
Application-Aware Prioritization Mechanisms
for On-Chip Networks

Reetuparna Das§ Onur Mutlu† Thomas Moscibroda‡ Chita R. Das§

§Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research
{rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

Abstract
Network-on-Chips (NoCs) are likely to become a critical shared re-
source in future many-core processors. The challenge is to develop
policies and mechanisms that enable multiple applications to effi-
ciently and fairly share the network, to improve system performance.
Existing local packet scheduling policies in the routers fail to fully
achieve this goal, because they treat every packet equally, regardless
of which application issued the packet.

This paper proposes prioritization policies and architectural ex-
tensions to NoC routers that improve the overall application-level
throughput, while ensuring fairness in the network. Our prioritization
policies are application-aware, distinguishing applications based on
the stall-time criticality of their packets. The idea is to divide pro-
cessor execution time into phases, rank applications within a phase
based on stall-time criticality, and have all routers in the network pri-
oritize packets based on their applications’ ranks. Our scheme also
includes techniques that ensure starvation freedom and enable the
enforcement of system-level application priorities.

We evaluate the proposed prioritization policies on a 64-core CMP
with an 8x8 mesh NoC, using a suite of 35 diverse applications. For
a representative set of case studies, our proposed policy increases
average system throughput by 25.6% over age-based arbitration and
18.4% over round-robin arbitration. Averaged over 96 randomly-
generated multiprogrammed workload mixes, the proposed policy
improves system throughput by 9.1% over the best existing priori-
tization policy, while also reducing application-level unfairness.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiprocessors; Inter-
connection architectures; C.1.4 [Parallel Architectures]: Distributed
architectures

General Terms
Design, Algorithms, Performance

Keywords
On-chip networks, multi-core, arbitration, prioritization, memory sys-
tems, packet scheduling

1. Introduction
Packet-based Network-on-Chips (NoCs) are envisioned to be the

solution for connecting tens to hundreds of components in a future
many-core processor executing hundreds of tasks. Such an NoC is a
critical resource, likely to be be shared by diverse applications run-
ning concurrently on a many-core processor. Thus, effective utiliza-
tion of this shared interconnect is essential for improving overall sys-

tem performance and is one of the important challenges in many-core
system design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Traditionally, NoCs have been designed [22, 14, 16, 13, 17] to op-
timize network-level performance metrics, such as saturation through-
put or average packet latency. These metrics capture inherent perfor-
mance characteristics of the network itself, but they are not directly
related to the performance metrics observable at the application-level
or system-level. There are various reasons as to why optimizing for
network parameters may not be adequate to improve system per-
formance. First, average packet latency may not be indicative of
network-related stall-time at the processing core (i.e. number of cy-
cles during which the processor cannot commit instructions waiting
for an in-transit network packet [19]). This is because much of the
packets’ service latencies might be hidden due to memory-level par-
allelism [11]. Second, the network’s saturation throughput might not
be critical given the self-throttling nature of CMPs: a core cannot
inject new requests into the network once it fills up all of its miss
request buffers). Third, average network throughput may not accu-
rately reflect system performance because the network throughput
demands of different applications can be vastly different.

To exemplify these points, Figure 1 shows performance in terms of
different metrics for a 64-node multicore processor, with 32 copies
of two applications, leslie and omnetpp, running together. The
figure contrasts three network-level performance metrics (throughput
demanded/offered and average packet latency) with two application-
level performance metrics (execution-time slowdown and network
related stall-time slowdown each application experiences compared
to when it is run alone on the same system; these metrics correlate
with system-level throughput as shown in [27, 8]). Even though the
network-level performance metrics of the two applications are very
similar, the slowdown each application experiences due to sharing
the NoC is vastly different: leslie slows down by 3.55X, whereas
omnetpp slows down by 7.6X. Hence, designing the network to
optimize network-level metrics does not necessarily provide the best
application and system-level throughput.

0%

2%

4%

6%

8%

Leslie Omnetpp

(a) Throughput Demand
(packets/instruction)

0.0%

0.5%

1.0%

1.5%

2.0%

Leslie Omnetpp

(b) Throughput Offered
(packets/cycle)

0

50

100

150

200
Leslie Omnetpp

(c) Packet Latency
(cycles)

0

2

4

6

8
Leslie Omnetpp

(d) Execution
Time Slowdown

0

10

20

30
Leslie Omnetpp

(e) Network Stall
Time Slowdown

Figure 1: Different Metrics for Network Performance Analysis

A key component of a router that can influence application-level
performance is the arbitration/scheduling unit. Commonly-used ar-
bitration policies in NoCs are application-oblivious and local. Such
application-oblivious local policies lead to reduced overall system
performance because they 1) fail to harness application properties
to improve system throughput, 2) can lead to un-coordinated and
contradictory decision-making by individual routers. First, once a
packet is injected into the network, scheduling decisions taken by
routers do not consider which applications issued the packets. As
a result, packets from applications that are particularly sensitive to
network packet latency are treated with the same priority as other,
less-critical packets, which can substantially decrease application-
level performance of the sensitive application. Second, each router
makes packet scheduling decisions using information local to that
router. For example, a router can schedule packets from different vir-

tual channels in a round-robin fashion over cycles, schedule a packet
from the least recently used virtual channel, or schedule the locally-
oldest packet first. As a result, a packet may be prioritized in one
router only to be delayed by the next router. Consequently, one ap-
plication might be prioritized in one router and delayed in a second
one, whereas another application can be prioritized by the second
router and delayed in the first, which leads to an overall degradation
in system throughput.

To mitigate the above disadvantages of existing approaches, we
propose a new substrate to enable application-aware prioritization

in an NoC by coordinating the arbitration/scheduling decisions made
by different routers. Our approach is based on the concept of stall-

time criticality (STC). A network packet has high stall-time critical-
ity if an increase in its network latency results in a high increase of
application-level stall-time. In our approach, each router schedules
packets based on which application the packets belong to. Specifi-
cally, the STC-policy combines two mechanisms: application rank-

ing and packet batching. Applications are ranked based on the stall-
time criticality of their network packets. Each router prioritizes pack-
ets according to this rank: packets of an application where network
performance is critical (higher-ranked applications) are prioritized
over packets from lower-ranked applications. Prioritization is en-
forced across the network in a coordinated and consistent fashion
because all routers use the same ranking. The packet batching mech-
anism ensures starvation freedom: periodically, a limited number of
network packets are grouped into batches. Each router prioritizes
packets belonging to older batches, thereby ensuring that no applica-
tion starves due to interference from other, higher-ranked (or poten-
tially aggressive) applications.

Experimental evaluations show that our proposal effectively
increases overall system throughput and application-level fairness in
the NoC. In addition, our application-level prioritization substrate
can be seamlessly extended to enforce application priorities assigned
by the operating system. In comparison to existing application obliv-
ious routing policies that cannot easily enforce system-level priori-
ties, this is an added advantage. Thus, the main contributions of this
paper are the following:

• We observe that common network-level metrics can differ sub-
stantially from application-level performance metrics and identify
the stall-time criticality of network packets as a key concept that af-
fects overall system performance.

• We show that local, application-oblivious arbitration policies in
NoC routers can degrade application-level system throughput and
fairness. We further show that global policies based on network pa-
rameters lead to poor application performance, and can lead to unfair
performance between applications with different memory access pat-
terns.

• We propose novel prioritization mechanisms to improve
application-level system throughput without hurting application-level
fairness in NoCs. Our key idea is to dynamically identify applica-
tions that benefit the most from prioritization in the network due to
higher stall-time criticality of their packets and coordinate the routers
to prioritize these applications’ packets.

• We qualitatively and quantitatively compare our mechanisms to
previous local and global arbitration policies, including age-based
prioritization and globally synchronized frames [17]. We show that
our proposal provides the highest overall system throughput (9.1%
higher than the best existing policy over 96 diverse workloads) as
well as the best application-level fairness.

2. Background
In this section, we provide a brief background on NoC architec-

tures along with current packet scheduling and arbitration policies.
For an in-depth introduction to NoCs, we refer the reader to [5].

A Typical Router: A generic NoC router architecture is illustrated
in Figure 2(a). The router has P input and P output channels/ports;

typically P = 5 for a 2D mesh, one from each direction and one
from the network interface (NI). The Routing Computation unit, RC,
is responsible for determining the next router and the virtual channel
within the next router for each packet. The Virtual channel Arbi-
tration unit (VA) arbitrates amongst all packets requesting access to
the same VCs and decides on winners. The Switch Arbitration unit
(SA) arbitrates amongst all VCs requesting access to the crossbar and
grants permission to the winning packets/flits. The winners are then
able to traverse the crossbar and are placed on the output links.

A Typical Network Transaction: In a general-purpose chip mul-
tiprocessor (CMP) architecture, the NoC typically interconnects the
processor nodes (a CPU core with its outermost private cache), the
secondary on-chip shared cache banks, and the on-chip memory con-
trollers (See Figure 2(b)). The processor sends request packets to
cache bank nodes and receives data packets via the NoC. If the re-
quested data is not available in the cache, the cache bank node sends
request packets to the on-chip memory controller nodes via the NoC,
and receives response data packets from the controller once data is
fetched from off-chip DRAMs. Each packet spends at least 2-4 cy-
cles at each router depending on the number of stages in the router.

