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Abstract 

Network throughput can be increased by dividing the 
buffer storage associated with each network channel into 
several virtual channels [DalSei]. Each physical channel 
is associated with several small queues, virtual channels, 
rather than a single deep queue. The virtual channels 
associated with one physical channel are allocated in- 
dependently but compete with each other for physical 
bandwidth. Virtual channels decouple buffer resources 
from transmission resources. This decoupling allows ac- 
tive messages to pass blocked messages using network 
bandwidth that would otherwise be left idle. Simula 
tion studies show that, given a fixed amount of buffer 
storage per link, virtual-channel Ilow control increases 
throughput by a factor of 3.5, approaching the capacity 
of the network. 

1 Introduction 

Interconnection Networks 

The processing nodes of a concurrent computer exchange 
data and synchronize with one another by passing mes- 
sages over an interconnection network [AthSei, BBN86, 
Dally89, Seitz851. The interconnection network is often 
the critical component of a large parallel computer be- 
cause performance is very sensitive to network latency 
and throughput and because the network accounts for 
a large fraction of the cost and power dissipation of the 
machine. 

An interconnection network is characterized by its topol- 
ogy, routing, and flow control [Dally89b]. The topology 
of a network is the arrangement of nodes and channels 
into a graph. Routing specifies how a packet chooses 
a path in this graph. Flow control deals with the al- 
location of channel and buffer resources to a packet as 

lThe research described in this paper was supported in part 
by the Defense Advanced Research Projects Agency under con- 
tracts NOOOl4-80-C-0622 and N00014-G-I<-0124 and in part by 
a National Science Foundation Presidential Young Investigator 
Award with matching funds from General Electric Corporation 
and IBM Corporation. 
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Figure 1: Packet B is blocked behind packet A while all 
physical channels remain idle. 

it traverses this path. This paper deals only with Row 
control. It describes a method :for allocating resources 
to packets using virtual channels [DalSei]. This method 
can be applied to any topology and routing strategy. 

The Problem 

The throughput of interconnect,ion networks is limited 
to a fraction (typically 20%50%) of the network’s CC+ 
pacity [Dally871 because of coupled resource allocation. 

Interconnection networks are composed of two types 
of resources: buffers and chann.els. Typically, a single 
buffer is associated with each channel. Once a packet, 
A, is allocated the buffer, no other packet, B, can use 
the associated channel until A releases the buffer. If 
packet A becomes blocked while holding the buffer, the 
channel is idled even though there may be other pack- 
ets in the network that can make productive use of the 
channel. 

This situation is illustrated in Figure 1. In the figure, 
the network is depicted as a network of streets where 
each block corresponds to a bufler and each intersection 
represents one or more channels that connect buffers. 
Packet A holds buffers 4N (north of block 4) and 4E 
and is blocked. Packet B is unable to make progress 
even though all physical channels it requires, (3N to 
4N) and (4N to 5N), are idle because Packet A holds 
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Figure 2: Virtual channels provide additional buffers 
(lanes) allowing Packet B to pass blocked Packet A. 

buffer 4N which is coupled to channel (3N to 4N). 

Virtual Channel Flow Control 

Virtual channels decouple resource allocation by pro- 
viding multiple buffers for each channel in the network. 
If a.blocked packet, A, holds a buffer associated with a 
channel, another buffer is available allowing other pack- 
ets to pass A. Figure 2 illustrates the addition of virtual 
channels to the network of Figure 1. Packet A remains 
blocked holding buffers 4N.l and 4E. 1. In Figure 2, 
however, Packet B is able to make progress because 
alternate buffer 4N.2 is available allowing it access to 
channel (3N to 4N). 

Adding virtual channels to an interconnection network 
is analogous to adding lanes to a street network. A 
network without virtual channels is composed of one- 
lane streets. In such a network, a single blocked packet 
blocks all following packets. Adding virtual channels to 
the network adds lanes to the streets allowing blocked 
packets to be passed. 

