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Abstract
Traditional Network-on-Chips (NoCs) employ simple arbitration

strategies, such as round-robin or oldest-first, to decide which pack-

ets should be prioritized in the network. This is suboptimal since dif-

ferent packets can have very different effects on system performance

due to, e.g., different level of memory-level parallelism (MLP) of

applications. Certain packets may be performance-critical because

they cause the processor to stall, whereas others may be delayed for

a number of cycles with no effect on application-level performance

as their latencies are hidden by other outstanding packets’ latencies.

In this paper, we define slack as a key measure that characterizes the

relative importance of a packet. Specifically, the slack of a packet is

the number of cycles the packet can be delayed in the network with

no effect on execution time. This paper proposes new router prioriti-

zation policies that exploit the available slack of interfering packets

in order to accelerate performance-critical packets and thus improve

overall system performance. When two packets interfere with each

other in a router, the packet with the lower slack value is priori-

tized. We describe mechanisms to estimate slack, prevent starvation,

and combine slack-based prioritization with other recently proposed

application-aware prioritization mechanisms.

We evaluate slack-based prioritization policies on a 64-core CMP

with an 8x8 mesh NoC using a suite of 35 diverse applications.

For a representative set of case studies, our proposed policy in-

creases average system throughput by 21.0% over the commonly-

used round-robin policy. Averaged over 56 randomly-generated

multiprogrammed workload mixes, the proposed policy improves sys-

tem throughput by 10.3%, while also reducing application-level un-

fairness by 30.8%.
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1. Introduction
Network-on-Chips (NoCs) are widely viewed as the de facto solu-

tion for integrating a large number of components future micropro-
cessors will consist of. In contrast to ad-hoc point-to-point global
wiring, shared buses or monolithic crossbars, NoCs are scalable and
have well-controlled and highly predictable electrical properties. It
is thus foreseeable that on-chip networks will become one of the
most critical shared resources in many-core systems, and that the
performance of such systems will heavily depend on the resource
sharing policies employed in the on-chip networks. Therefore, de-
vising efficient and fair scheduling strategies is particularly impor-
tant (but also challenging) when the network is shared by diverse
applications, with potentially different requirements.

Managing shared resources in a highly parallel system is one of
the most fundamental challenges that we face. While interference of
applications is relatively well understood for many important shared
resources, such as shared last-level caches [18, 30, 5, 4, 11] or mem-
ory bandwidth [26, 23, 24, 19], less is known about the interference
behavior of applications in NoCs, and the impact of this interference
on applications’ execution times. One reason why analyzing and
managing multiple applications in a shared NoC is challenging is
that application interactions in a distributed system can be complex
and chaotic, with numerous first- and second-order effects (queue-
ing delays, different memory-level parallelism (MLP), burstiness,
impact of the spatial location of cache banks, etc.) and hard-to-
predict interference patterns that can have a significant impact on
application-level performance.

A major algorithmic question that governs application interactions
in the network is the NoC router’s arbitration policy, i.e., which
packet to prioritize if two or more packets arrive at the same time,
and they want to take the same output port. Traditionally, arbitra-
tion policies used in on-chip networks have been very simple heuris-
tics, including round-robin (RR) and age-based arbitration (oldest-
first). These arbitration policies treat all packets equally, irrespec-
tive of source applications’ characteristics. In other words, these
policies arbitrate between packets as if each packet had exactly the
same impact on application-level performance. In reality, however,
applications can be diverse with unique and dynamic characteris-
tics/demands. Different packets can have a vastly different impor-
tance to their respective application’s performance. In the presence
of memory level parallelism (MLP) [16, 22], although there might be
multiple outstanding load misses in the system, not every load miss
is a bottleneck-causing (i.e. critical) miss [14]. Assume, for exam-
ple, that an application issues two concurrent network requests, one
after another, first to a remote node in the network, and second to a
closeby node. Clearly, the packet going to the closeby node is less
critical, because even if it is delayed for several cycles in the net-
work, its latency will be hidden from the application by the packet
going to the distant node, which takes more time. Thus, the delay
tolerance of each packet with regard to its impact on its application’s
performance can be different.

In this paper, we exploit this diversity of packets to design higher-
performance and more application-fair NoCs. We do so by differ-
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Figure 1: (a) The concept of slack, (b) Packet distribution of applications based on slack cycles

entiating packets based on their slack, a measure that captures the
packet’s importance to its application’s performance. Particularly,
we define the slack of a packet to be the number of cycles the packet
can be delayed in the network without having an effect on the ap-
plication’s execution time. Hence, a packet is relatively non-critical
until the time it spends in the network exceeds the packet’s avail-
able slack. In comparison, increasing the latency of packets with
no available slack (by de-prioritizing them during arbitration in NoC
routers) will cause the application to stall.

We describe Aérgia1, a new NoC architecture that contains new
router prioritization mechanisms to accelerate the critical packets
with low slack values by prioritizing them over packets with larger
slack values. To this end, we devise techniques to efficiently esti-
mate the slack of a packet dynamically. Prior to injection into the
network, each packet is tagged with a priority that depends on the
estimated slack of the packet. We propose extensions to routers to
prioritize packets with lower slack at the contention points within
the router (i.e., buffer allocation and switch arbitration). Finally, to
ensure forward progress and starvation freedom from prioritization,
Aérgia groups packets into batches, and ensures that all the pack-
ets from an earlier batch are serviced before packets from a later
batch. Experimental evaluations on a cycle-accurate simulator show
that our proposal effectively increases overall system throughput and
application-level fairness in the NoC. To summarize, the main con-

tributions of this paper are the following:

• We observe that the packets in the network have varying de-
gree of slack, and analyze the correlation of slack to application
characteristics, such as the application’s MLP. We observe that
existing arbitration policies schedule packets regardless of their
slack, and that state-of-the-art global application-aware prioriti-
zation (STC) mechanisms proposed in [8] can sometimes lead to
unfairness because they treat packets of an application equally.

• We propose novel, slack-aware prioritization mechanisms (on-
line slack estimation, and slack-aware arbitration) to improve
application-level system throughput and application-level fair-
ness in NoCs. Our key idea is to dynamically estimate the avail-
able slack of each network packet and prioritize critical packets
with lower available slack in the network.