Packet Arbitration Policies within an NoC Router: Each in-
coming packet is buffered in a virtual channel (VC) of the router,
until it wins the virtual channel arbitration stage (VA) and is allo-
cated an output VC in the next router. Following this, the packet
arbitrates for the output crossbar port in the switch arbitration stage
(SA). Thus, there are two arbitration stages (VA and SA) where the
router must choose one packet among several packets competing for
either a common 1) output VC or 2) crossbar output port.1 Current
routers use simple, local arbitration policies to decide which packet
should be scheduled next (i.e., which packet wins arbitration). A typ-
ical policy, referred to as LocalRR in this paper, is to choose packets
in different VCs in a round-robin order such that a packet from the
next non-empty VC is selected every cycle. An alternative policy,
referred to as LocalAge in this paper, chooses the oldest packet.

Why scheduling and arbitration policies impact system perfor-

mance? In addition to the router pipeline stages, a packet can spend
many cycles waiting in a router until it wins a VC slot and gets sched-
uled to traverse the switch. While its packets are buffered in remote
routers, the application stalls waiting for its packets to return. Thus,
packet scheduling or arbitration policies at routers directly impact
application performance.
Why scheduling and arbitration policies impact system fairness?

A scheduling or arbitration policy dictates which packet the router

chooses and hence also which packet is penalized. Thus, any policy
which gives higher priority to one packet over another might affect
the fairness in the network. Current routers use locally fair policies
that are application-agnostic. Locally fair policies need not be glob-
ally fair. For example, the LocalRR might seem a very fair policy
locally, but could lead to high unfairness in asymmetric topologies.

3. Motivation
Existing NoC routing policies are implicitly built on the paradigm

that every packet in the network is equally important and hence,
packets from one application should not a-priori be prioritized over
packets from other applications. In this paper, we challenge this
paradigm by observing how different packets (even within the same
application, but particularly across different applications) can have
vastly different impact on application-level performance. In this sec-
tion, we describe three reasons that can cause differences in stall-time

criticality (STC) of packets. Combined, they provide the motivation
for our application-aware approach to NoC packet scheduling, which
is described in Section 4.
1Note that in wormhole switching only the head flit arbitrates for and reserves
the VC; the body flits thus do not require VC allocation. However, all flits
have to compete for the switch. For simplicity, our discussions will be in
terms of packets instead of flits.

VC 1

VC v

Crossbar

(P x P)

Routing

Computation

(RC)

VC Arbiter

(VA)

Switch Arbiter

(SA)

VC Identifier

In
p

u
t

C
h

a
n

n
e

l

1

C
re

d
it

o
u

t

Output

Channel

1

Output

Channel

P

Input Port 1

Input Port P

In
p

u
t

C
h

a
n

n
e

l

P

Scheduler

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

R

NI

Memory

Controller

CPU + L1 Caches

CACHE BANK

Figure 2: Generic NoC router and topology: (a) Baseline Router (b) Example CMP Layout for a 4x4 Mesh.

Different Stall-Time Criticality due to Different Memory-Level

Parallelism: Modern microprocessors employ several memory la-
tency tolerance techniques [7, 15, 31, 21] to hide the penalty of load
misses. These techniques issue several memory requests in paral-
lel in the hope of overlapping future load misses with current load
misses. The notion of issuing and servicing several requests in par-
allel is called Memory Level Parallelism (MLP) [11]. The concept of
MLP affects the criticality of load requests. Although there might be
multiple outstanding load misses in the system, not every load miss
is the bottleneck-causing (i.e. critical) miss [9]. Typically the oldest
load is the most critical to the processor, whereas many other misses
might be completely overlapped with earlier requests. Previous re-
search [28, 25] has established that not all load misses are equally
critical to the processor. Hence, increasing the latency of these non-

critical misses (i.e. packets) in the network will have less impact

on application execution time, compared to increasing the latency of

critical misses.

Moreover, every application has different degrees of MLP. For ex-
ample Figure 3(a) shows the execution timeline of an application
with no MLP (e.g. libquantum): it sends one packet to the net-
work after a number of instructions. In the absence of other concur-
rent requests, all of the packet latency is directly exposed as stall-time
to the processor. Consequently, each packet is stall-time critical to
the application execution time. Figure 3(b), on the other hand, shows
an application with a high degree of MLP (e.g. Gems). It sends
bursts of concurrent packets to the network. Much of the packet la-
tency for this application is overlapped with other packets. Hence,
the application stalls for much fewer cycles per packet (e.g. stall cy-
cles of packet C is zero because it is delivered long before it is needed
by the processor). Thus, on an average, a packet of the second ap-
plication (Gems) is less stall-time critical than a packet of the first
application (libquantum).

Consider a scenario when we run Gems and libquantum to-
gether on a shared multi-core system. The packet latencies for all
applications will increase considerably due to contention in the net-
work, shared caches, and main memory. However, the increase in la-
tency is likely to have a worse impact on libquantum than Gems,
because each packet of the former is more critical than that of the
latter. Thus, in a shared system it makes sense to prioritize pack-

A

Packet A Latency

A

A

B

Packet B Latency

B

B

C

Packet C Latency

C

C

Compute Blocks Stall Blocks

A B

Packet A Latency

Packet B Latency

Packet C Latency

STALL of Packet C = 0

BA C

A BC

(a) (b)

Figure 3: Execution timeline for: (a) an application with few pack-
ets, which do not overlap with each other, hence the packet latency
is completely exposed to the processor as stall cycles, making each
packet critical to the processor. (b) an application with packets that
overlap with each other, hence some of the packet latency is hidden
from the processor, accruing fewer stall cycles per packet. The pack-
ets are thus less critical.

ets of applications with higher stall-time criticality to gain overall
application-level system throughput.

Different Stall-Time Criticality due to Different Memory Ac-

cess Latency: An application’s STC is also affected by the aver-

age latency of memory accesses. Load misses that have high la-
tency expose more number of stall cycles due to smaller probability
of overlap with other misses. Therefore, if an application’s packets
frequently access remote nodes in the network or off-chip DRAM,
the application is likely to have higher STC. In Figure 1, Omnetpp
has higher stall-time criticality than Leslie3d because many of its
memory accesses are L2 misses whereas Leslie3d’s are L2 hits.

Different Stall-Time Criticality due to Different Network Load:

Applications can differ significantly in the amount of load they inject
into the network. Applications can be “light” (low injection rate) or
“heavy” (high injection rate). Hence, applications can demand dif-
ferent bandwidth from the network. Naturally, packets from light
applications with few outstanding packets tend to be more stall-time
critical because their cores can be better utilized if serviced faster.
Prioritizing such “shorter jobs” (from the viewpoint of the network)
ahead of more intense applications can increase system throughput.

Light Application Heavy Application

(a) (b)

200 Stall Cycles50 Instructions

/50 Cycles

200 Instructions

/200 Cycles
200 Stall Cycles

100 Stall Cycles
Saved

cycles
200 Instructions

/200 Cycles

50 Instructions

/50 Cycles
300 Stall Cycles 200 Stall Cycles

Light IPC = 1000/(1000+1000) = 0.5

Heavy IPC = 400/(400+1600) = 0.2

Light IPC = 1000/(1000+500) = 0.67

Heavy IPC = 400/(400+2100) = 0.16

Figure 4: The left figure (a) shows execution timeline of two appli-
cations: a light application and a heavy application. The right figure
(b) shows the potential savings with shortest-job-first scheduling of
the two applications within the network.

Figure 4(a) illustrates this concept by showing the execution time-
lines of two applications. The light application has compute blocks
of 200 instructions/200 cycles and stall blocks of 200 cycles. The
heavy application has compute blocks of 50 instructions/50 cycles
and stall blocks of 200 cycles (hence, 4x the injection rate of the
first). Assume that the network prioritizes the lighter application (the
striped packets in the network), and as a result each of its packets
takes 100 cycles less, whereas each of the heavy application’s con-
tending packets takes equally (100 cycles) more, as shown in Fig-
ure 4(b). At the application level, this prioritization results in a sig-
nificantly higher IPC throughput gain for the light application than
the IPC throughput loss for the heavy application. As a result, overall
system throughput improves by 18.6%/21.4% (as measured respec-
tively by average IPC and total number of instructions completed in
the a fixed number of cycles). This example shows that prioritiz-
ing light applications (i.e. “shorter jobs”) within the network leads
to better overall system performance by prioritizing applications that
are likely to benefit more from faster network service in terms of
application-level throughput (i.e. IPC).

4. Application-Aware Prioritization
Substrate

4.1 Overview
Our goal is to improve application-level throughput by prioritizing

packets belonging to stall-time critical applications over others in the
network-on-chip. To enable this prioritization, we use two principles:
application ranking and packet batching.
Application Ranking: In order to prioritize stall-time-critical ap-
plications, a central decision logic periodically forms a “ranking,”
i.e. an ordering of all applications. This ranking is determined
using heuristics that capture the stall-time criticality of each appli-
cation. We describe specific heuristics for maximizing overall sys-
tem performance and enforcing system-level application priorities in
Section 4.2. Once determined, ranks are then communicated to the
routers. Routers use this ranking to determine which application’s
packets are prioritized at any given cycle in a router.
Packet Batching: Clearly, always prioritizing high-ranked applica-
tions can cause starvation to low-ranked applications. To prevent
starvation, we propose using the concept of batching. Network pack-
ets are grouped into finite-size batches. A packet belonging to an
older batch is always prioritized over a packet in a younger batch. As
a result, reordering of packets across batches is not possible within a
router. A batch also provides a convenient granularity in which the
ranking of the applications is enforced. Several batching schemes
are possible, and we describe the most effective ones we found in
Section 4.3.