In addition to increasing throughput, virtual channels 
provide an additional degree of freedom in allocating 
resources to packets in the network. This flexibility 
permits the use of scheduling strategies, such as rout- 
ing the oldest packet first, that reduce the variance of 
petwork latency. 

The most costly resource in an interconnection network 
is physical channel (wire) bandwidth. The second most 
costly resource is buffer memory. Adding virtual chan- 
nel flow control to a network makes more effective use 
of both of these resources by decoupling their alloca- 
tion. The only expense is a small amount of additional 
control logic. 

Block 

Figure 3: Output queueing or partitioned input queues 
provide one stage of decoupling. However, long packets 
(such as Packet A) continue to couple resources and 
cannot be passed. 

Background 

The use of virtual channels for flow control builds on 
previous work in using virtual channels for deadlock 
avoidance and in using output queueing or split input 
queues for partial resource decoupling. Virtual chan- 
nels were introduced in [DalSei] for purposes of deadlock 
avoidance. A cyclic network can be made deadlock-free 
by restricting routing so there are no cycles in the chan- 
nel dependency graph and then adding virtual cha&eIs 
to reconnect the network. 

A single stage of resource decoupling is provided by out- 
put queueing [I<HM87]. By performing the queueing in 
the output of a switch rather than the input, arriv- 
ing packets are able to pass blocked messages arriving 
on the same input. Tamir [Tamir88] has shown how 
to achieve the same single-stage resource decoupling by 
partitioning the switch’s input queue. This single stage 
resource decoupling is effective only if an entire packet 
fits in a single node. As shown in Figure 3 , when a 
long packet is blocked, it backs up into the output stage 
of the previous node preventing any following packet 
from passing it. Extending our roadway analogy, out- 
put queueing provides a “turning lane”. 

Summary 

The next section introduces the notation and assump- 
tions that will be used throughout this paper. Section 3 
describes virtual channel flow control in detail. The ra 
sults of simulating networks using virtual channel flow 
control are described in Section 4. 



2 Preliminaries 

Topology 

An interconnection network consists of a set of nodes, 
N, and a set of channels, C C N. Each channel is 
unidirectional and carries data from a source node to a 
destination node. A bidirectional network is one where 
(nl, n2) E C =S (n2, nl) E C. 

Routing 

A packet is assigned a route through the network ac- 
cording to a routing relation, R C C x N x C, given 
the channel occupied by the head of the packet and 
the destination node of the packet, the routing relation 
specifies a (possibly singleton) set of channels on which 
the packet can be routed. 

Flow Control 

Communication between nodes is performed by sending 
messages. A message may be broken into one or more 
packets for transmission. A packet is the smallest unit 
of information that contains routing and sequencing in- 
formation. A packet contains one or more flow control 
digits or flits. A flit is the smallest unit on which flow 
control is performed. Information is transferred over 
physical channels in physical transfer units or phits. A 
phit is usually the same size or smaller than a flit. 

The flow control protocol of a network determines (1) 
how resources (buffers and channel bandwidth) are al- 
located and (2) how packet collisions over resources are 
resolved. A resource collision occurs when a packet, 
P, is unable to proceed because some resource it needs 
(usually a buffer) is held by another packet. Collisions 
may be resolved by (1) blocking P in place, (2) buffering 
P in a node prior to where the collision occurs, (3) drop- 
ping P , or (4) misrouting P to a channel other than the 
one it requires. The technique described in this paper 
is applicable to all of these flow control strategies but 
is most appropriate for networks that use blocking or 
limited buffering to resolve collisions. 

The flow control strategy allocates buffers and channel 
bandwidth to flits. Because flits have no routing or se- 
quencing information, the allocation must be done in a 
manner that keeps the flits associated with a particu- 
lar packet together. This may be done by associating 
a set of buffers and some control state together into a 
virtual channel, A virtual channel or lane is allocated 
to a packet and the buffers of the lane are allocated in 
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Figure 4: Node organization. Each network node con- 
tains a set of buffers for each input channel and aswitch. 

a FIFO manner to the flits of that packet. 

Most networks associate only a single lane with each 
channel. This paper describes a method for improving 
the performance of networks by associating several lanes 
with each channel. This method makes no assumptions 
about how wires are allocated. 