• We qualitatively and quantitatively compare our proposal to pre-
vious local and global arbitration policies, GSF [21], and STC [8].
We show that our proposal provides the highest overall system

1Aérgia is the female spirit of laziness in Greek mythology. Inspired from
the observation that packets in Network-on-Chip can afford to slack (off), we
name our architecture Aérgia.

throughput as well as the best application-level fairness (10.3%
improvement in weighted speedup and 30.8% reduction in un-
fairness over the baseline round-robin policy across 56 diverse
multiprogrammed workloads).

• We show that Aérgia is a fine-grained prioritization mechanism
that can be used as a complementary technique with any other

prioritization substrate to improve performance and fairness.
Thus, using Aérgia within the STC framework improves both
system performance and fairness, respectively by 6.7% and 18.1%
compared to STC over 56 diverse multiprogrammed workloads.

2. Motivation

2.1 Concept of Slack

Modern microprocessors employ several memory latency toler-
ance techniques (e.g., out-of-order execution [35] and runahead ex-
ecution [10, 25, 22]) to hide the penalty of load misses. These tech-
niques exploit Memory Level Parallelism (MLP) [16] by issuing sev-
eral memory requests in parallel with the hope of overlapping future
load misses with current load misses [22]. In the presence of MLP
in an on-chip network, the existence of multiple outstanding packets
leads to overlap of packets’ latencies, which introduces slack cycles.
Intuitively, the slack of a packet is the number of cycles the packet
can be delayed without affecting the overall execution time. For ex-
ample, consider the processor execution time-line shown in Figure 1
(a). In the instruction window, the first load miss causes a packet
(Packet0) to be sent into the network to service the load miss, and
the second load miss generates the next packet (Packet1). In the ex-
ecution time-line of Figure 1 (a), Packet1 has lower network latency
than Packet0, and returns to the source earlier. Nonetheless, the pro-
cessor cannot commit Load0 and stalls until Packet0 returns. Thus,
Packet0 is the bottleneck packet, which allows the earlier-returning

Packet1 some slack cycles as shown in the figure. Packet1 could be
delayed for the slack cycles without causing significant application-
level performance loss.

2.2 Advantages of Exploiting Slack

In this paper, we show that a network-on-chip architecture that is
aware of slack can lead to better system performance and fairness.
The number of slack cycles a packet has is an indication of the im-
portance or criticality of that packet to the processor core. If the
NoC were aware of the remaining slack of a packet, it could take ar-
bitration decisions that would accelerate packets with a small slack,
which would improve the overall performance of the system.
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Figure 2: Conceptual example showing the advantage of incorporating slack into prioritization decisions in the NoC

Figure 2 shows a motivating example. Figure 2(a) shows the in-
struction window of two processor cores (Core A at node (1,2) and
Core B at node (3,7)). The network consists of an 8x8 mesh as shown
in Figure 2(b). Core A generates two packets (A-0 and A-1). The first
packet (A-0) is not preceded by any other packet and is sent to node
(8,8), hence it has a latency of 13 hops and a slack of 0 hops. In the
next cycle, the second packet (A-1) is injected towards node (3,1).
This packet has a latency of 3 hops, and since it is preceded (and
thus overlapped) by the 13-hop packet (A-0), it has a slack of at least
10 hops (13 hops - 3 hops). Core B also generates two packets, (B-0

and B-1). The latency and slack of Core B’s packets can be calcu-
lated similarly. B-0 has a latency of 10 hops and slack of 0 hops. B-1

has a latency of 4 hops and slack of 6 hops.
The concept of slack can be exploited when there is interference

between packets with different slack values. In Figure 2(b), for ex-
ample, packets A-0 and B-1 interfere. The critical question is, which
of the two packets should be prioritized by the router, and which one
should be queued/delayed?

Figure 2(c) shows the execution time-line of the cores with the
baseline slack-unaware prioritization policy that prioritizes packet
B-1, thereby delaying packet A-0. In contrast, if the routers were
aware of the slack of packets, they would prioritize packet A-0 over
B-1 because the former has smaller slack, as shown in Figure 2(d).
Doing so would reduce the stall time of Core A without significantly

increasing the stall time of Core B, thereby improving overall sys-
tem throughput, as Figure 2 shows. The critical observation is that
delaying a packet with a higher slack value can improve overall sys-
tem performance by allowing a packet with a lower slack value to
stall its core less.

2.3 Diversity in Slack and Its Analysis

The necessary condition to exploit slack is that there should be
sufficient diversity in slack cycles of interfering packets. In other
words, it is only possible to benefit from prioritizing low-slack pack-
ets if the network contains a good mix of both high- and low-slack
packets at any time. Fortunately, we find that there exists sufficient
slack diversity in realistic systems and applications.

Let us define the term predecessor packets, or simply predeces-

sors for a given packet P as all packets that are i) still outstanding
and ii) have been injected into the network earlier than P . Con-
versely, we call subsequent packets to be successor packets (or suc-

cessors). The number of slack cycles for each packet varies within
application phases as well as between different applications. This
is primarily due to variations in 1) latency of predecessors and 2)
number of predecessors for a given packet. Specifically, a packet

is likely to have high slack if it has high-latency predecessors or if
it has a large number of predecessors, since in both cases, the like-
lihood of its latency to be overlapped (i.e. its slack to be high) is
higher.

The latency of a predecessor varies depending on whether it is
an L2 cache hit or miss. An L2 miss has very high latency due to
off-chip DRAM access, and therefore, causes very high slack to its
successor packets (unless the successors are also L2 misses). Also,
as demonstrated in the above example, predecessor latency varies
depending on the distance or number of hops the predecessor packet
has to traverse in the network. The number of predecessor packets is
determined by the injection rate of packets (i.e., L1 cache miss rates)
as well as the burstiness of packet generation of a source application
running on a particular node.

