of not moving the page and running 
at slower speed, and the cost of moving the 
page; they generally require some estimate of 
each page's reference density for these de- 
cisions, the estimates being obtained by 
preprocessing [C1], by measurements taken 
in a previous time quantum [F1], or dy- 
namically [D8]. Systems using dynamic 
measurement techniques require additional 
mechanism to avoid instability [D8]. 

Which of the two approaches--slave or 
distributive memory--is superior is an un- 
settled question. That the implementation 
problems of distributive memory seem more 
severe leads one to suspect that perhaps the 
slave memory approach may be the better 
way to use the hardware. 

Reducing the ratio T/A is not alone 
sufficient to improve performance of virtual 
memory systems. A second aspect of im- 
proving hardware for these systems con- 
cerns mechanisms for obtaining measure- 
ments useful in memory allocation. Most 
systems implement page table entries with 
one or more of these extra bits present: 

1. Modified bit. Set to 1 if and only if 
the page was modified since being placed in 
memory. If this bit is 0, the page may be 
deleted rather than replaced, assuming there 
is a copy in a lower level of memory. 

2. Use bit. Set to 1 whenever the page is 
referenced, and to 0 by a usage metering 
routine. The metering routine can compile 
statistics on page use by reading these bits. 

3. Unused bit. Set to 1 when a page is 
placed in memory and to 0 the first time it 
is referenced. This hit signifies that the page 
has not yet been referenced by the program 
that demanded it, and should not be re- 
moved from memory at least until that time. 

The use bits may serve to determine a 
working set or to calculate reference den- 
sities. Counters can also be used for this 
purpose [D8]. If the addressing mechanism 
contains a large enough associative memory 
that its contents remain stable, then the 
pages entered there may be regarded as the 
program's working set; similarly, the pages 
which accumulate in the level M1 of the 
slave memory may be regarded as the pro- 
gram's working set. 

A third aspect of improving virtual mem- 
ory hardware concerns the nature of the 
addressing mechanisms. Difficulties have 
occurred in virtual memories where informa- 
tion is potentially sharable among distinct 
address spaces [B7, D13]. Here each seg- 
ment may have two names: a "local" name 
which serves to identify it within a given 
address space, and a "global" name which 
serves to identify it systemwide. Local 
names are interpreted in the usual way by 
hardware (see the section on Implementa- 
tion of Virtual Memory), and global names 
are interpreted by software (e.g. "file direc- 
tories"). The mechanism for converting 
global names to local names is quite involved 
and time consuming [B7, D1]. The solution 
appears to require that every segment have 
one, system-wide name which may be in- 
terpreted by hardware at every level of 
memory [D141. 

CONCLUSIONS 

We began this survey of virtual memory 
system principles by tracing the; history 
and evolution of the forces that compelled 
dynamic storage allocation, i.e. desires for 
program modularity, machine independence, 
dynamic data structures, eliminating manual 
overlays, multiprogramming, and time- 
sharin~-Amoag the mo t ~ e g _ ~ t  solutions 
to the d ~ n a m i c ~ f ~ g ~  allocation~problem is 
virtual memory, wherein a-_or.p_gr:A_~._2,r--Js-- 
.given the illusion that his address spa c, e_is 
.~.e"- ihem(J~ space. There ~-aar6 t w o  basic 
ap~roa~s~o-i~p-I~menting the automatic 
translation of addresses from address to 
memory space, these being ~mentatiox~5 
and .paging ) since segmentation ~ i - r e O  
by programmers and paging b y  system 
implementers, the best implementation c()n~- " 
bines the two. We compared "pur~! seg=_. 
mentation with paging, and ffoa!ng~p_gy~ 
memory systems generally ,.J.~pexic[r except 
for three potential difficulties-'~ (1) suscepti- 
bility to low storage utilization for large 
page sizes, (2) propensity toward thrashing 
under multiprogramming, and (3) the high 
cost of loading working sets under demand 
paging at the start of a time quantum. One 
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problem with all implementations of virtuM 
memory in which the address space is much 
larger than the memory space is potential 
misuse by programmers clinging unduly to 
the idea that  space and time may be traded. 
This last statement must, however, be in- 
terpreted carefully. Programmers who have 
been warned that  the space-time tradeoff 
does not hold, and have gone to the extra 
work of reducing the total amount of ad- 
dress space employed, have often increased 
the size of the working set. The objective is 
to have a small, stable, slowly changing 
working set. If  this is achieved, the amount 
of address space employed is immaterial. 

These problems can be controlled, but  re- 
quire hardware support above and beyond 
that  offered by many current systems. Since 
a memory system is more than mere imple- 
mentation of an address map, we included u 
study of the principles of optimal replace- 
ment policies, and found that  the ,worl~ing 

..get prJ.aai-phb together with the .prk:w,l.ple--~f 
l o c a ~  is an implementation of the Prin- 
ciple of Optimality. By stating a method 
whereby one may determine each program's 
working set, this principle implies tha t  one 
may take steps to avoid overcommitment 
of memory, and thrashing. 
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