4.2 Ranking Framework
The goal of ranking is to enable the differentiation of applications

within the network based on their characteristics. There are three im-
portant issues related to the ranking framework: 1) how to determine
relative ranking of applications, 2) how frequently to recompute the
ranking (i.e., the ranking interval size), and 3) how many ranking
levels to support.
How to determine application ranking? In order to determine a
good ranking, we need to estimate the stall-time-criticality (STC)
of each application. We have explored a large number of heuris-
tics to estimate the STC of applications. We describe the three best-
performing heuristics below, along with their advantages and disad-
vantages. Note that each of the metrics used by these heuristics is
computed over a time interval (called ranking interval) and the com-
puted values are used to determine application rankings in the next
interval.

1. Private cache misses per instruction (MPI): This heuristic ranks
an application with a smaller number of L1 cache misses per instruc-

tion higher. The insight is twofolds: an application with a small
number of L1 misses is 1) likely to issue requests relatively infre-
quently and hence prioritizing this application’s requests allows the
application’s core to make fast progress without needing to wait for
the network, and 2) likely to have low MLP and hence its requests
are likely to be stall-time critical. This heuristic is not affected by
system state or network characteristics such as which other applica-
tions are running on the system or the arbitration policy used within
the routers. Therefore, it provides an easy-to-compute, accurate and
stable characterization of the application’s network demand.

2. Average number of outstanding L1 misses in Miss Request

Queues (ReqQueue): The average number of outstanding L1 misses
in the MSHRs [15] (i.e., miss request queues) of a core is indica-
tive of 1) the overlap among memory accesses and hence the MLP
of the application running on the core, and 2) the intensity of the
application from the network perspective. The lower the number of
outstanding misses in MSHRs for an application, the lower that ap-
plication’s MLP and the smaller its instantaneous demand from the
network, and hence the higher its stall-time criticality. Using these
observations, this heuristic ranks an application with a smaller aver-

age number of outstanding L1 misses higher.
In contrast to MPI, the ReqQueue heuristic is affected by the sys-

tem state as well as the behavior of the network. It is important to be
aware that this can have detrimental feedback effects: applications
with higher number of L2 requests in their local queues (MSHRs)
will get de-prioritized (since each request is considered less stall-
time-critical). This causes these applications’ queues to become longer,
which in turn results in the applications to be assigned even lower
ranks during the next ranking interval. In addition, we experimen-
tally observe that the ReqQueue-based STC estimates are less stable
than MPI-based estimates, fluctuating frequently across ranking in-
tervals because the absolute number of outstanding L1 misses varies
widely at any instant during the execution of an application even
though L1 MPI can be relatively constant in a given phase.

3. Average stall cycles per packet (ASCP): This heuristic computes
for each application the average number of cycles the application
cannot commit instructions due to an outstanding packet that is be-
ing serviced by the network. Intuitively, ASCP is a direct indication
of the network stall-time-criticality for the application. Therefore,
the heuristic ranks the application with the largest ASCP the high-
est. Unfortunately, ASCP suffers from the same disadvantages as
ReqQueue: the number of stall cycles a packet experiences is heav-
ily influenced by 1) how much contention there is in the on-chip net-
work, which depends on what other applications are concurrently
running, and 2) the prioritization/arbitration policies used within the
network. As such, the value of ASCP can fluctuate and is not fully
indicative of an application’s stall-time criticality in the network.

Supporting the above expected disadvantages, our evaluations in
Section 8.5 show that the first heuristic, MPI, provides the best per-
formance on average. Therefore, we use MPI as our default ranking
heuristic.
Enforcing system-level priorities in the network via OS-deter-

mined application ranking: So far, we have discussed the use of
the ranking substrate as a mechanism to improve system performance
by ranking applications based on stall-time-criticality. We implicitly
assumed that all applications have equal system-level priority. In
a real system, the system software (the OS or VM monitor) may
want to assign priorities (or, weights) to applications in order to
convey that some applications are more/less important than others.
We seamlessly modify the ranking scheme in our technique to in-
corporate system-assigned application weights. The system soft-
ware converts the weight of applications to a ranking of applications,
and conveys the rank assigned to each application to our mechanism
via privileged instructions added to the ISA. This system-software-
configurable ranking scheme allows system-level priorities to be en-
forced in the network, a functionality that does not exist in existing,
application-oblivious prioritization mechanisms. Section 8.9 quan-
titatively evaluates and shows the effectiveness of this system-level
priority enforcement.
How frequently to recompute ranking? Application behavior (and
hence, network-related stall-time criticality) varies considerably over
execution time [24]. Therefore, application ranking should be re-
computed periodically to adapt to fine-grained phase changes within
application behavior. To accomplish this, our mechanism divides the
execution time into fixed time intervals (called ranking intervals),
and re-computes the ranking at the beginning of each time inter-
val. Intuitively, too large a ranking interval could miss changes in
the phase behavior of applications and might continue to enforce
a stale ranking that no longer optimizes system performance. On
the other hand, too small a ranking interval could lead to high fluc-
tuations in ranking. This can cause the rank of an application to
change while many packets tagged with the application’s previously-
computed rank(s) are in the network, which has a negative effect on
system throughput. The ranking interval can either be a static system
parameter or can be computed adaptively at run-time. An adaptive

ranking interval might capture phase changes more accurately, and is
likely to give superior performance than a static ranking interval, but
it is more complex to implement. In this work, we use an empirically-
determined static ranking interval for lower complexity.
The number of ranking priority levels R: Ideally, we would like
to have as many ranking priority levels as applications (e.g., N=64 in
a 64 core CMP), as this allows the network to distinguish between
applications in a fine-grained manner. Specifically, each application
can (if desired) be assigned a unique rank. In practice, however, the
number of ranking levels may have to be constrained, especially in
many-core systems consisting of large on-chip networks, because it
negatively affects 1) flit and flit buffer sizes (as each flit needs to carry
an encoded ranking with it) and 2) arbitration logic complexity and
latency in the router (routers need to compare the encoded ranking
of each flit to determine which one is of higher priority). In addi-
tion, in many cases it may not be desirable to assign different ranks
to different applications, for example, if the applications have sim-
ilar characteristics. For these reasons, we use fewer ranking levels
than the number of applications, which imposes a partial rank order
among applications by creating rank-equivalence classes.2

4.3 Batching Framework
In order to prevent starvation, we combine application-aware pri-

oritization with a “batching” mechanism. Each packet is added to a
batch depending on its time of arrival; and packets belonging to older
batches are prioritized over packets from younger batches. Only if
two packets belong to the same batch, they are prioritized based on
their applications’ rank order as described in the previous section.
There are four important issues related to the batching substrate:
1) how to group packets into different batches, 2) how to prioritize
among different batch numbers, 3) how frequently to group pack-
ets into batches (i.e., the batching interval size), and 4) how many
batching levels to support.
How to group packets into batches? We consider two ways in
which routers form batches in a coordinated fashion:

1. Time-Based (TB) Batching: In TB-batching, new batches are
formed in a periodic, synchronous manner across all nodes in the net-
work. All packets injected into the network (regardless of the source)
during a T cycle interval (called batching interval) are grouped into
the same batch. At the end of a batching interval, a new batch is
started—all newly arriving packets are added to a new batch. Thus,
packets injected in the first T cycles are assigned batch number 0,
those injected during the next T cycles are assigned batch number
1, and so on. Assuming that the clocks of different nodes are syn-
chronized, the same batch number is assigned by different nodes to
packets injected in the same clock cycle. Hence, there is no need
for global coordination or communication between routers for batch
formation. TB-batching is our default batching policy.

2. Packet-Based (PB) Batching: Instead of starting a new batch
based on a pre-determined, fixed time-interval, PB-batching starts a
new batch whenever a certain number N packets have been injected
into the current batch. That is, with PB-batching, the first N in-
jected packets are assigned the batch number 0, the next N packets
the batch number 1, and so on. Since the number of packets injected
in each node is different, but batches are formed globally across all

nodes, this scheme requires coordination among routers to keep the
current batch number synchronized across all nodes. Each router
communicates the number of newly injected packets (in the current
batch) to a centralized decision logic, which keeps track of the to-
tal number of injected packets in this batch. Once N new packets
have been injected, the centralized decision logic notifies the net-
work routers to increment their batch IDs. As such, the hardware

2We have determined that 8 ranking priority levels does not add significant
overhead to the router complexity, while providing sufficient granularity to
distinguish between applications with different characteristics, so we set R=8
(see Section 6).

complexity of this mechanism is higher than TB-batching.
In both TB- and PB-batching, batch IDs start at 0 and are incre-

mented at the end of every batching interval. After reaching the max-
imum supported batching level B, a batch number wrap-around oc-
curs and the next batch number restarts from 0.

0 1 2 4 5 63 7

Youngest Batch

Oldest Batch

0 1 2 4 5 6

Oldest Batch

Youngest Batch

3 7 0 1 2 4 5 63

Youngest Batch

Oldest Batch

7

Figure 5: The concept of batch number wrap-around (a) Initial snap-
shot (b) Intermediate snapshot (c) Snapshot after wrap-around

How to prioritize across batches? Clearly, due to batch number
wrap-around, the router cannot simply prioritize packets with lower
batch numbers over others with higher batch numbers (see Figure 5).
Instead, each router prioritizes packets based on relative order of
their batch numbers. This relative order can easily be computed lo-
cally in the router using the current batch-ID and the packet’s batch-
ID. Specifically, if BID is the current injection batch-ID and PID

is the packet’s batch ID, a router can compute a packet’s relative
batch priority (RBP) as RBP = (BID − PID) modulo B. The
packet with higher RBP is prioritized by the router. Note that pri-
ority inversion does not occur unless the number of batches present
in the network exceeds the number of supported batching levels. By
selecting a sufficiently large value for B, this can be easily ensured.
How frequently to group packets into batches? The size of the
batching interval determines for how long some applications are pri-
oritized over others (assuming rankings do not change). In general,
the shorter the batching interval, the lower the possible starvation
of lower-ranked applications but also the smaller the system-level
throughput improvements due to the prioritization of higher-ranked
applications. Hence, the choice of batching interval determines the
trade-off between system performance and fairness, and can be tuned
to accomplish system requirements. Note that the batching interval
size can be made configurable by the operating system to dynami-
cally trade-off between system performance and fairness.
How many batching levels B to support? As the number of sup-
ported batching levels B increases, the probability of priority inver-
sion among batches decreases, but the flit size and router arbitration
latency/complexity increases. Hence, B (in combination with the
batching interval) should be chosen large enough to ensure that the
number of incomplete batches never exceeds B. Based on our em-
pirically determined batching interval size, we empirically set B = 8
in our evaluated system.