Figure 1(b) shows a cumulative distribution function of the diver-
sity in slack cycles for different applications.2 The X-axis shows the
number of slack cycles per packet.3 The Y-axis shows the fraction
of total packets that have at least as many slack cycles per packet
as indicated by the X-axis. Two trends are visible. First, most ap-
plications have a good spread of packets with respect to number of
slack cycles, indicating sufficient slack diversity within an applica-

tion. For example, 17.6% of Gems’ packets have at most 100 slack
cycles, but 50.4% of them have more than 350 slack cycles. Second,
different applications have different slack characteristics. For exam-
ple, the packets of art and libquantum have much lower slack
in general than tpcw and omnetpp.

3. Characterization and Online Estimation
of Slack

The premise of this work is to identify critical packets with low
slack and accelerate them by de-prioritizing packets with high slack
cycles. In this section, (i) we formally define slack (ii) since slack
itself cannot be directly measured, we perform detailed characteriza-
tion of slack to find indirect metrics that correlate with slack (iii) we
then show how these metrics can be quantized into specific priority
levels and (iv) finally, we describe on-line techniques to dynamically
approximate the indirect metrics (and hence slack) in an NoC.
2Although our final performance evaluation spans a suite of 35 applications,
in all our characterization plots we show a subset of 16 applications for clar-
ity. These 16 applications represent equally, heavy, medium, light utilization
and network sensitive applications. We collected these statistics over 56 ran-
domly generated workloads (See Section 6 for system configuration).
3The value on the X axis (slack cycles per packet) is proportional to end-to-
end predecessor packet latency (which includes DRAM access latency and
all network-on-chip transactions). Hence, we characterize slack up to the
potentially maximum memory access latency of 1700 cycles.
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Figure 3: (a) Packet criticality based on number of miss-predecessors, (b) Distribution of packets based on number of miss-
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3.1 Slack Definition
Slack can be defined locally or globally [13]. Local slack is the

number of cycles a packet can be delayed without delaying any sub-
sequent instruction. Global slack is the number of cycles a packet
can be delayed without delaying the last instruction in the program.
The computation of a packet’s global slack requires critical path
analysis of the entire program, rendering it impractical in our con-
text. Hence, we focus on local slack. The ideal local slack of a
packet could depend on instruction-level dependencies, which are
hard to capture in the NoC. Hence, in order to keep the implementa-
tion in the NoC simple, we conservatively consider slack only with
respect to outstanding network transactions. We formally define the
available local network slack (or in this paper simply slack) of a
packet to be the difference between the maximum latency of its pre-
decessor packets (i.e., any outstanding packet that was injected into
the network earlier than this packet) and its own latency:

Slack(Packeti) =
maxk Latency(Packetk ∀ k=0 to NumberofPredecessors) −

Latency(Packeti)
(1)

The key challenge in estimating slack is to accurately predict la-
tencies of predecessor packets and the current packet being injected.
Unfortunately, it is difficult to predict network latency exactly in a

realistic system. Our solution is that instead of predicting the exact
slack in terms of cycles, we aim to categorize/quantize slack into
different priority levels, based on indirect metrics that correlate with

the latency of predecessors and the packet being injected. To ac-
complish this, we characterize slack as it relates to various indirect
metrics.

3.2 Slack Characterization

To characterize slack, we measured criticality of packets in net-

work stall cycles per packet, i.e. NST/packet, which is the average
number of cycles an application stalls due to an outstanding network
packet. We found that the three most important factors impacting

packet criticality (hence, slack) are 1) the number of predecessors
that are L2 cache misses, 2) whether the injected packet is an L2
cache hit or miss, and 3) the number of a packet’s extraneous hops
in the network (compared to its predecessors).

Number of miss-predecessors: We define a packet’s miss prede-

cessors as its predecessors that are L2 cache misses. We found that
the number of miss-predecessors of a packet correlates with the crit-
icality of the packet. This is intuitive as the number of miss prede-
cessors tries to capture the first term of the slack equation, i.e. Equa-
tion (1). Figure 3(a) shows the criticality (NST/packet) of packets
with different number of miss-predecessors. Packets with zero miss-
predecessors have the highest criticality (NST/packet) and likely the
lowest slack because their latencies are unlikely to be overlapped by
those of predecessors. Indeed, the difference in significant: pack-
ets with zero predecessors have much higher criticality than packets
with one or more predecessors.

Figure 3(b) shows the fraction of packets that have a certain num-
ber of predecessors. The fraction of packets with more than four
predecessors is very low. Thus, a mechanism that uses levels of pri-
ority based on the number of miss-predecessors need not contain
many levels. Note that, since the number of miss-predecessors cap-
tures only the first term of slack equation and ignores the second
term (latency of the injected packet), the correlation between it and
packet criticality is imperfect; for example, in Gems, packets with
4+ miss-predecessors appear to have higher criticality than packets
with 0 miss-predecessors. Therefore, we use two additional indirect
metrics to take into account the latency of a newly injected packet.

L2 cache hit/miss status: We observe that whether a packet is an
L2 cache hit or miss correlates with how critical the packet is, and
hence the packet’s slack. If the packet is an L2 miss, it likely has high
latency due to DRAM access and extra NoC transactions to/from
memory controllers. The packet therefore likely has smaller slack
as its long latency is less likely to be overlapped by other packets.
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# Miss Predecessors (2 bits)

# Slack in Hops (2 bits)

Is  L2 cache hit/miss? (1 bit)

Figure 5: Priority structure for estimating slack of a packet. A lower
priority level corresponds to a lower slack value.

Figure 4(a) quantifies the criticality (NST/packet) of packets based
on their L2 hit/miss status. Across all applications, L2-miss packets
have at least ten times higher NST/packet than L2-hit packets. Note
that two priority levels suffice to designate a packet as cache hit or
miss.

Slack in terms of number of hops: Our third metric captures
both terms of the slack equation, and is based on the distance tra-
versed in the network. This metric was illustrated in our motivating
example in Section 2.2, where we approximated latency and slack as
the number of hops between a source and destination. Specifically:

Slackhops(Packeti) =
maxk Hops(Packetk ∀k=0 to NumberofPredecessors) −

Hops(Packeti)
(2)

Figure 4(b) shows that such hop-based slack indeed correlates with
the criticality of packets (NST/packet). Packets with a smaller hop-
based slack (0-3 hops) have significantly higher criticality than pack-
ets with a larger hop-based slack in almost all applications. For this
reason, we use hop-based slack as the third component for determin-
ing the slack priority level of a packet.