Wormhole Routing 

The technique described here is particularly suitable for 
use in networks that use wormhole routing [Dally87]. 
Wormhole routing refers to a flow-control protocol that 
advances each flit of a packet it5 soon as it arrives at a 
node (pipelining) and blocks packets in place when re- 
quired resources are unavailable. Wormhole routing is 
attractive in that (1) it reduces the latency of message 
delivery compared to store and forward routing, and 
(2) it requires only a few flit buffers per node. Worm- 
hole routing differs from virtual cut-through routing 
[KerKle] in that with wormhole routing it is not nec- 
essary for a node to allocate an entire packet buffer 
before accepting each packet. This distinction reduces 
the amount of buffering required on each node making 
it possible to build fast, inexpensive routers. 

3 Virtual Channel Flow Control 

Structure 

Each node of an interconnection network contains-a set 
of buffers and a switch2 In this paper, we assume that 
the buffers are partitioned into sets associated with each 
input channel, an input-buffered node, as shown in Fig- 
ure 4. An output-buffered switch (KHM87, Tamir88] 

lEach node also contains driver and receiver circuits to com- 
municate across the physicaI wires and control logic. 
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(A) 16-Flit FIFO Buffers 

I 

(B) 16-FIit Four-Lane Buffer 

Figure 5: (A) Conventional nodes organize their buffers 
into FIFO queues restricting routing. (B) A network 
using virtual-channel flow control organizes its buffers 
into several independent lanes. 

can be considered to be an input buffered switch with 
a non- blocking first stage by associating the buffers on 
the output of each stage with the inputs of the next 
stage. 

A conventional network organizes the flit buffers associ- 
ated with each channel into a first-in, first-out (FIFO) 
queue as shown in Figure 5A. This organization restricts 
allocation so that each flit buffer can contain only flits 
from a single packet. If this packet becomes blocked, 
the physical channel is idled because no other packet is 
able to acquire the buffer resources needed to access the 
channel. 

A network using virtual channel flow control organizes 
the flit buffers associated with each channel into several 
lanes as shown in Figure 5B. The buffers in each lane 
can be allocated independently of the buffers in any 
other lane. This added allocation flexibility increases 
channel utilization and thus throughput. A blocked 
message, even one that extends through several nodes, 
holds only a single lane idle and can be passed using 
any of the remaining lanes. 

Operation 

In a network using virtual channel flow control, flow 
control is performed at two levels. At the packet level 

packets are assigned to virtual channels or lanes. At 
the flit level channel bandwidth, switch bandwidth, and 
individual buffers are allocated to flits. 

Lane assignment is performed by the node (node A) 
at the transmitting end of the physical channel. For 
each of its output channels, this node keeps track of 
the state of each lane buffer at the opposite end of the 
channel. For each lane, the state information includes 
whether the lane is assigned, and if assigned, how many 
empty buffers it contains. A packet in an input buffer 
on node A selects a particular output channel based on 
its destination and the routing algorithm in use. The 
flow-control logic then assigns this packet to any free 
lane of the selected channel. If all lanes are in use, the 
packet is blocked. 

Maintaining lane state information on the transmitting 
end of the channel allows lane assignment to be per- 
formed on a single node. No additional internode com- 
munication is required to maintain this information as 
it is already required for flit-level flow control. 

Once a lane is assigned to a packet, flit-level flow control 
is used to advance the packet across the switch and 
physical channel. To advance from the input buffer on 
the transmitting node (node A) to the input buffer on 
the receiving node (node B), a flit must gain access 
to (1) a path through the switch to reach the output 
of node A, and (2) the physical channel to reach the 
input of node B. Typically either the switch is non- 
blocking, and thus always available, or a few flits of 
buffering are provided at the output of node A so that 
switch and channel resources do not have to be allocated 
simultaneously. 

When the last flit of a message (the tail flit) leaves a 
node the lane assigned to that packet is deallocated and 
may be reassigned to another packet. 