4.4 Putting It All Together: Application-Aware Pri-
oritization Rules in a Router

Rule 1 summarizes the prioritization order applied by each router
in order to enable application-aware prioritization. Each router prior-
itizes packets/flits in the specified order when making packet schedul-
ing, arbitration, and buffer allocation decisions.

Rule 1 Packet/flit prioritization rules in each router

1: Oldest Batch First: Packets belonging to older batches are pri-
oritized over packets belonging to younger batches (the goal is
to avoid starvation).

2: Highest Rank First: Packets with higher rank values (belonging
to higher-ranked applications) are prioritized over packets with
lower rank values (the goal is to maximize system performance)

3: Local Router Rule: If the above two rules do not distinguish the
packets, then use the local policy at the router, e.g. LocalAge or
LocalRR. Our default policy is LocalAge, but LocalRR performs
very similarly (see Section 8.7).

5. Comparison with Existing Policies
Local, Application-Oblivious Policies: We demonstrate the dif-

ference between application-oblivious policies and our mechanism

Applications A : Heavy B: Bursty

C: Sensitive(Critical)

In
je
c
ti
o
n
 C
y
c
le
s

A5

A4

A8

A7

A6

A2

A1

A3

B1

B2

C1
Batch 0

Batch 1

Batch 2

0

1

2

3

5

6

4

7

Batch Interval = 3 cycles

Increasing Rank (A lowest, B medium, C highest)

A5

A4

B1

A8

A7

A6 A2

A1

A3

C1

B2

A5 A4B2 A3A2B1 A1C1 A8 A7A6

STC Scheduling

Router

A5 A4 B2 A3A2 B1A1 C1 A8 A7 A6

LocalRR Scheduling

Application A B C Avg

Stall Cycles 11 6 8 8.3

Application A B C Avg

Stall Cycles 11 6 4 7.0

Application A B C Avg

Stall Cycles 11 3 1 5.0

Routing

Computation

(RC)

VC Arbiter

(VA)

Switch Arbiter

(SA)

A5A4B2A3A2 B1A1 C1 A8A7A6

LocalAge Scheduling

VC0

VC7

Batch 0 Batch 1 Batch 2
*RR within batch local policy

Figure 6: Example: (a) Injection order at cores (b) Scheduling order and timeline at a router for different policies

(STC) with a simplified example. This example abstracts away many
details of the network and focuses on a single router, to simplify ex-
planations and to provide insight. The example shows that our mech-
anism significantly reduces average stall time of applications within
a single router compared to application-oblivious local policies. As
our mechanism ensures that all routers prioritize applications in the
same order, stall time reductions in each router are preserved across
the entire NoC, thereby leading to an increase in overall system per-
formance.

Consider an application mix of three applications: 1) A, a network-
intensive application which injects packets at a steady rate, 2) B, a
bursty application, and 3) C, a light, stall-time-critical application
that infrequently injects packets. Figure 6(a) shows all the packets
injected by each of these applications at their cores. To simplify
the example, suppose that all these packets happen to arrive at the
same router. Figure 6(b) shows this router in the network, where
all injected packets are buffered. We examine the amount of time
the router takes to service all packets of each application using three
prioritization schemes: 1) LocalRR, 2) LocalAge, and 3) STC. The
timelines in Figure 6(b) show for each scheme the service order of
the packets in the router, the time it takes to service each application
(i.e., each application’s stall-time in this router), and the average time
it takes to service all applications (i.e,. the average stall-time within
this router).3

LocalRR services each VC in round-robin order in consecutive cy-
cles and results in the topmost scheduling order. This order is com-
pletely application agnostic. It picks C’s only packet (C1) after all
other virtual channels are serviced since C1 occupies the last VC.
Hence, LocalRR results in 8 stall cycles for the critical application C
(11 cycles for A, 6 cycles for B). The average application stall time
for LocalRR is 8.33 cycles.

LocalAge prioritizes the packets in oldest-first order (and uses Lo-
calRR policy for equal-age packets). C1 is scheduled in the 4th cycle
since it is one of the oldest packets. Thus, LocalAge improves the
stall cycles of C by 2 cycles over LocalRR, thereby reducing average
application stall time in this router to 7 cycles. Note, however, that
LocalAge would have increased the average stall time had C1 been
injected into the network much later than shown in this example. The
key observation is that the oldest packet in the network is not neces-

sarily the most critical packet. Even though A1 is the oldest packet
in the network and it is scheduled first, it is not critical and its early
scheduling does not help average stall time of applications.

Our mechanism, STC, ranks C higher than B, and B higher than
A based on the MPI of each application. The router schedules the
packets of applications in rank order. C1 is scheduled in the first
cycle, which reduces C’s stall time to 1 cycle; and B’s packets are

3For the purposes of this example, we make the simplifying assumption that
an application stalls until all of its network packets are serviced, which is
shown to be a reasonable assumption for long-latency cache misses [18].

scheduled next, which reduces B’s stall time to 3 cycles. Application
A still stalls for the same amount of time because its last packet is
serviced after 11 cycles. The average stall time reduces to 5 cycles,
improving by 28% compared to the best previous local policy.

The example shows that unlike application-oblivious prioritization
policies, STC can effectively prioritize critical applications that ben-
efit the most from prioritization, and can therefore improve overall
system performance.
Globally Synchronized Frames (GSF): GSF [17] provides priori-
tization mechanisms within the network to ensure 1) guarantees on
minimum bandwidth and minimum network delay each application
experiences and 2) each application achieves equal network through-
put. To accomplish this, GSF employs the notion of frames, which
is similar to our concept of batches. Time is quantized into equal-
size frames (which are of limited number). Each source node (ap-
plication) can inject an equal –yet limited– number of packets into
a frame. Once an application fills its quota in a frame, it injects
packets into the next frame. If an application runs out of the maxi-
mum number of supported frames to inject to (usually the case with
very network intensive applications), it stalls until the oldest frame
gets recycled. Each packet carries its frame number in the network.
In the routers, packets belonging to the older frames are prioritized
over others. Among packets belonging to the same frame, there is
no prioritization based on sources, hence, there is no prioritization
based on the application a packet belongs to.

Even though the concept of batching is similar to the concept of
frames, our mechanism has several key differences from GSF. While
the purpose of GSF is to provide bandwidth-fairness and guarantee
a minimum level of bandwidth to each application, the purpose of
STC is to improve system-level throughput within the network by
prioritizing packets in an application-aware manner. There are four
major advantages of our proposal compared to GSF:

1. Application-aware prioritization within batches: GSF does
not employ any application-aware (or coordinated) prioritization in
routers among packets belonging to the same frame. As a result,
applications with non-critical packets can be prioritized over appli-
cations with critical packets. In contrast, STC employs criticality-
aware ranking within each batch, enabling the fast servicing of crit-
ical packets over others. Hence, STC significantly improves system
performance over GSF (see Section 8).

2. No quota per application: GSF imposes a quota on the num-
ber of packets each application can inject into a given frame (to
ensure equal bandwidth across flows). However, this requirement
can cause significant degradation in application-level throughput, es-
pecially when applications have largely different network intensity.
Consider the case when a very network-intensive application is shar-
ing the network with a bursty application. GSF divides each frame
equally between them. The intensive application can inject only half
of the packets within a frame, while bursty application might not in-

ject any packets. Due to the limited number of available frames, the
intensive application soon runs out of frames and stops injecting. As
a result, the network becomes under-utilized even though half of ev-
ery frame was not used at all. In fact, the intensive application is
penalized even though the light application is not using any network
bandwidth. In contrast to GSF, STC does not impose any quota on
the number of packets injected into a batch by any application. Due
to this, the probability of the system running out of batches is signif-
icantly smaller than in GSF. In the rare case when all batch numbers
are exhausted, STC suffers from temporary priority inversion instead
of stopping some applications from injecting. As a result, STC’s
application-level throughput is higher than GSF, especially with het-
erogeneous mixes of applications.

3. No reserved buffer slots: To provide tight latency guarantees
and reduce frame completion time, GSF reserves a VC per port for
the oldest frame. The reserved VC cannot be utilized by any other
frame, even if the VC is empty. This reduces system throughput
compared to our scheme, which does not require the reservation of
any buffer slots.

4. No global synchronization on the critical path of execution:

When the oldest frame completes in GSF, routers need to synchro-
nize to update their local copies of the oldest frame number. This
synchronization latency is on the critical path of execution in GSF
due to two reasons: 1) the reserved VC goes unutilized and 2) an
application that has run out of frames cannot start injection until this
synchronization completes. In contrast, we do not use any global bar-
rier network for synchronization, since we do not reserve any buffer
for the oldest batch. Also, rank/batch formation updates are not on
the critical path of execution in STC, because the routers are never
prevented from injecting into the network and are allowed to use stale
values for ranking.