3.3 Slack Priority Levels

Our analysis shows the above three metrics correlate with slack.
We combine these metrics to form the slack priority level of a packet
in Aérgia. When a packet is being injected, the above three metrics
are computed and quantized to form a three-tier priority, shown in
Figure 5. The head flit of the packet is tagged with these priority
bits. (i) We use 2 bits for the first tier, which is assigned based on the
number of miss-predecessors. (ii) We use a single bit for the second
tier to indicate if the packet being injected is (predicted to be) an L2
hit or miss. (iii) We use 2 bits for the third tier to indicate the hop-
based slack of a packet. The combined slack-based priority level is
then used to prioritize between packets in routers (see Section 4).

3.4 Slack Estimation

In Aérgia, assignment of a slack priority level to a packet requires
the estimation of the above-described three metrics when the packet
is injected.

3.4.1 Estimating the number of miss-predecessors

Every core maintains a list of the outstanding L1 load misses (pre-
decessor list). Note that the size of this list is bounded by the size
of the miss status handling registers (MSHRs) [20]. Each of these
L1 misses is associated with a corresponding L2-miss-status bit. At
the time a packet is injected into the NoC, its actual L2 hit/miss sta-
tus is unknown because the shared L2 cache is distributed across
the nodes. Therefore, an L2 hit/miss predictor is consulted (as de-
scribed below) and the L2-miss-status bit is set accordingly. The
miss-predecessor slack priority level is computed as the number of
outstanding L1 misses in the predecessor list whose L2-miss-status

bits are set (to indicate a predicted or actual L2 miss). Our imple-
mentation keeps track of L1 misses issued in the last 32 cycles and
sets the maximum number of miss-predecessors to 8.

In case of an error in prediction, the L2-miss-status bit is updated

to the correct value when the data response packet returns to the
core. In addition, if a packet that is predicted to be an L2 hit actually
results in an L2 miss, the corresponding L2 cache bank notifies the
requesting core that the packet actually resulted in an L2 miss so
that the requesting core updates the corresponding L2-miss-status

bit accordingly. To reduce control packet overhead, the L2 bank
piggy-backs this information to another packet traveling through the
requesting core as an intermediate node.

3.4.2 Estimating whether a packet will be L2 cache
hit or miss

At the time a packet is injected, it is not known whether or not
it will hit in the remote L2 cache bank it accesses. We use an L2
hit/miss predictor in each core to guess the cache hit/miss status of
each injected packet, and set the second-tier priority bit accordingly
in the packet header. If the packet is predicted to be an L2 miss, its
L2 miss priority bit is set to 0, otherwise it is set to 1. Note that this
priority bit within the packet header is corrected when the actual L2
miss status is known when the packet accesses the L2.

We develop two types of L2 miss predictors. The first is based
on the global branch predictor [36]. A shift register records the
hit/miss values for the last “M” L1 load misses. This register is then
used to index into a pattern history table (PHT) containing two-bit
saturating counters. The accessed counter indicates whether or not
the prediction for that particular pattern history is a hit or a miss. The
counter is updated when the hit/miss status of a packet is known. The
second predictor, called the threshold predictor, uses the insight that
misses occur in bursts. This predictor updates a counter if the access
is a known L2 miss. The counter is reset after every “M” L1 misses.
If the number of known L2 misses in the last “M” L1 misses exceeds
a threshold (“T”), then the next L1 miss is predicted to be an L2
miss. The global predictor requires more storage bits (PHT) and has
marginally higher design complexity than the threshold predictor.
Note that, for correct updates, both predictors require an extra bit in
the response packet indicating whether or not the transaction was an
L2 miss.

3.4.3 Estimating hop-based slack

The hops per packet for any packet is calculated by adding the X
and Y distance between source and destination. The hop-based slack
of a packet is then calculated using Equation (2).

4. Aérgia Network-on-Chip Architecture

4.1 Aérgia Routers

We propose a new network-on-chip architecture, Aérgia, that uti-
lizes the described slack priority levels arbitration. In this section,
we describe the proposed architecture, starting ground-up from the
baseline. We also address some design challenges that come along
with prioritization mechanisms: i) mitigating priority inversion (us-
ing multiple network interface queues) and ii) starvation avoidance
(using batching).

4.1.1 Baseline

A generic NoC router architecture is illustrated in Figure 6 (see
also [7]). The router has P input and P output channels/ports; typi-
cally P = 5 for a 2D mesh, one from each direction and one from
the network interface (NI). The Routing Computation unit, RC, is
responsible for determining the next router and the virtual channel
within the next router for each packet. Dimension Ordered Rout-
ing (DOR) is the most commonly used routing policy for its low
complexity and deadlock freedom. Our baseline assumes XY DOR,
where packets are first routed in X direction followed by Y direc-
tion. The Virtual channel Arbitration unit (VA) arbitrates amongst all
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packets requesting access to the same output VC in the downstream
router and decides on winners. The Switch Arbitration unit (SA)
arbitrates amongst all input VCs requesting access to the crossbar
and grants permission to the winning packets/flits. The winners are
then able to traverse the crossbar and are placed on the output links.
Current routers use simple, local arbitration policies (round-robin,
oldest-first) to decide which packet should be scheduled next (i.e.,
which packet wins arbitration). Our baseline NoC uses the round-
robin policy.

4.1.2 Arbitration

Slack Priority Levels: In Aérgia, the Virtual channel Arbitration
(VA) and Switch Arbitration (SA) units prioritize packets with lower
slack priority levels. Thus, low-slack packets get the first preference
for buffers as well as the crossbar, and hence, are accelerated in the
network. Since in wormhole switching, only the head flit arbitrates
for and reserves the VC, the slack priority value is carried by the
head flit only. This header information is utilized during VA for pri-
ority arbitration. In addition to the state maintained by the baseline
architecture, each virtual channel has one additional priority field,
which is updated with the slack priority level of the head flit when
the head flit reserves the virtual channel. This field is utilized by the
body flits during SA for priority arbitration.