Allocation Policies 

Flit-level flow control across the physical channel in- 
volves allocating channel bandwidth among lanes that 
(1) have a flit ready to transmit and (2) have space for 
this flit at the receiving end. Any arbitration algorithm 
can be used to allocate this resource including random, 
round-robin, or priority. 

Deadline scheduling [LiuLey] can be implemented by 
allocating channel bandwidth based on a packet’s dead- 
line or age -earliest deadline or oldest age first. Schedul- 
ing packets by age reduces the variance of message la- 
tency. Deadline scheduling provides several classes of 
delivery service and reduces the variance within each 
class. 
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(A) Complete Switch (B) Multiplexed Switch 

Figure 6: (A) Adding virtual channels increases switch 
complexity if a complete switch is used. (B) using a 
multiplexed switch leaves switch complexity unchanged. 

Implementation Issues 

Virtual channel flow control can be integrated into ex- 
isting switch designs by replacing FIFO buffers with 
multi-lane buffers. When this replacement is made, 
however, the switch must be modified to deal with a 
larger number of inputs and outputs, and the flow con- 
trol protocol between nodes must be modified to iden- 
tify lanes. 

Increasing the number of virtual channels multiplexed 
on each physical channel increases the number of inputs 
and outputs that must be switched at each node. If the 
switch handles each of these inputs and outputs sepa- 
rately as shown in Figure 6(A), the switch complexity 
will increase significantly. Increasing the switch com- 
plexity is not required, however. The average data rate 
out of the set of lanes associated with a given physi- 
cal channel is limited to the bandwidth of the channel. 
Thus it is sufficient to provide a single switch input for 
each physical input and output channel as shown in Fig- 
ure 6(B). With this organization, a small (one or two 
flit) output buffer is desirable to decouple switch alloca- 
tion from physical channel allocation. Individual lanes 
are multiplexed onto the single path through the switch 
in the same manner that they are multiplexed over the 
single physical channel between the nodes. 

Any network that uses blocking or buffering flow control 
must, for each channel, send information in the reverse 
direction to indicate the availability of buffering on the 
receiving node. These acknowledgment signals can be 
transmitted on separate wires [DalSon] or, in a bidirec- 
tional network, they can be transmitted out-of-band on 
a channel in the opposite direction [Iumos]. 

In a network using multi-lane buffers, two effects in- 
crease the acknowledgment traffic. First, a few bits 
must be added to each acknowledgment signal to iden- 

tify the lane being acknowledged. Second, because a 
lane buffer is typically smaller t:han a channel ,l?IFO, 
the use of block acknowledgment:s to amortize the cost 
of the signal over several flits is restricted3. 

Even with these effects, acknowledgment signal ‘band- 
width is still a small fraction of forward bandwidth. In a 
network with 32-bit flits, 15 lanes per channel, and no 
block acknowledgment, 4 bits must be sent along the 
reverse channel for each flit transmitted along the for- 
ward channel, a 12.5% overhead. An additional 12.5% 
overhead is required to identify th.e lane associated with 
each flit sent in the forward direction, Such a scheme 
could be realized by a physical channel consisting of 
an g-bit forward path (8-bit phits) and a l-bit reverse 
path. Every four channel cycles a 32-bit flit is trans- 
mitted over the forward path along with its 4bit lane 
identifier and a 4-bit acknowledgment code is transmit- 
ted over the reverse path. Efficiency can be improved 
further by increasing the flit size or using block acknowl- 
edgments. 

4 Experimental Results 

To messure the effect of virtual channel flow control on 
network performance (throughput and latency) we have 
simulated a number of networks holding the total buffer 
storage per node constant and varying the number of 
lanes per channel. If lanes are added, the depth of each 
lane is proportionally reduced. 

The simulator is a 3000 line C program that simulates 
interconnection networks at the flit-level. A flit transfer 
between two nodes is assumed to take place in one time 
unit. The network is simulated synchronously moving 
all flits that have been granted channels in one time step 
and then advancing time to the next step. The simula- 
tor is programmable as to topology, routing algorithm, 
and traffic pattern. 