The major advantage of GSF over STC is that it can provide hard
bandwidth and latency guarantees to applications, at the expense of
system-level throughput. STC does not provide any bandwidth or
latency guarantees to applications; however, it uses batching to en-
sure a level of fairness. While hard guarantees are likely to be useful
for real-time systems, high system throughput combined with high
fairness and the ability to enforce system-level application priorities
could be sufficient in general-purpose many-core systems. Hence,
STC takes advantage of the relaxed constraints of general-purpose
systems to improve system performance without degrading fairness.

6. Implementation
We use a central decision logic (CDL) that periodically gathers

information from each node, determines a global application ranking
and batch boundaries (for packet-based batching), and communicates
the batch number and the node’s rank back to each node. We assume
the CDL hardware is located in the central node (i.e. (4,4) coordinate
in an 8x8 mesh) of the NoC.

Rank Formation: Each core maintains a “rank-register” that con-
tains the rank of the application running on this core. A new rank is
computed at the end of every ranking interval. For this purpose, each
processing core has additional logic and a set of hardware counters to
measure the ranking metric (e.g., MPI) value that will be used by the
CDL to compute rank of the nodes.4 The counters are reset at the be-
ginning of each ranking interval. At the end of the ranking interval,
each core forms a rank-control information packet (RCIP) contain-
ing the ranking metric value(s) measured during that interval.5 Each
core then sends its RCIP packet to the CDL. Upon receiving all RCIP
packets, the CDL computes the ranking among applications (see Sec-
tion 4.2). In our implementation, there are N = 64 processors, but
4MPI ranking heuristic uses only two 16 bit registers, one for L1 misses and
one for number of retired instructions.
5To bound the number of bits in RCIP to one flit size, all counters are scaled
down. We divide all counters by 32, a value analytically determined assuming
maximum bounds on ranking interval and L1 MPI.

only R = 8 ranking levels. We use the standard k-means cluster-
ing algorithm [12] with four iterations (O(4 ∗ R ∗ N) operations) to
map the N processors to the R ranks. The CDL then sends the rank
to each processing core using a rank-control update packet (RCUP),
and upon receipt of this packet, a core updates its rank-register with
the new rank. Note that the rank formation process is not on the

critical path because the ranking interval is significantly larger than
the time needed to compute a new ranking. Until a new ranking is
received, each core simply uses the old ranking.

Batch Formation: Each node keeps a local copy of the Batch
ID (BID) register containing the current (injection) batch number
and maximum supported batch ID (MBID) register containing the
maximum number of batching priority levels. Note that BID values
across all nodes are the same. For Time-Based Batching, BID is sim-
ply incremented every T cycles. For Packet-Based Batching, BID
is updated after every P packets that have been injected across all

nodes. As this requires coordination among nodes, we use CDL for
BID updates in this case. Each node periodically (every U = 4000
cycles6) sends a batch-control information packet (BCIP) to CDL.
BCIP contains the number of packets that the router injected in the
last U cycles. The CDL has a global packet counter register, which
is incremented by BCIP data bits. When the CDL’s counter reaches
or exceeds P packets, CDL sends out a batch control update packet
(BCUP) to each router. Upon receiving a BCUP packet, each router
increments its BID. All control packets (BCIP, BCUP, RCUP) are
very short (few bits of data) and sent infrequently, thus adding negli-
gible load to the network and not hurting performance. Finally, note
that BCIP and BCUP packets are needed only for PB-batching, not
for our default TB-batching.

Priority Assignment and Enforcement: Before a packet is in-
jected, a router tags it with a priority level using the rank and BID
registers (3 bits each in our implementation). At each router, the
priority bits in the flit header are utilized by the priority arbiters to
allocate VCs and the switch. Each priority arbiter must support at
least 6 bits of priority. Fast priority arbiters can be designed us-
ing high speed adders as comparators within the arbiters. We use
adder delays in [23] to estimate the delay of an 8-bit priority arbiter
(P = 5,V = 6) to be 138.9 picoseconds and the delay of an 16-bit
priority arbiter to be 186.9 ps at 45nm technology.

7. Methodology
7.1 Experimental Setup

We evaluate our techniques using a trace-driven, cycle-accurate
x86 CMP simulator. Table 1 provides the configuration of our base-
line, which contains 64 cores in a 2D, 8x8 mesh NoC. The mem-
ory hierarchy uses a two-level directory-based MESI cache coher-
ence protocol. Each core has private write-back L1 caches. The net-
work connects the cores, L2 cache banks, and memory controllers.
Each router uses a state-of-the-art two-stage microarchitecture. We
use the deterministic X-Y routing algorithm, finite input buffering,
wormhole switching, and virtual-channel flow control. We faith-
fully model all implementation details of the proposed prioritization
framework (STC) as well as previously proposed GSF, LocalAge and
LocalRR. The parameters used for GSF are: 1) active window size
W = 6, 2) synchronization penalty S = 16 cycles, 3) frame size
F = 1000 flits. The default parameters used for STC are: 1) rank-
ing levels R = 8, 2) batching levels B = 8, 3) ranking interval =
350,000 cycles, 4) batching interval = 16,000 cycles, 5) BCIP packet
sent every U = 4000 cycles. We model all extra control packet
traffic. Section 8 evaluates important parameter sensitivity.

7.2 Evaluation Metrics
We evaluate our proposal using several metrics. We measure

application-level system performance in terms of weighted and
6This value is determined empirically to balance the overhead of BCIP pack-
ets and batching interval.

Processor Pipeline 2 GHz processor, 128-entry instruction window

Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 32 KB per-core (private), 4-way set associative, 128B block size, 2-cycle latency, write-back, split I/D caches, 32 MSHRs

L2 Caches 1MB banks, shared, 16-way set associative, 128B block size, 6-cycle bank latency, 32 MSHRs

Main Memory 4GB DRAM, up to 16 outstanding requests for each processor, 320 cycle access, 4 on-chip Memory Controllers.

Network Router 2-stage wormhole switched, virtual channel flow control, 6 VC’s per Port, 5 flit buffer depth, 8 flits per Data Packet, 1 flit per address packet.

Network Topology 8x8 mesh, each node has a router, processor, private L1 cache, shared L2 cache bank (all nodes)

4 Memory controllers (1 in each corner node), 128 bit bi-directional links.

Table 1: Baseline Processor, Cache, Memory, and Network Configuration

Benchmark NST/packet Inj Rate Load NSTP Bursty # Benchmark NST/packet Inj Rate Load NSTP Bursty

1 wrf 7.75 0.07% low low low 19 sjbb 8.92 2.20% high high high

2 applu 16.30 0.09% low high low 20 libquantum 12.35 2.49% high high low

3 perlbench 8.54 0.09% low high low 21 bzip2 5.00 3.28% high low high

4 dealII 5.31 0.31% low low high 22 sphinx3 8.02 3.64% high high high

5 sjeng 8.35 0.37% low high low 23 milc 14.73 3.73% high high low

6 namd 4.59 0.65% low low high 24 sap 4.84 4.09% high low high

7 gromacs 5.19 0.67% low low high 25 sjas 5.15 4.18% high low high

8 calculix 7.10 0.73% low low low 26 xalancbmk 15.72 4.83% high high low

9 gcc 2.14 0.89% low low high 27 lbm 8.71 5.18% high high high

10 h264ref 12.41 0.96% low high high 28 tpcw 5.64 5.62% high low high

11 povray 2.07 1.06% low low high 29 leslie3d 5.78 5.66% high low low

12 tonto 3.35 1.18% low low high 30 omnetpp 2.92 5.72% high low low

13 barnes 7.58 1.24% low low high 31 swim 10.13 6.06% high high low

14 art 42.26 1.58% low high low 32 cactusADM 8.30 6.28% high high low

15 gobmk 4.97 1.62% low low high 33 soplex 8.66 6.33% high high low

16 astar 6.73 2.01% low low low 34 GemsFDTD 4.82 11.95% high low low

17 ocean 9.21 2.03% low high high 35 mcf 5.53 19.08% high low low

18 hmmer 6.54 2.12% high low high

Table 2: Application Characteristics. NST/packet: Average network stall-time per packet, Inj Rate: Average packets per 100 Instructions,
Load: low/high depending on injection rate, Network Stall Cycles per Packet (NSTP): high/low, Bursty: high/low.

harmonic speedup [8], two commonly used multi-program perfor-
mance metrics based on comparing the IPC of an application when
it is run alone versus when it is run together with others. Hmean-
speedup balances performance and fairness.

W. Speedup =

X

i

IPCshared
i

IPCalone
i

, H. Speedup =

NumThreads
P

i
1

IP Cshared
i

/IP Calone
i

Network stall cycles (NST) is the number of cycles the pro-
cessor stalls waiting for a network packet [19]. To isolate ef-
fects of only the on-chip network, NST does not include the stall
cycles due to off-chip DRAM access or on-chip cache access.
We define network-related slowdown of an application as the
network-stall time when running in a shared environment

(NST
shared), divided by, network-stall time when running alone

(NST
alone) on the same system. The application-level network

unfairness of the system is the maximum network-related slowdown
observed in the system:

NetSlowdowni =

NST shared
i

NST alone
i

, Unfairness = max

i
NetSlowdowni

7.3 Application Characteristics

We use a diverse set of multiprogrammed application workloads
comprising scientific, commercial, and desktop applications. We use
the SPEC CPU2006 benchmarks, applications from SPLASH-2 and
SpecOMP benchmark suites, and four commercial workloads traces
(sap, tpcc, sjbb, sjas). In total, we study 35 applications. We
choose representative execution phases using PinPoints [24] for all
our workloads excluding commercial traces, which were collected
over Intel servers. In order to have tractable simulation time, we
choose a smaller representative window of instructions (5 million
per application), obtained by profiling each application. All our ex-
periments study multi-programmed workloads, where each core runs
a separate application. We simulate at least 320 million instructions
across 64 processors.