Batching: Without adequate counter-measures, prioritization mech-
anisms can easily lead to starvation in the network. In order to
prevent starvation, we combine our slack-based prioritization with
a “batching” mechanism similar to [8]. Time is divided into inter-
vals of T cycles, called batching intervals. Packets inserted into the
network during the same interval belong to the same batch, i.e. have
the same batch priority value. Packets belonging to older batches
are prioritized over those from younger batches. Only if two packets
belong to the same batch, they are prioritized based on their avail-
able slack, i.e. the slack priority levels. Each head flit carries a 5-bit
slack priority value and a 3-bit batch number/priority, as shown in
Figure 7. We use adder delays in [27] to estimate the delay of an
8-bit priority arbiter (P=5,V=6) to be 138.9 picoseconds and a 16-bit
priority arbiter to be 186.9 picoseconds at 45nm technology.

4.1.3 Network Interface

For effectiveness, prioritization is necessary not only within the
routers but also at the network interfaces. We split the monolithic
injection queue at a network interface into a small number of equal-
length queues. Each queue buffers packets with slack priority lev-
els within a different programmable range. Packets are guided into
a particular queue based on their slack priority levels. Queues be-
longing to higher priority packets are prioritized over those of lower
priority packets. Such prioritization reduces priority inversion and is
especially needed at memory controllers where packets from all ap-
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Figure 7: Final Aérgia priority structure

plications buffered together at the network interface, and thus, mono-
lithic queues can cause severe priority inversion.

5. Qualitative Comparison to Application
Aware Scheduling and Fairness Policies

Application-Aware Prioritization Mechanism (STC): Das et
al. [8] proposed an application-aware coordinated arbitration pol-
icy (called STC) to accelerate network-sensitive applications. The
key idea is to rank applications at regular intervals based on their
network intensity (L1 miss rate per instruction, L1-MPI), and pri-
oritize all packets of a non-intensive application over all packets of
an intensive application. Within applications belonging to the same
rank, packets are prioritized using the baseline round-robin order in a
slack-unaware manner. Packet batching is used for starvation avoid-
ance. The concept of STC and slack are complementary. There are
several important differences between Aérgia and STC:

• Aérgia exploits slack at the fine granularity of individual pack-

ets. In contrast, STC is a coarse-grained approach that identifies
critical applications (from the NoC perspective) and prioritizes them
over non-critical ones. An application as a whole might be less
critical than another, but even within an application there could be
packets that impact its performance more than others. By focusing
on application-level intensity, STC cannot capture this fine grained
packet-level criticality that is exploited by a slack-aware mechanism
like Aérgia.

• STC uses the L1-MPI of each application to differentiate be-
tween applications over a long ranking interval. This coarse-grained
metric of application intensity does not capture finer-grained distinc-
tions between applications/packets in both time and space. For ex-
ample, this heuristic does not distinguish between applications that
traverse a large vs. small number of hops. Two applications might
have the same L1 miss rate but one of them might have higher in-
tensity in the network because it either traverses longer distances or
has much smaller L2 miss rate, thereby putting more pressure on
the network. STC is unable to distinguish between such applications
whereas Aérgia’s packet based slack estimation takes into account
these factors, thereby prioritizing applications/packets based on dif-
ferent aspects of criticality.

Note that STC and Aérgia are complementary and can be com-
bined to take advantage of both algorithms’ strengths. In this pa-
per, we propose and evaluate such a combination. The combined
architecture prioritizes higher ranked applications over lower ranked
applications as STC does. Within the same ranking class, however,
it uses slack-based prioritization, as Aérgia does. Our results show
that the combination provides better performance and fairness than
STC and Aérgia alone.

Globally Synchronized Frames (GSF): Since any prioritization
mechanism is likely to impact the fairness of the system, we quan-
titatively compare Aérgia to a state-of-art fairness scheme, Glob-
ally Synchronized Frames (GSF) [21]. GSF provides prioritization
mechanisms within the network to ensure 1) guarantees on mini-
mum bandwidth and minimum network delay each application expe-
riences, and 2) that each application achieves equal network through-
put. To accomplish this, GSF employs the notion of frames, which
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Processor Pipeline 2 GHz processor, 128-entry instruction window

Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 32 KB per-core (private), 4-way set associative, 128B block size, 2-cycle latency, write-back,

split I/D caches, 32 MSHRs

L2 Caches 1MB banks, shared, 16-way set associative, 128B block size, 6-cycle bank latency, 32 MSHRs

Main Memory 4GB DRAM, up to 16 outstanding requests for each processor, 260 cycle access,

4 on-chip Memory Controllers (one in each corner node).

Network Router 2-stage wormhole switched, virtual channel flow control, 6 VC’s per Port,

5 flit buffer depth, 8 flits per Data Packet, 1 flit per address packet.

Network Topology 8x8 mesh, each node has a router, processor, private L1 cache, shared L2 cache bank (all nodes)

128-bit bi-directional links.

Table 1: Baseline Processor, Cache, Memory, and Network Configuration

# Benchmark NST/packet Inj Rate Load NSTP Bursty # Benchmark NST/packet Inj Rate Load NSTP Bursty

1 wrf 7.75 0.07% low low low 19 sjbb 8.92 2.20% high high high

2 applu 16.30 0.09% low high low 20 libquantum 12.35 2.49% high high low

3 perlbench 8.54 0.09% low high low 21 bzip2 5.00 3.28% high low high

4 dealII 5.31 0.31% low low high 22 sphinx3 8.02 3.64% high high high

5 sjeng 8.35 0.37% low high low 23 milc 14.73 3.73% high high low

6 namd 4.59 0.65% low low high 24 sap 4.84 4.09% high low high

7 gromacs 5.19 0.67% low low high 25 sjas 5.15 4.18% high low high

8 calculix 7.10 0.73% low low low 26 xalancbmk 15.72 4.83% high high low

9 gcc 2.14 0.89% low low high 27 lbm 8.71 5.18% high high high

10 h264ref 12.41 0.96% low high high 28 tpcw 5.64 5.62% high low high

11 povray 2.07 1.06% low low high 29 leslie3d 5.78 5.66% high low low

12 tonto 3.35 1.18% low low high 30 omnetpp 2.92 5.72% high low low

13 barnes 7.58 1.24% low low high 31 swim 10.13 6.06% high high low

14 art 42.26 1.58% low high low 32 cactusADM 8.30 6.28% high high low

15 gobmk 4.97 1.62% low low high 33 soplex 8.66 6.33% high high low

16 astar 6.73 2.01% low low low 34 GemsFDTD 4.82 11.95% high low low

17 ocean 9.21 2.03% low high high 35 mcf 5.53 19.08% high low low

18 hmmer 6.54 2.12% high low high

Table 2: Application Characteristics. NST/packet (NSTP): Average network stall-time per packet, Inj Rate: Average packets per 100
Instructions, Load: low/high depending on injection rate, NSTP: high/low, Bursty: high/low.