Throughput is measured by applying to each network 
input a saturation source that injects a new packet into 
the network whenever a lane is available on its input 
channel. Throughput is given as a fraction of network 
capacity. A uniformly loaded network is operating at 
capacity if the most heavily loaded channel is used 100% 
of the time. 

Latency is measured by applying a constant rate source 
to each input and measuring the time from packet cre- 
ation until the last flit of the packet is accepted at the 
destination. Source queueing ti.me is included in the 

3A block acknowledgments signals the availability of a block 
(several fits) of storage in a single action rather than signalling 
each fit separately 



Multistage Network 

Figure 7: A 2-ary 4-fly network. 

latency measurement. 

Multistage Networks 

Multistage (k-ary n-fly) networks have kn inputs con- 
nected to kn outputs by n-stages of kn-1 k x k -switches. 
For example, a P-ary Cfly is shown in Figure 7. Because 
of their simplicity, simulations of multistage networks 
were used to evaluate virtual channel flow control. The 
method is in no way specific to multistage networks. It 
is equally applicable to other topologies including direct 
networks such as k-ary n- cubes, and trees. 

Throughput 

Figure 8 shows the saturation throughput versus the 
number of lanes per channel for radix-2 multistage net- 
works (2-ary n- flys). Data is shown for networks with 
dimensions of 4,6,8, and 10. Each network simulated 
has 16 flits of storage per channel. The number of lanes 
per channel was varied from 1 (conventional network) 
to 16 in powers of two. 

The simulations were run with packet length fixed at 

20 flits and uniformly distributed random packet des- 
tinations. Channel bandwidth was allocated randomly 
to lanes. 

The results show that adding lanes to a network greatly 
increases its throughput, particularly for large networks. 
The radix 10 (1024-input) network shows a throughput 
gain of 250%, throughput more than tripled, with the 
addition of lanes. The first few lanes results in most 
of the improvement with diminishing returns for larger 
numbers of lanes. Increasing from 8 to 16 lanes gives 
only a 14% improvement for the radix 10 network. This 
suggests that 4 to 8 lanes per channel is adequate for 
most networks. 

Adding lanes holding the total storage constant gives a 
far greater throughput improvement than does increas- 
ing the total amount of buffering with a single lane (see 
[Mailhot]). 

Latency 

Figure 9 shows the average packet latency versus offered 
traffic for radix-2 dimension- 8 multistage networks (2- 
ary 8-flys). As above, each network simulated has 16 
flits of storage per node, and the number of lanes per 
node was varied from 1 to 16 in powers of two. 

The results show that adding lanes has little effect on 
latency below the saturation throughput of a conven- 
tional network. The curves lie on top of each other 
below a traffic of 0.2. Above this point the latency of a 
conventional network is infinite (no data for 1 lane) and 
the addition of lanes extends the latency curve smoothly 
for each network simulated until it reaches its saturation 
throughput. 

Each network’s departure from the smooth latency curve 
as saturation is reached is smoother than shown in this 
figure. The abrupt transition shown in the figure is due 
to the coarse spacing of data points at 10% increments 
in network load. 

Scheduling Algorithm 

Figure 10 shows the effect of the channel scheduling 
algorithm on latency. The figure shows two latency 
histograms, one for a random assignment of channel 
bandwidth to packets, and the other for oldest-packet- 
first channel bandwidth allocation (deadline schedul- 
ing). Both curves are for 2-ary 6- fly networks with ran- 
dom traffic operating at 50% capacity. The histograms 
have been truncated at 128 cycles latency. 

The use of deadline scheduling reduced the average la 
tency slightly, from 74.4 cycles to 71.8 cycles and dra- 
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Figure 8: Throughput vs. number of lanes for radix-2 multistage networks under random traffic. Throughput 
increases rapidly as lanes are added with diminishing returns for larger numbers of lanes. For the dimension-10 
network throughput with 16 lanes is 3.5 times the throughput with a single lane. 

matically reduced the variation in latency. With dead- 
line scheduling 4619 packets, over one quarter of all 
packets delivered during the simulation, had a latency of 
23 cycles, the minimum possible for this network. The 
deadline curve also shows smaller peaks of 949,277, and 
93 packets at 43, 63, and 83 cycles that are due to pack- 
ets that had to wait one or more entire packet delays 
(about 20 cycles) before being able to proceed. These 
peaks stand out from the background level that slopes 
from about 100 packets per cycle at 24 cycles latency 
to about 30 packets per cycle at 128 cycles latency. 