Table 2 characterizes our applications. The reported parameters
are for the applications running alone on the baseline CMP sys-
tem without any interference. We categorize applications into three
groups based on their network characteristics: applications with 1)

high/low load are called heavy/light, 2) high Network Stall Cycles
per Request Packet (NSTP) are called sensitive, and 3) bursty injec-
tion patterns are called bursty. Our aggregate results are based on 96
different workload combinations.

8. Performance Evaluation
We first compare our base approach (STC-MPI ranking with TB-

batching) to three existing packet prioritization schemes: 1) local
round-robin arbitration (LocalRR), 2) age-based arbitration (LocalAge)
and 3) globally synchronized frames (GSF), using three case stud-
ies to provide insight into the behavior of each scheme with dif-
ferent types of workloads. Figure 7 shows the network slowdowns
(the lower the better) of the individual applications. Figures 8 (a)
and (b) show the system performance (weighted speedup7 and har-
monic speedup) of the four schemes for different case studies. Sec-
tion 8.4 reports aggregate results averaged over 96 different work-
loads, showing that the benefits of our scheme hold over a wide vari-
ety of workloads.

8.1 Case Study I: Heavy applications mixed with
network-sensitive applications

We mix 16 copies each of two heavy applications (cactus and
lbm) and two network-sensitive applications (art and libquantum).
The following observations are in order:
• The baseline LocalRR policy slows down all applications other
than art, which has very high NST/packet when run alone (the po-
tential negative impact of interference in the network is lower for
art than for other applications). LocalRR slows down other ap-
plications in hard-to-predict ways as round-robin port allocation is
application-oblivious.
• LocalAge policy significantly reduces the network slowdown of
the heaviest application (cactus) compared to LocalRR, while in-
creasing the slowdowns of all other applications. LocalAge implic-
itly prioritizes heavier applications because older packets in the net-
work are more likely to be from the heavier applications. Overall,
LocalAge reduces performance by 5.9%/3.8% (weighted/harmonic
7Weighted speedup is divided by number of cores (=64) for clarity.

0
1
2
3
4
5
6
7
8
9

LocalRR LocalAge GSF STC

N
e
tw

o
rk

 S
lo

w
d
o
w

n
s

 art libquantum cactus lbm

0

2

4

6

8

10

12

LocalRR LocalAge GSF STC

N
e
tw

o
rk

 S
lo

w
d
o
w

n
s

 astar barnes Gems mcf

0
1
2
3
4
5
6
7
8
9

10

LocalRR LocalAge GSF STC

N
e
tw

o
rk

 S
lo

w
d
o
w

n
s

 xalan sphinx cactus sjas

Figure 7: Network slowdown of applications: (a) Case Study I (b) Case Study II (c) Case Study III

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

case1 case2 case3 Avg

W
e
ig

h
te

d
 S

p
e
e
d
u
p

LocalRR LocalAge GSF STC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

case1 case2 case3 Avg

H
a
rm

o
n
ic

 S
p
e
e
d
u
p

LocalRR LocalAge GSF STC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

weighted harmonic

S
p
e
e
d
u
p

LocalRR LocalAge
GSF STC

0

2

4

6

8

10

airthmetic
mean

harmonic
mean

U
n
fa

ir
n
e
s
s

LocalRR LocalAge
GSF STC

Figure 8: System performance results: (a) Weighted speedup of case studies (b) Harmonic speedup of case studies (c) Aggregate

Speedup for 96 workloads and (d) Aggregate Unfairness for 96 workloads

speedup) over LocalRR as it delays light applications in the network.
These applications could have made fast progress had their packets
been quickly serviced. Hence, implicitly prioritizing network-heavy
applications in the network leads to a loss of system throughput, mo-
tivating the need for better prioritization mechanisms. On the other
hand, LocalAge is a fair policy, leading to the smallest maximum
network slowdown: the heaviest application has the highest network
slowdown in LocalRR (because it gets delayed significantly by other
copies of cactus running on the system) and LocalAge reduces this
maximum slowdown by implicitly prioritizing the heavy application.
• GSF unfairly penalizes the heavy applications, as explained in Sec-
tion 5, because they quickly run out of frames and stop injecting.
Thus, the network slowdowns of cactus and lbm increase by 1.6X
and 2.4X over LocalRR. Since GSF guarantees minimum bandwidth
to all applications, it improves the network slowdown of network-
sensitive applications over both of the local policies (by 24.2% for
art and 22.3% for libquantum over LocalRR) by ensuring that
heavier applications do not deny service to the lighter applications.
However, GSF does not prioritize any application within a frame,
thus there is scope for further reducing the slowdowns of network-
sensitive applications. Overall, GSF significantly degrades system
throughput (by 16.6% over LocalRR) and application-level fairness
(by 1.8X over LocalRR) because it unfairly penalizes the heavy ap-
plications, causing their cores to make very slow progress, thereby
reducing system utilization.
• STC prioritizes the network-sensitive applications using ranking,
and ensures, using batching, that the heavy applications are not overly
penalized. The result is that it significantly reduces the slowdown of
network-sensitive applications as their packets’ prioritization reduces
their network stall cycles per packet (NSTP), e.g. art’s NSTP re-
duces from 219.5 cycles (LocalRR) to 99.8. STC slightly degrades
the network slowdown of the heavy applications (by 6.2%/9.4% over
LocalAge). This increase is small for two reasons: 1) batching pre-
vents the starvation of heavy applications, 2) heavy applications are
more latency tolerant due to the lower stall-time criticality of their
requests: for example, compared to the NSTP of art (219.5 cycles),
lbm’s NSTP is only 36.2 cycles. Overall, STC improves system
throughput by 12.8%/8.2% (weighted/harmonic) over LocalRR and
19.8%/12.4% over LocalAge, because it enables network-sensitive
applications to make faster progress without significantly slowing
down heavy applications that are slow to begin with.

8.2 Case Study II: Heavy applications mixed with
light applications

We run 16 copies each of two heavy applications (Gems and mcf)
with 16 copies each of two light applications (astar and barnes).
The purpose is to show the behavior of STC when network-intensive
applications are run together with compute-intensive applications, a
likely scenario in future multi-core systems. We make the following
key observations:
• LocalRR’s network slowdowns are in general higher than in Case
Study I, since mcf and Gems are much heavier workloads than
cactus and lbm, thus slowing down themselves (i.e. other copies
of mcf and Gems) and other applications more.
• The local policies and GSF show similar behavior compared to
Case Study I. LocalRR is agnostic of applications, and hence, slows
down different type of applications in difficult-to-predict ways:
astar (light) and mcf (heavy) experience the highest slowdowns.
LocalAge implicitly prioritizes heavy applications as packets from
those applications are likely to be older. As a result, LocalAge re-
duces system performance by 9.1% (weighted speedup) compared
to LocalRR. In contrast, GSF has the opposite effect: it implicitly
slows down heavy applications, reducing both system performance
(by 10.6% over LocalRR) and fairness (by 1.5X over LocalRR).
Hence, we conclude that neither LocalAge nor GSF work well with
a heterogeneous mix of applications as they tend to implicitly penal-
ize light or heavy applications respectively, which leads to reduced
overall system utilization.
• STC provides large system throughput improvements over all pre-
vious schemes by prioritizing light applications over heavy applica-
tions. Overall, STC’s system performance improvement is 29.5%
over LocalAge and 21.7% over LocalRR. STC greatly reduces the
packet-latency/NSTP of the lighter applications (from 112.8/109.8
cycles with LocalAge to 41.9/38.4 for barnes) while only slightly
increasing the packet-latency/NSTP of heavy applications (from
119.7/27.0 cycles to 123.4/29.4 for Gems). As a result, average stall-
time of the applications in the network reduces, leading to the ob-
served system throughput improvements. As batching ensures that
no application’s packets are delayed indefinitely, STC also provides
the best fairness. We conclude that STC can provide both the best

system throughput and system fairness when a set of memory-intensive
and compute-intensive applications are executed concurrently.

8.3 Case Study III: Mix of heavy applications
We run 16 copies each of four heavy applications (xalan,

sphinx, cactus, and sjas). The purpose of this case study is
to show the dynamic behavior of STC: applications may have simi-
lar average behavior (e.g., all are heavy), but if their transient behav-
iors are sufficiently different, STC can still provide high performance
gains. The following observations are in order:
• sjas is extremely bursty, as shown in Figure 9(c). It is penalized
severely by GSF during its "heavy" bursts by running out of frames
and being throttled, causing GSF to lose throughput (Figure 8(a)) and
fairness (Figure 7(c)). As in previous case studies, LocalAge slows
down the applications with relatively low injection rates (sphinx
and sjas).
• The average injection rates (Figure 9(a)) of the four applications are
similar: the ratio of the minimum and maximum injection rates in the
mix is 1.6X (vs. 3.9X in Case Study II). The average L1 miss ratios
(Figure 9(b)) of the four applications are also similar: the ratio of the
minimum and maximum L1 miss rates in the mix is 1.9X (vs. 5.8X in
Case Study I). One might, therefore, conclude that prioritizing lighter
applications or those with lower MLP (i.e., "critical applications")
might not be very advantageous. However, STC improves system
throughput by 12.2% over LocalRR and 18.1% over LocalAge. This
is because STC is able to adapt to the dynamic changes in the behav-
ior of applications: even though average miss rates of applications
are similar, each application’s instantaneous miss rate varies over
time (Figure 9(c)). Because STC determines application priorities on
an interval basis, it is able to adapt its prioritization to correctly iden-
tify the applications that benefits from prioritization in each interval.
For example, in Figure 9(c), during intervals 0-21, STC improves
system throughput by prioritizing sphinx’s packets, whereas dur-
ing intervals 40-60, STC similarly improves system throughput by
prioritizing sjas’s packets. Hence, STC is able to identify and pri-
oritize the lightest/critical application in a given interval, leading to
improvements even when all applications seemingly have the same
average behavior.