is similar to our concept of batches. Within a frame, GSF does not
distinguish between different applications; in fact, it does not spec-
ify a prioritization policy. In contrast, Aérgia employs a slack-aware
prioritization policy within packets of the same batch. As a result,
Aérgia provides better system-level throughput by prioritizing those
packets that would benefit more from network service (as shown in
our evaluation). Note that the goals of GSF and Aérgia are different:
GSF aims to provide network-level QoS, whereas Aérgia optimizes
system throughput by exploiting the notion of packet slack.

6. Methodology

6.1 Experimental Setup

We evaluate our techniques using a trace-driven, cycle-level x86
CMP simulator. Table 1 provides the configuration of our base-
line, which contains 64 cores in a 2D, 8x8 Mesh NoC. The memory
hierarchy uses a two-level directory-based MESI cache coherence
protocol. Each core has a private write-back L1 cache. The net-
work connects the cores, L2 cache banks, and memory controllers.
Each router uses a state-of-the-art two-stage microarchitecture. We
use the deterministic X-Y routing algorithm, finite input buffering,
wormhole switching, and virtual-channel flow control. We faith-
fully model all implementation details of the proposed prioritization
framework (Aérgia) as well as previously proposed STC and GSF.
The parameters used for GSF are: 1) active window size W = 6,
2) synchronization penalty S = 16 cycles, 3) frame size F = 1000

flits. The default parameters used for STC are: 1) ranking levels
R = 8, 2) batching levels B = 8, 3) ranking interval = 350,000
cycles, 4) batching interval = 16,000 packets. We use the threshold
predictor for Aérgia with M=4 and T=2.

6.2 Evaluation Metrics
We evaluate our proposal using several metrics. We measure

application-level system performance in terms of weighted and
harmonic speedup [12], two commonly used multi-program perfor-
mance metrics based on comparing the IPC of an application when
it is run alone versus when it is run together with others. Hmean-
speedup balances performance and fairness.

W. Speedup =

X

i

IPCshared
i

IPCalone
i

, H. Speedup =

NumThreads
P

i
1

IP Cshared
i

/IP Calone
i

Network stall cycles (NST) is the number of cycles the pro-
cessor stalls waiting for a network packet [8]. To isolate ef-
fects of only the on-chip network, NST does not include the stall
cycles due to off-chip DRAM access or on-chip cache access.
We define network-related slowdown of an application as the
network-stall time when running in a shared environment

(NST
shared), divided by, network-stall time when running alone

(NST
alone) on the same system. The application-level network

unfairness of the system is the maximum network-related slowdown
observed in the system:

NetSlowdowni =

NST shared
i

NST alone
i

, Unfairness = max

i
NetSlowdowni

6.3 Application Categories and Characteristics

We use a diverse set of multiprogrammed application workloads
comprising scientific, commercial, and desktop applications. In to-
tal, we study 35 applications, including SPEC CPU2006 benchmarks,
applications from SPLASH-2 and SpecOMP benchmark suites, and
four commercial workloads traces (sap, tpcw, sjbb, sjas). We
choose representative execution phases using [28] for all our work-
loads excluding commercial traces, which were collected over In-
tel servers. To have tractable simulation time, we choose a smaller
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Figure 8: Network Slowdowns for (a) Case Study I on the left (b) Case Study II on the right
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Figure 9: (a) Weighted Speedup for all Case Studies (b) Harmonic Speedup for all Case Studies

representative window of instructions (5 million per application),
obtained by profiling each application. All our experiments study
multi-programmed workloads, where each core runs a separate ap-
plication. We simulate at least 320 million instructions across 64
processors. Table 2 characterizes our applications. The reported
parameters are for the applications running alone on the baseline
CMP system without any interference. We categorize applications
into three groups based on their network characteristics: applica-
tions with 1) high/low load are called heavy/light, 2) high Network
Stall Cycles per Request Packet (NSTP) are called sensitive, and 3)
bursty injection patterns are called bursty. Our aggregate results are
based on 56 different workload combinations.

7. Performance Evaluation
We first compare Aérgia to the baseline, GSF, and STC, using

four case studies to provide insight into the behavior of each scheme
with different types of workloads. Figures 8 and 10 show the net-
work slowdowns (the lower the better) of the individual applications.
Figure 9 shows system performance (weighted speedup4 and har-
monic speedups) of the different schemes for all case studies. Sec-
tion 7.5 reports aggregate results averaged over 56 different work-
loads, showing that the benefits of our scheme hold over a wide va-
riety of workloads. Finally, Section 7.6 examines the effect of L2
miss predictor accuracy on system performance.

7.1 Case Study I: Heterogenous mix of heavy latency-
tolerant and network-sensitive applications

We mix 16 copies each of two heavy applications (GemsFDTD
and bzip2) and two network-sensitive applications (libquantum
and art); and compare Aérgia to baseline, GSF and STC. We make
several observations:
• Figure 8 (a) shows the network slowdowns of applications. The
baseline algorithm slows down applications in hard-to-predict ways
as local round-robin arbitration is application-oblivious. bzip2 has
the highest slowdown (and hence determines the unfairness index)
due to heavy demand from the network and high L2 cache miss rate.
• GSF unfairly penalizes the heavy applications because they quickly
run out of frames and stop injecting. Thus, the network slowdowns
of GemsFDTD and bzip2 increase by 1.6X and 1.5X over baseline.
4Weighted speedup is divided by number of cores (=64) in results charts for
clarity.