In contrast to the sharp peaks of the deadline curve, the 
random curve shows broad peaks at 43 and 83 cycles. 
The random curve also has a higher background level 
except in the region from 24 cycles to 36 cycles. The two 
curves cross over at 36 cycles. The data suggest that 
deadline scheduling can be useful in reducing avera,ge 
message latency and in making message latency more 
predictable. 

The experiment shown here was run with all packets 
having the same deadline (their birth time). The same 
scheduling algorithm can be used to provide different 
classes of service by giving some packets tighter dead- 
lines than others. This would be useful, for example, 

in a switch that handles both voice and data where the 
voice traffic has a tight deadline and should be dropped 
if it cannot make its deadline. 

5 Conclusion 

The performance of interconnection networks can be 
improved by organizing the buffers associated with each 
network channel into several lanes or virtual channels 
rather than a single FIFO queue. Associating several 
lanes with each physical channel decouples the alloca- 
tion of virtual channels to packets from the allocation 
of physical channel bandwidth to flits. This decoupling 
allows active messages to pass blocked messages dra- 
matically improving network throughput. 

The use of virtual channel flow control also allows ffex- 
ibility in allocating physical channel bandwidth. By 
decoupling resource allocation, a channel’s bandwidth 
need not be allocated to the “next packet in line”. In- 
stead, this bandwidth may be allocated on the basis 
of packet type, age, or deadline. The use of dead- 
line scheduling may be particularly important in net- 
works where one class of packets must be delivered in a 
bounded amount of time. 
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Figure 9: Latency vs. offered traffic for 2-ary 8-flys under random traffic. Adding lanes to the network has little 
effect on latency below saturation throughput for a single lane. Above this point, the latency curves for multiple 
lanes are extended smoothly until they reach their saturation throughput levels. 

Several indirect (2-ary n-fly) net,works have been sim- 
ulated to measure the performance of virtual cha.nnel 
flow control. These simulations sbow that with the to- 
tal amount of buffer storage per node held constant, 
adding lanes increased throughput. by a significant fa.c- 
tor. For a 2-ary lo-fly network (1024 input butterfly), 
the throughput with 16 lanes per channel is 3.5 times 
the throughput with a single lane. 

Simulations also indicate that adding lanes has little ef- 
fect on latency below saturat,ion throughput and extend 
the latency curve smoothly as throughput is improved. 
The use of deadline scheduling reduces average latency 
by a small amount and makes latency much more pre- 
dictable. 

The critical resources in an interconnection network a.re 
wire bandwidth and buffer memory. Virtual channel 
flow control is a method for allocating t,bese critical 
resources in a more efficient manner. With network 
switches constructed using VLSI circuits, the cost of 
adding the small amount of control state and logic re- 
quired to implement multiple lanes per channel is well 
worth the cost. 

Acknowledgment 

I thank Steve Ward, Anant Agarwal, Tom Knight, and 
Charles Leiserson for many discussions about intercon- 
nection networks and their analysis. Appreciation is 
due to the referees for many helpful comments and sug- 
gestions. Finally, I thank all the members of the MIT 
Concurrent VLSI Architecture group and especially Scott 
Wills, Dave Chaiken, and Waldemar Horwat for their 
help with and contributions to this paper. 

References 

[AtbSei] Athas, W.C., and Seitz, C.L., “Multicomput- 
ers: Message-Passing Concurrent Computers,” IEEE 
Computer, Vol 21, No 8, August 1988, pp. 9-24. 

[BBN8G] BBN Ad vanced Computers, Inc., Butterfly Par- 
allel Processor Overview, BBN Report No 6148, March 
1986. 