8.4 Overall Results Across 96 Multi-Programmed
Workloads

Figures 8 (c) and (d) compare the four prioritization techniques av-
eraged across 96 workload mixes. 48 workloads have a mix with four
applications (16 copies each) and 48 workloads have a mix with eight
applications (8 copies each). Each set of 48 workloads is spread out
across the design space: 16 workloads represent low network utiliza-
tion (all applications are light), 16 workloads represent medium net-
work utilization (half light, half heavy) and 16 workloads represent
high network utilization (all heavy). Within each of the three cate-
gories, applications are randomly picked to form the 16 workloads.
The aggregate results are consistent with the observations made in
the three case studies. On average, STC improves system throughput
by 9.1%/4.3% (weighted/harmonic) compared to the best previous
scheme (LocalAge), while also improving network fairness by 5.7%.
The highest performance improvement of our mechanism is 33.7%,
the lowest -1.8% over the best existing prioritization policy. We con-
clude that STC provides the best system performance and network
fairness over a very wide variety of workloads.

8.5 Effect of Ranking Heuristics
Figures 10(a) and 11(a) show the effect of different ranking heuris-

tics: ASCP, ReqQueue, and MPI (Section 4.2) and two further heuris-
tics to provide comparison points, RoundRobin (assign ranks in a
round-robin manner that changes every ranking-interval) and Ran-
dom (assign ranks randomly every interval). First, all the heuristics
perform better than or at least equivalent to LocalRR, LocalAge, and
GSF. ASCP, which ranks the applications according to NST/packet,
is the most inefficient and unfair STC-aware heuristic. There are
two reasons: 1) the positive feedback loop discussed in Section 4.2,
which leads to some applications to be unfairly stuck in a low rank

for a long period of time and 2) ASCP accelerates applications with
higher stall-time per packet even if these applications are heavy. As
we saw before, prioritizing a heavy application in the network slows
down almost all other applications. MPI provides the best perfor-
mance because it effectively prioritizes light applications over heavy
ones from the perspective of the network. We conclude that prior-
itizing only "light and stall-time-critical" applications can be done
effectively in the network without significantly hurting other applica-
tions’ performance. Overall, MPI provides a good trade-off between
performance, fairness, and implementation complexity. Finally, note
that RoundRobin and Random ranking, which do not take into ac-
count application behavior in ranking, result in much lower system
performance than other ranking techniques. This further indicates
that MPI is effective in capturing applications’ network criticality
and intensity.

8.6 Effect of Batching Policy
Figures 10(b) and 11(b) show the effect of different batching poli-

cies, discussed in Section 4.3, as well as not using batching. Not
using batching (rightmost bars) results in the lowest system perfor-
mance because it starves low-ranked applications for long periods
of time. Note that there is not a significant performance or fairness
difference between packet-based or time-based synchronized batch-
ing. Since time-based synchronized batching is simpler to imple-
ment, we conclude that synchronized time-based batching provides
the best tradeoff between performance, fairness, and implementation
complexity.

8.7 Effect of Local Arbitration Policy
Figures 10(c) and 11(c) show the effect of different local arbitra-

tion policies used with our mechanism. The local arbitration policy
is invoked only if the rank and batch numbers of two packets are
equal (this is the "Local Router Rule" specified in Section 4.4). We
compare three local polices 1) Age (packet-age based prioritization)
2) RoundRobin (RR; round-robin port prioritization) and 3) InstAge

(a new policy where a packet is assigned the age, i.e. current time
minus the fetch time, of the instruction it is initiated by). Overall,
there is no single best policy in terms of performance, fairness, and
implementation complexity. The Age policy is the fairest and pro-
vides slightly better performance than the other two. However, it is
more complex to implement because it requires 1) the age of a flit to
be tracked in the network and 2) more complex arbitration logic to
compare flit ages. The RoundRobin policy, has the lowest implemen-
tation cost, but has slightly lower performance and is slightly more
unfair than the other two. The InstAge policy is in-between in terms
of performance, fairness, and complexity. We conclude that our pro-
posal’s performance or fairness is not significantly affected by the
local arbitration policy of the routers.

8.8 Effect of Ranking and Batching Intervals
The graphs in Figure 12 show the effect of different ranking and

batching intervals on STC performance and fairness. Both intervals
have a higher impact on fairness than performance. Figure 12 shows
that: 1) performance is lower with smaller ranking intervals because
highly fluctuating ranks eliminate the benefits of ranking, 2) unfair-
ness increases for very large ranking intervals because it fails to adapt
to changes in applications’ network intensity, thereby unfairly penal-
izing bursty applications.

The two rightmost graphs in Figure 12 show that batching inter-
val B determines the trade-off between fairness and performance.
A smaller B leads to high fairness by reducing starvation to a mini-
mum, especially for Case Study III, which contains applications with
bursty behavior. On the other hand, a smaller B also leads to reduced
system performance as the granularity at which higher-ranked appli-
cations are prioritized within the network (and hence system through-
put maximized) becomes smaller. When B becomes too large, fair-
ness starts to degrade since batching is essentially eliminated for long
time periods.

0

10

20

30

40

50

60

70

Applications

P
a
c
k
e
ts

 p
e
r

K
ilo

 I
n
s
tr

u
c
ti
o
n
s xalan sphinx cactus sjas

0

5

10

15

20

25

30

35

40

45

50

Applications

L
1

m

is
s
e

s

p

e
r

K
ilo

 I
n

s
tr

u
c
ti
o

n
s

xalan sphinx cactus sjas

0

40

80

120

160

200

0 10 20 30 40 50 60 70 80 90 100

P
a
c
k
e
ts

 p
e
r

K
ilo

 I
n
tr

u
c
ti
o
n
s

Instruction interval number (in10K instructions)

sjas cactus sphinx xalan

Figure 9: Injection rate (packets per kilo instructions) of Case Study III applications for an intermediate one million instructions

window (a) Average Injection Rate (b) Average L1 mpki (c) Injection rate during each 10K-instruction interval

0.3

0.4

0.5

0.6

0.7

0.8

case1 case2 case3 Avg

W
e
ig

h
te

d
 S

p
e
e
d
u
p

 STC-ASCP STC-ReqQueue
STC-MPI RoundRobin
Random

0.3

0.4

0.5

0.6

0.7

0.8

case1 case2 case3 Avg

W
e
ig

h
te

d
 S

p
e
e
d
u
p

STC-TB STC-PB STC-nobatch

0.3

0.4

0.5

0.6

0.7

0.8

case1 case2 case3 Avg

W
e
ig

h
te

d
 S

p
e
e
d
u
p

STC-InstAge STC-RR STC-Age

Figure 10: Performance impact of different (a) Ranking Heuristics (b) Batching Policies (c) Local Arbitration Polices

0
1

2

3

4

5

6

7
8

9

case1 case2 case3 Avg

M
a
x

N
e
tw

o
rk

 S
lo

w
d
o
w

n

STC-ASCP STC-ReqQueue

STC-MPI RoundRobin

Random

0
1
2
3
4
5
6
7
8
9

10

case1 case2 case3 Avg

M
a
x

N
e
tw

o
rk

 S
lo

w
d
o
w

n

STC-TB STC-PB STC-nobatch

0

1

2

3

4

5

6

7

8

case1 case2 case3 Avg

M
a
x

N
e
tw

o
rk

 S
lo

w
d
o
w

n

STC-InstAge STC-RR STC-Age

Figure 11: Fairness impact of different (a) Ranking Heuristics (b) Batching Policies (c) Local Arbitration Polices

8.9 Effect of Enforcing System-Level Application
Weights/Priorities

We evaluated the effectiveness of our prioritization substrate in
enforcing system-software-assigned application priorities for a vari-
ety of scenarios and present three representative case studies. Fig-
ure 13(a) shows the network slowdown of four groups of 16 xalan
applications (8x8 network) where, each group has weights of 1, 2,
2, and 8, respectively. Figure 13(b) shows the network slowdown of
eight groups of 8 xalan applications where each group respectively
has weights of 1, 2, 3, ..., 8. LocalAge and LocalRR schemes treat all
different-weight applications the same because they are application-
unaware. As a result, all applications slow down similarly. In con-
trast, our mechanism enforces application weights as configured by
the OS. Each application slows down inverse-proportionally to its
weight: higher-weight (i.e., more important) applications experience
the smallest slowdowns whereas lower-weight (i.e., less important)
applications experience the highest slowdowns in the network.

Figure 13(c) shows that our proposal is also able to enforce appli-
cation weights in a heterogeneous workload consisting of different
applications. We conclude that our mechanism is effective at enforc-
ing system-level application priorities within the network by allow-
ing application-aware prioritization to be configurable by the system
software.