Since GSF guarantees minimum bandwidth to all applications, it im-
proves the network slowdown of network-sensitive applications over
the baseline (by 21% for libquantum and 26% for art) by ensur-
ing that heavier applications do not deny service to the lighter appli-
cations. However, GSF does not prioritize any application within a
frame, thus there is scope for further reduction of network-sensitive
applications’ slowdowns. Overall, GSF degrades system throughput
by 16.6% and application-level fairness by 50.9% because it unfairly
penalizes the heavy applications.
• STC prioritizes the network-sensitive applications using ranking,
and ensures, using batching, that heavy applications are not overly
penalized. The result is that it significantly reduces the slowdown of
network-sensitive applications (by 1.9X for libquantum and 1.6X
for art). Heavy applications suffer marginally from lower ranking
because 1) of batching 2) they are latency tolerant, i.e. have suffi-
cient slack to tolerate de-prioritization in the network (See Figure 1
(b)), and 3) sensitive applications are light and hence negatively af-
fect a small fraction of packets of heavy applications. STC improves
weighted speedup by 12.6% over baseline.
• Aérgia exploits slack and criticality at the fine granularity of indi-
vidual packets and thus optimizes for instantaneous behavior of ap-
plications. Unlike STC, which improves only network-sensitive ap-
plications, Aérgia improves the network slowdowns of all appli-

cations (by 24% for libquantum, 21% for art, 26% for GemsFDTD
and 35% for bzip2 over the baseline). This leads to a weighted

speedup improvement of 15.1% over the baseline. By improving all

applications, Aérgia reduces the maximum network slowdown, and

thus has the best network fairness (32% over baseline and 25% over

STC). The best improvements are seen for bzip2 for two reasons.
First, although a heavy application, at least 30% bzip2’s packets
are critical with fewer than 50 slack cycles. These critical packets
are deprioritized by STC as well as the baseline because neither is
aware of the slack of these packets and they both delay bzip2 sim-
ply because it is heavy. Second, bzip2 has better performance than
GemsFDTD because it has a higher fraction of critical packets than
GemsFDTD, which are prioritized by using the available slack in all
applications.
• As discussed in Section 5, Aérgia and STC are complementary
techniques that exploit slack and criticality at different granularity.
Thus, we evaluate a combination of both architectures (referred to as
STC+Aérgia in figures). While STC prioritizes the light, network-
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Figure 10: Network Slowdowns for (a) Case Study III on the left (b) Case Study IV on the right

sensitive applications effectively, Aérgia can exploit the differen-
tial slack within the packets of an application to improve the per-
formance of heavy applications as well as light ones. As a result,
the combination of both techniques provides the best performance
(21.5% over baseline, 5.6% over Aérgia and 7.7% over STC) and
almost similar fairness to Aérgia (23% and 19% better fairness over
baseline and STC).

7.2 Case Study II: Heterogenous mix of heavy crit-
ical applications and light applications

We mix 16 copies each of two heavy applications (omnetpp and
mcf) and two light applications (astar and barnes). The case
study shows a scenario in which fairness is a problem with STC,
while Aérgia is effective at prioritizing light applications that have
high-slack packets. The following observations are in order:
• The baseline and GSF have similar trends as discussed in Case

Study I. Although STC still provides 21.9% speedup by prioritizing
the light applications (network slowdown of astar/barnes im-
proves 2.0X/1.6X over baseline in STC), it degrades the fairness of
the system by penalizing the heavy applications in this case study
(STC increases unfairness by 1.35X over baseline). Some packets
of these applications have high criticality (i.e. low slack), but STC
deprioritizes all such packets because the applications they belong
to are network-intensive.

These heavy applications have high criticality due to their high
L2 miss rates, but STC deprioritizes them because they are network-
intensive.
• As opposed to Case Study I, in this case study, Aérgia is more ef-

fective than STC in prioritizing light applications.5 This result shows
that to prioritize a light application, it is not necessary to prioritize
all packets of that application as STC does. A prioritization mecha-
nism that prioritizes only the critical/low-slack packets (like Aérgia)
can provide even better speedups for a light application than a pri-
oritization mechanism that prioritizes all packets of that light appli-
cation over packets of other applications (like STC). This is because
a finer-grained packet based prioritization mechanism can actually
prioritize critical packets over the non-critical ones within the light
application. astar and barnes have a small fraction of critical
packets, which are prioritized over others with Aérgia but not distin-
guished from non-critical ones with STC. Aérgia also reduces slow-
down of heavy applications because it can prioritize critical packets
of such applications over non-critical packets. As a result, Aérgia
improves weighted speedup by 33.6% and 9.4% over the baseline
and STC, respectively.
• STC+Aérgia solves the fairness problem in STC because it re-

duces the network slowdown of heavy applications by prioritizing
the important packets of such applications over less important pack-
ets of the same applications. Hence, it reduces the penalty the heavy
applications have to pay for prioritizing the light applications in the
original STC scheme. Overall STC+Aérgia provides 33.2% speedup

5Network slowdown of astar/barnes improves 3.2X/2.0X over baseline
in Aérgia.

over baseline, while reducing unfairness by 1.6X over STC (1.2X
over baseline).

7.3 Case Study III: Heterogenous mix of heavy ap-
plications

In [8], authors demonstrate a case study to show the dynamic be-
havior of STC: applications may have similar average behavior (e.g.,
all are heavy), but if their transient behaviors are sufficiently dif-
ferent, STC can still provide high performance gains. We run 16
copies each of four heavy applications (xalan, sphinx, cactus,
and sjas) to demonstrate a similar scenario. Figure 10 (a) shows
the network slowdowns for this case study. Aérgia provides better
performance than all schemes for such workloads (18.1% weighted
speedup over baseline), while providing the best fairness (26% over
baseline). Aérgia is more effective in reducing the slowdowns of
sphinx and cactus than STC by exploiting criticality of pack-
ets at much finer levels. Since Aérgia prioritizes based on the slack
at the packet level, it can easily distinguish between the packets of
different applications and prioritize the critical ones even though the
intensities of applications are similar.

