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Abstract
For maximum performance, an out-of-order processor

must issue load instructions as early as possible, while
avoiding memory-order violations with prior store in-
structions that write to the same memory location. One
approach is to use memory dependence prediction to
identify the stores upon which a load depends, and com-
municate that information to the instruction scheduler. We
designate the set of stores upon which each load has de-
pended as the load’s "store set". The processor can dis-
cover and use a load’s store set to accurately predict the
earliest time the load can safely execute. We show that
store sets accurately predict memory dependencies in the
context of large instruction window, superscalar ma-
chines, and allow for near-optimal performance compared
to an instruction scheduler with perfect knowledge of
memory dependencies.  In addition, we explore the imple-
mentation aspects of store sets, and describe a low cost
implementation that achieves nearly optimal performance.

1. Introduction
Modern superscalar processors such as the Alpha

21264[1], MIPS R10000[2], HP-PA8000[3] and Intel
Pentium Pro [4], allow instructions to execute out of pro-
gram order to find more instruction level parallelism
(ILP). These processors must monitor data dependencies
to maintain correct program behavior. There are two types
of data dependencies. Register dependencies occur when
one instruction writes a register and a subsequent instruc-
tion reads the same register. Memory dependencies occur
when a store instruction writes to a memory location and a
subsequent load instruction reads that same location.

Register dependencies are determined in the instruction
decode stage by examining instructions’ register operand
fields. Memory dependencies cannot be determined as
early, because they require the computation of the memory
address, which occurs after register operands are ready and
the instruction is issued.

This lack of information about memory dependencies
at instruction decode time is a problem for an out-of-order
instruction scheduler. If the scheduler executes a load be-
fore a prior store that writes to the same memory location,
the load will read the wrong value. In this event the load
and all subsequent dependent instructions must be re-
executed, resulting in a performance penalty. To avoid
these memory-order violations, the scheduler could be
conservative and prevent loads from executing until all
prior stores have executed. This approach decreases per-
formance because, in most cases, loads will be made

falsely dependent on unrelated stores, unnecessarily de-
laying their execution. This dilemma has created the need
for memory dependence prediction.

The goals of memory dependence prediction are 1) to
predict the load instructions that if allowed to execute
would cause a memory-order violation and 2) to delay the
execution of these loads only as long as is necessary to
avoid a such a violation [5]. When a memory dependence
predictor makes a mistake, it fails to satisfy one of these
two goals. To quantify the success of a memory depend-
ence predictor, we count the number of memory-order
violations and the number of false dependencies created
by the predictions.  This paper will use these two metrics,
as well as overall program performance, to evaluate our
memory dependence predictor.

Our memory dependence predictor is based upon the
concept of store sets. A store set for a specific load is the
set of all stores upon which the load has ever depended. A
load’s store set can be approximated in hardware by first
allowing speculation of all loads around older stores. If a
load executes before a store upon which it depends, the
processor detects a memory-order violation when the store
is executed and adds the store to that load’s store set. Es-
sentially the processor discovers and remembers a load’s
store set during program execution. The store set is then
used to predict which stores a load must wait for before
executing.

In this paper, we focus on the performance impact of
memory dependence prediction based on store sets in an
eight-wide superscalar out-of-order processor. We de-
scribe our CPU model and simulation environment in
Section 2. In Section 3, we illustrate the benefit of mem-
ory dependence prediction by considering two alternatives
and comparing their performance to that of a perfect
memory dependence predictor. Section 4 discusses related
work. We explain store-sets-based memory dependence
prediction in Section 5, and propose and evaluate an im-
plementation in Section 6.  In Section 7, we analyze the
performance of our memory dependence predictor on a
benchmark where it performs less than optimally.

2. Simulation Environment
Accurate memory dependence prediction becomes

more important for wider-issue processors with larger in-
struction windows. Therefore, we focus on the need for
memory dependence prediction for next-generation out-of-
order, speculative-execution processors. Our CPU model
represents a processor with roughly double the caches and
issue width of the Alpha 21264, and executes the Alpha



instruction set. We chose the size of the instruction queue,
128 entries, based upon performance sensitivity analysis
by increasing the size of the instruction queue by powers
of two until no further performance could be gained for
our machine configuration. We model an aggressive fetch
unit, which can fetch multiple basic blocks in a cycle, and
a large McFarling-style choosing branch predictor [9]. The
model parameters are listed in Table 2.1.

Table 2.1
CPU Model
• 128 entry instruction queue

• 128K 2-way set-associative Instruction cache

• 128K 2-way set-associative write-back Data cache

• 8 Instructions maximum issued per cycle

• 4 D-Cache Ports (any combination of loads and stores)

• 8M Direct Mapped, Write-Back Unified Second Level Cache

We assume that the processor detects memory-order
violations by keeping a table of the effective addresses of
all loads while they are in-flight speculatively. That table
is checked for each store to see if a speculatively executed
load actually depended on the store. If the processor de-
tects a memory-order violation, it must have some recov-
ery mechanism to salvage the correct architectural state.
Our simulator recovers from a memory-order violation by
trapping the load involved in the memory-order violation,
i.e., squashing that load and all subsequent instructions in
program order, whether they depend on the load or not. It
then re-fetches the instruction stream starting with the load
in violation. Our CPU model can re-fetch the instruction
stream the cycle after a memory-order violation is de-
tected.

We used the SPEC95 benchmarks as a test suite. To
avoid long simulation times, we ran our simulations until
our simulator had retired 100 million instructions. We
skipped over initialization code, and warmed up the caches
before starting the actual simulation. The benchmarks
were compiled with the standard DEC C and FORTRAN
compilers with full optimizations under Digital Unix 4.0.