Note that we also evaluated GSF by ensuring it allocates network
bandwidth proportionally to each application’s weight. While GSF
is able to enforce application weights in the network, it does so at
significantly reduced system throughput compared to STC, as shown
in Figure 13(d). GSF also slows down the lowest-weight application
significantly more than STC (see Figures 13(b) and 13(c)) because
when this application runs out of frames, it cannot inject into the
network.

9. Related Work
To our knowledge, no previous work proposed application-level

prioritization mechanisms to optimize application-level system through-
put in NoCs. Here, we briefly describe the most closely related pre-
vious work.
Prioritization and Fairness in On-Chip/Off-Chip Networks: We
have already compared our approach extensively, both qualitatively
and quantitatively, to existing local arbitration (LocalAge,LocalRR)
and state-of-the-art QoS-oriented prioritization (GSF [17]) policies
in NoC. Other frameworks for QoS [2, 26] have been proposed in on-
chip networks. Mechanisms for QoS can possibly be combined with
our approach. Similarly, a large number of arbitration policies [32,
4, 10, 1] have been proposed in multi-chip multiprocessor networks
and long-haul networks. The goal of these mechanisms is to provide
fairness or guaranteed service, while ours is to improve overall sys-
tem throughput without degrading fairness, while being sufficiently
configurable to allow the operating system to enforce application pri-
orities.

Bolotin et al. [3] propose prioritizing control packets over data
packets in the NoC, but do not distinguish packets based on which
application they belong to. Our mechanism can be combined with
their simple prioritization heuristic.
Flow-Based Prioritization in Off-Chip Networks: Previous work [32,
6, 33] explored mechanisms that statically assign priorities/bandwidth
to different flows in off-chip networks to satisfy real-time perfor-
mance and QoS guarantees. These works assume that each flow’s
priority is known a priori, and hence each packet’s priority is simply
set to this known priority. In contrast, our mechanism does not as-
sume an application’s priority is known. STC can dynamically deter-
mine the relative priority of each application (and hence each packet)
to optimize overall system performance. Note that our scheme is still

0.36

0.46

0.56

0.66

0.76

25K 50K 100K 150K 200K 250K 300K 350K 400K

W
e
ig

h
te

d
 S

p
e
e
d
u
p

Ranking Interval (Kilo cycles)

case1 case2 case3
0

2

4

6

8

25K 50K 100K 150K 200K 250K 300K 350K 400K

U
n
fa

ir
n
e
s

Ranking Interval (Kilo cycles)

case1 case2 case3

0.36

0.46

0.56

0.66

0.76

0.5K 1K 2K 4K 8K 16K 32K

W
e
ig

h
te

d
 S

p
e
e
d
u
p

Batching Interval (Kilo packets)

case1 case2 case3
0

2

4

6

8

0.5K 1K 2K 4K 8K 16K 32K

U
n
fa

ir
n
e
s

Batching Interval (Kilo packets)

case1 case2 case3

Figure 12: Effect of Ranking and Batching Intervals

0

2

4

6

8

10

12

14

LocalRR LocalAge GSF-1-2-2-8STC-1-2-2-8

N
e
tw

o
rk

 S
lo

w
d
o
w

n

xalan-1 xalan-2 xalan-2 xalan-8

0
2
4
6

8
10
12
14
16

18
20

LocalRR LocalAge GSF STC

N
e

tw
o

rk
 S

lo
w

d
o

w
n

xalan-1

xalan-2

xalan-3

xalan-4

xalan-5

xalan-6

xalan-7

xalan-8
0

2

4

6

8

10

12

14

16

18

20

22

LocalRR LocalAge GSF-1-2-2-8 STC-1-2-2-8

N
e

tw
o

rk
 S

lo
w

d
o

w
n

xalan-weight-1 leslie-weight-2
lbm-weight-2 tpcw-weight-8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

xalan1228 xalan1to8 hetero1228 Avg

W
e
ig

h
te

d
 S

p
e
e
d
u
p

LocalRR LocalAge
GSF STC

Figure 13: Enforcing OS Priorities:(a) A homogenous workload mix with weights 1-2-2-8 (b) A homogenous workload mix with weights

1-to-8 (c) A heterogeneous workload mix with weights 1-2-2-8 (d) Weighted Speedup of all mechanisms for the three workloads

able to enforce statically-known priorities, as Section 4.2 shows.
Criticality of Memory Accesses and Memory Level Parallelism:

There has been extensive research on predicting criticality of mem-
ory accesses [28, 9, 29] and prioritizing critical accesses in the pro-
cessor core and caches. It has also been shown that system per-
formance can be improved by designing MLP-aware cache replace-
ment [25] and memory scheduling policies [20]. Our work is related
to these works only in the sense that we also exploit criticality and
MLP to improve system performance. However, our mechanisms are
very different due to the distributed nature of on-chip networks. To
our knowledge, the concepts of criticality and MLP were not previ-
ously exploited in on-chip networks to improve system performance.
Batching: We propose packet batching in NoC for starvation avoid-
ance. The general concept of batching has been used in disk schedul-
ing [30] and memory scheduling [20] to prevent the starvation of I/O
and memory requests. The concept of frames used in [17] is analo-
gous to packet batching.

10. Conclusion
We introduce a novel, comprehensive application-aware prioriti-

zation framework to improve application-level system throughput in
NoCs. We identify the concept of stall-time criticality of packets,
and provide mechanisms to prioritize applications with critical pack-
ets across routers, while guaranteeing starvation freedom. Averaged
over 96 randomly-generated multiprogrammed workload mixes on a
64-core 8x8-mesh CMP, the proposed policy improves overall sys-
tem throughput by 9.1% on average (and up to 33.7%) over the best
existing prioritization policy, while also reducing application-level
unfairness. While effective at improving both system performance
and fairness, our proposal is also configurable and thus enables the
enforcement of system-level application priorities, without hurting
overall performance. We conclude that the proposed prioritization
framework provides a promising way to build many-core NoCs that
provide high system performance, fairness, and flexibility.

Acknowledgments
This research is supported in part by NSF grant CCF 0702519. The
authors would like to thank Microsoft for their generous support. We
thank Miray Kas and the anonymous reviewers for suggestions.

References
[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W. king Su. Myrinet - A Gigabit-per-Second Local-Area Network.
IEEE Micro, 1995.

[2] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS architecture and
design process for network on chip. Journal of Systems Arch., 2004.

[3] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The Power of Priority:
NoC Based Distributed Cache Coherency. In NOCS’07, 2007.

[4] A. A. Chien and J. H. Kim. Rotating Combined Queueing (RCQ): Bandwidth and
Latency Guarantees in Low-Cost, High-Performance Networks. ISCA-23, 1996.

[5] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann, 2003.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In SIGCOMM, 1989.

[7] J. Dundas and T. Mudge. Improving data cache performance by pre-executing
instructions under a cache miss. In ICS-11, 1997.

[8] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram
workloads. IEEE Micro, May-June 2008.

[9] B. Fields, S. Rubin, and R. Bodík. Focusing processor policies via critical-path
prediction. In ISCA-25, 2001.

[10] D. Garcia and W. Watson. Servernet II. Parallel Computing, Routing, and
Communication Workshop, June 1997.

[11] A. Glew. MLP Yes! ILP No! Memory Level Parallelism, or, Why I No Longer
Worry About IPC. In ASPLOS Wild and Crazy Ideas Session, 1998.

[12] J. A. Hartigan. Clustering Algorithms. Morgan Kaufmann, 1975.
[13] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology for on-chip

networks. MICRO-40, 2007.
[14] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S. Yousif, and

C. R. Das. A novel dimensionally-decomposed router for on-chip communication
in 3D architectures. ISCA-34, 2007.

[15] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In ISCA-8,
1981.

[16] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express virtual channels: Towards
the ideal interconnection fabric. In ISCA-34, 2007.

[17] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-Synchronized Frames for
Guaranteed Quality-of-Service in On-Chip Networks. In ISCA-35, 2008.

[18] O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead execution: Power-efficient
memory latency tolerance. IEEE Micro, 2006.

[19] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In MICRO-41, 2007.

[20] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both Performance and Fairness of Shared DRAM Systems. In ISCA-35, 2008.

[21] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead execution: an alternative
to very large instruction windows for out-of-order processors. In HPCA-9, 2003.

[22] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R. Das.
Vichar: A dynamic virtual channel regulator for network-on-chip routers. In
MICRO-39, 2006.

[23] V. G. Oklobdzija and R. K. Krishnamurthy. Energy-Delay Characteristics of
CMOS Adders, High-Performance Energy-Efficient Microprocessor Design,
chapter 6. Springer US, 2006.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large intelő itaniumő programs with
dynamic instrumentation. In MICRO-37, 2004.

[25] M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt. A Case for MLP-Aware Cache
Replacement. In ISCA-33, 2006.

[26] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander. Trade-offs in the design of a router with both
guaranteed and best-effort services for networks on chip. DATE, 2003.

[27] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a simultaneous
multithreading processor. In ASPLOS-8, 2000.

[28] S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in dynamically
scheduled processors. In MICRO-31, 1998.

[29] S. Subramaniam, A. Bracy, H. Wang, and G. Loh. Criticality-based optimizations
for efficient load processing. In HPCA-15, 2009.

[30] T. J. Teorey and T. B. Pinkerton. A comparative analysis of disk scheduling
policies. Communications of the ACM, 1972.

[31] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 1967.

[32] K. H. Yum, E. J. Kim, and C. Das. QoS provisioning in clusters: an investigation
of router and NIC design. In ISCA-28, 2001.

[33] L. Zhang. Virtual clock: a new traffic control algorithm for packet switching
networks. SIGCOMM, 1990.