7.4 Case Study IV: Homogeneous mix with
multiple copies of the same application

The purpose of this homogenous case study is to demonstrate ef-
fectiveness of Aérgia in a scenario when STC can provide minimal
performance gains. We run a copy of the same application, tpcw

on all 64 nodes. Figure 10 (b) shows the network slowdowns. STC
treats all cores the same, i.e. at the same priority level, because the
L1-MPIs of the cores are similar. Batching framework of STC pro-
vides 2.8% higher weighted speedup over baseline by reducing star-
vation that occurs in the baseline. In contrast, Aérgia can provide
attractive performance gains (13.7% weighted speedup over base-
line) even for such homogenous workloads. This is because, even
though applications and their network intensities are the same, indi-
vidual packet criticality is different. Hence, Aérgia takes advantage
of the disparity in packet criticality within the same application class
to provide better performance and fairness.

7.5 Overall Results Across 56 Multi-Programmed
Workloads

Figures 11 (a) and (b) compare all the schemes averaged across
56 workload mixes. The mixes consist of 12 homogenous work-
loads and 48 heterogenous workloads with applications picked ran-
domly from different categories (See Table 2). The aggregate results
are consistent with the observations made in the three case stud-
ies. Aérgia improves average system throughput by 10.3%/11.6%
(weighted/ harmonic) compared to the baseline, while also improv-
ing network fairness by 30.8%. Aérgia combined with STC im-
proves average system throughput by 6.5%/5.2% (weighted/ har-
monic) compared to STC alone while also improving network fair-
ness by 18.1%. We conclude that Aérgia provides the best system
performance and network fairness over a very wide variety of work-
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Figure 11: Aggregate results across 56 workloads (a) System Speedup (b) Network Unfairness
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Figure 12: Analysis of L2 miss predictors: (a) error with parameters, (b) error with cache size, (c) effect of perfect prediction

loads whether used independently or in conjunction with application-
aware prioritization techniques.

7.6 Effect of L2 Cache Miss Predictor

Figure 12 (a) shows the sensitivity of prediction accuracy to the
parameters of the two predictors we developed: M (number of ac-
cesses in history) and T (threshold value, which is used only for the
threshold predictor). Figure 12 (b) shows the sensitivity of predic-
tion accuracy to size of cache banks for both predictors. Averaged
over 56 workloads for 1MB L2 cache banks, the global predictor
has an error of 18.7% (M=4) and the threshold predictor has an error
of 20.7% (M=4, T=2). Figure 12 (c) shows the performance differ-
ence between perfect miss prediction, the global predictor, and the
threshold predictor. Results show that only 2.4% performance im-
provement is possible if the predictor were perfect. This is mainly
because the negative impact of a misprediction is limited because we
update the L2 cache hit/miss priority field of a packet once the miss
status is known after L2 access.6 We conclude that the miss pre-
dictors we develop provide sufficient accuracy for slack estimation
purposes.

8. Related Work
To our knowledge, no previous work characterized slack in packet

latency and proposed mechanisms to exploit it for on-chip network
arbitration. We briefly describe the most closely related previous
work.
Instruction Criticality and Memory Level Parallelism: A large
amount of research has been done to predict criticality/slack of in-
structions [32, 14, 13, 33] and prioritize critical instructions in the
processor core and caches. MLP-aware cache replacement exploits
cache miss criticality differences due to memory-level parallelism [29].
Parallelism-aware memory scheduling [24] and other rank-based mem-
ory scheduling algorithms [19] reduce application stall-time by im-
proving bank-level parallelism of each thread. These works are re-
lated to ours only in the sense that we also exploit criticality to im-
prove system performance. However, our methods (for computing
slack) and mechanisms (for exploiting it) are very different due to
the distributed nature of on-chip networks.
Prioritization in On-Chip and Multiprocessor Networks: We have
already compared our approach extensively, both to state-of-the-art
local arbitration, QoS-oriented prioritization (GSF [21]), and
6Thus, the priority is corrected for data response packets, which have much
higher latency than request packets. Also, request packets to on-chip DRAM
controller have the corrected priority.

application-aware prioritization (STC [8]) policies in NoCs. Bolotin
et al. [3] propose prioritizing control packets over data packets in the
NoC, but do not distinguish packets based on available slack. Frame-
works for QoS [2, 31, 17] on NoCs were proposed, which can possi-
bly be combined with our approach. Arbitration policies [37, 6, 15,
1, 9, 38] have also been proposed in multi-chip multiprocessor net-
works and long-haul networks. Their goal is to provide guaranteed
service or fairness, while ours is to exploit slack in packet latency
to improve system performance. In addition, most of the above pre-
vious mechanisms statically assign priorities/bandwidth to different
flows in off-chip networks to satisfy real-time performance and QoS
guarantees. In contrast, our proposal dynamically computes and as-

signs priorities to packets based on slack.
Batching: We use packet batching in NoC for starvation avoidance,
similarly to [8]. The idea of batching/frames has been used in disk
scheduling [34], memory scheduling [24], and QoS-aware packet
scheduling [21, 17] to prevent starvation and provide fairness.

9. Conclusion
The network-on-chip is a critical shared resource likely to be shared

by diverse applications with varying characteristics and service de-
mands. Thus, characterizing, understanding, and optimizing the in-
terference behavior of applications in the NoC is an important prob-
lem for enhancing system performance and fairness. Towards this
end, we propose fine-grained prioritization mechanisms to improve
the performance and fairness of NoCs. We introduce the concept
of packet slack and characterize it in the context of on-chip net-
works. In order to exploit packet slack, we propose and evalu-
ate a novel architecture, called Aérgia, which identifies and prior-
itizes low-slack (critical) packets. The key components of the pro-
posed architecture are techniques for online estimation of slack in
packet latency and slack-aware arbitration policies. Averaged over
56 randomly-generated multiprogrammed workload mixes on a 64-
core 8x8-mesh CMP, Aérgia improves overall system throughput
by 10.3% and network fairness by 30.8% on average. Our results
show that Aérgia outperforms three state-of-the-art NoC schedul-
ing/prioritization/fairness techniques. We conclude that the proposed
network architecture is effective at improving overall system through-
put as well as reducing application-level network unfairness.
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