[Dally871 Dally, W.J. “Wire-Efficient VLSI Multipro- 
cessor Communication Networks,” Proceedings of the 
Stanford Conference on Advanced Research in VLSI, 
Paul Losleben, ed., MIT Press, March 1987, pp. 391- 

67 



z 1ooooc 0000 c 
I I 

Sk 

8 

8 
5 
z 1000 = 1000 = 
6 

2 

5 i i 

0” 

!i 

100 y+q 100 y+q 
. : . : 

_ :- _ :- 

& 
-‘: :J -‘: :J 

It 
!! !! 
i i 

I I I I I I I I 9 9 

a-..- Random Scheduling a-.+- Random Scheduling 
- Deadline Scheduling - Deadline Scheduling 

lo* lo* 
I I I I I I I I I I 

20 20 40 40 60 60 80 100 120 80 100 120 140 140 

Latency (Cycles) Latency (Cycles) 

Latency Histogram Latency Histogram 

Figure 10: Latency histogram for a P-ary g-fly network with random traffic at 50% capacity using deadline (oldest Figure 10: Latency histogram for a P-ary g-fly network with random traffic at 50% capacity using deadline (oldest 
first) and random scheduling of physical chsnnels. The histogram for deadline scheduling has a sharp peak at 23 first) and random scheduling of physical chsnnels. The histogram for deadline scheduling has a sharp peak at 23 
and smaller peaks at 43, 63, and 83. The curve for random scheduling shows a broad peak at 43. and smaller peaks at 43, 63, and 83. The curve for random scheduling shows a broad peak at 43. 

415. 

[Dally89a] Dally, W.J., et. al., “The J- Machine: a Fine- 
Grain Concurrent Computer,” Information Processing 
89, Elsevier North Holland, 1989. 

[Dally89b] Dally, W.J ., “Network and Processor Archi- 
tecture for Message-Driven Computing,” in VLSI and 
Parallel Processing, R. Suaya a.nd G. Birtwistle eds., 
Morgan Kaufmann, to appear 1989. 

[DalSei] Dally, W.J. and Seitz, C.L., “Dea.dlock Free 
Message Routing in Multiprocessor Interconnection Net- 
works,” IEEE nansactions on Computers, Vol C-36, No 
5, May 1987, pp. 547-553. 

[DalSon] Dally, W.J., and Song, P., “Design of a Self- 
Timed VLSI Multicomputer Communication Controller”, 
Proceedings IEEE International Conference on Com- 
puter Design, ICCD-87, October 1987, pp 230-234. 

[Inmos] Inmos Limited, IMS T424 Reference Manual, 
Order No 72 TRN 006 00, Bristol, UK, November 1984. 

[KerKle] Kermani, P., and Kleinrock, L., “Virtual Cut- 
Through: A New Computer Communicat.ion Switching 
Technique,” Computer Networks, Vol3, 1979, pp. 267- 
286. 

[KHM87] Karol, M.J., Hluchyj, M.G., and Morgan, S.P., 
“Input Versus Output Queueing on a Space-Division 
Packet Switch,” IEEE Transactions on Communications, 
Vol COM- 35, No 12, December 1987, pp. 1347- 1356. 

[LiuLey] Liu and Leyland, “Scheduling Algorithms for 
Multiprogramming in a Hard Real-Time Environment,” 
Journal of the ACM, Vol 20, No 1, January 1973, pp. 
46- 61. 

[Mailhot] Mailhot, J.N., A Comparative Study of Rout- 
ing and Flow-Control Strategies in k- ary n-cube Net- 
works, Massachusetts Institute of Technology, SB The- 
sis, May 1988. 

[Seitz85] Seitz, C.L., “The Cosmic Cube,” Communi- 
cations of the ACM, Vol 28, No 1, January 1985, pp. 
22-33. 

[Tamir88] Tamir, Y., and Frazier, G.L., “High-Performance 
Multi-Queue Buffers for VLSI Communication Switches,” 
15th annual ACM/IEEE Symposium on Computer Ar- 
chitecture, June 1988, pp. 343-354, 