3. Motivation
To measure the importance of memory dependence

prediction, we first considered two approaches that do not
predict memory dependencies: no speculation and naive
speculation. We considered these approaches because they
are virtually free in hardware, giving us a lower bound in
performance. Also, they allow us to measure the maximal
impact of the two sources of performance loss in memory
dependence prediction, false dependencies and memory-
order violations, when compared with a perfect memory
dependence predictor.

3.1 No Speculation
We configured our simulator to require that all load in-

structions wait until all prior store instructions have issued
before being allowed to issue. This conservative approach
eliminates all memory-order violations, but also creates

many false memory dependencies. Loads waiting for a store
instruction must wait for the store’s address and data value
register to be ready before issuing.1 For some loads, the
additional delay of the false dependence will be hidden by
the out-of-order execution engine. Other loads will be on
the critical path and the unnecessary delay will have a direct
impact on performance. Overall, we found the performance
of this scheme to be poor. Table 3.1 lists the rates at which
false dependencies occurred, i.e., the number of times that a
load waited unnecessarily for a store, when running with
the no speculation model. The large rate of occurrence of
these false dependencies gives a crude indication that the
performance impact of these false dependencies will be
great. In fact, as we show in Figure 3.1, some benchmarks’
execution time increased by a factor of two or more com-
pared with a perfect memory dependence predictor.

3.2 Naive speculation
To examine the opposite extreme, we configured our

CPU simulator to execute loads when their register depend-
encies were ready, independent of their memory dependen-
cies. Again, no memory dependence predictor is used. The
processor allows the loads to execute out-of-order, commit-
ting memory-order violations and causing traps. Table 3.1
shows the number of memory-order violations per thousand
retired instructions. Between 0-7% of all dynamic loads
resulted in memory-order violations for the SPEC95
benchmarks. This metric is only intended to give an indica-
tion of performance impact. Like branch misprediction or
cache-miss rate, the actual performance impact can often
only be determined by knowing the penalty.

To estimate this penalty we calculate the memory trap
penalty as the number of cycles between the first time a
load is fetched to the next time the load is fetched after a
memory-order violation has been detected. That time can
vary from load to load, and program to program depending
on the time it takes for the conflicting store to execute. The
memory trap penalty indicates the average number of cycles
in which no useful instructions were fetched. This gives an
indication of the performance impact due to memory-order
violations. Table 3.1 shows the average memory trap pen-
alty for each of the SPEC95 benchmarks when running with
the naive speculation policy.

Tyson and Austin [8] suggest that the memory trap pen-
alty can be effectively reduced by re-executing only the
load instruction and its dependent instructions, but not re-
executing any other instructions that were fetched after the
load but are not dependent on it. Designing the processor to
have the ability to replay only dependent instructions could
significantly reduce the memory trap penalty, but could also
negatively impact performance. In order to replay only
dependent instructions, typically those instructions must
remain in the instruction queue until they retire. This is in
contrast to the DEC Alpha 21264, where instructions are
aggressively de-allocated from the instruction queue when

                                                       
1 A processor could split a store into two operations, the first
being the effective address computation and the second being the
delivery of the data value to the memory. This could reduce the
time needed to resolve store-load dependencies. These “split
store” solutions are not considered in this paper.



they issue. This enables a smaller instruction queue to find
more instruction level parallelism because issued instruc-
tions are removed from the queue allowing newer instruc-
tions to participate in bidding for execution resources. A
smaller instruction queue is advantageous when designing a
short cycle time processor. Our goal is to virtually eliminate
memory-order violations, making the memory trap penalty
unimportant, while retaining the advantage of the early
instruction queue de-allocation.

Table 3.1
Naive

Speculation
No

Speculation
Spec95

Program
Memory
Order

Viols Per
1K Instrs

Memory
Trap

Penalty
(Cycles)

False
Dep.

Per 1K
Instrs

go  6 13          157
m88ksim 20 12          168
gcc  5 15          187
compress 11 15          129
xlisp 11 14          179
ijpeg 23 15          150
perl prim 20 15          215
perl scrab 10 15          185
vortex  7 19          215
tomcatv  4 22          264
swim  2 36          224
mgrid  0 18          262
applu 18 22          212
apsi  7 35          247
fpppp 10 17          275
wave5 24 21          188
turb3d  6 16          213

3.3 Perfect Memory Dependence Prediction
To quantify the potential benefit of memory depend-

ence prediction, we ran the same benchmarks through a
perfect memory dependence predictor, which does not
cause memory-order violations. Also, the perfect predictor
does not impose false dependencies, omnisciently causing
loads to wait for exactly the right store. We compared the
performance of the perfect memory dependence predictor

to that of the no speculation and naive speculation ap-
proaches. Figure 3.1 shows the performance of each
benchmark running on our simulator, in instructions per
cycle (IPC).

The performance of naive speculation tends to be better
than that of no speculation in most cases. Most of the pro-
grams, however, suffer significant performance degrada-
tion compared with the perfect predictor. Clearly, we
would like to allow loads to speculate around stores, since
the no speculation policy severely impacts performance.
On the other hand, memory-order violations from naive
speculation result in significant performance degradation
due to squashing and re-executing instructions.  Thus, it
appears a memory dependence predictor would be benefi-
cial.

4. Related Work
Memory dependence prediction has been the subject of

recent work in industrial and academic computer archi-
tecture research. In this section, we examine some existing
proposals for allowing speculation while avoiding mem-
ory-order violations.

Steely, et al., of Digital Equipment Corporation filed a
patent on a general framework for allowing loads to
speculate around prior stores, and synchronizing the exe-
cution of loads and stores which tend to cause memory-
order violations[11]. Their proposal describes assignment
of tags to load and store instructions that cause memory-
order violations, and orders execution among memory
instructions that have been assigned the same tag.

Hesson, et al., of IBM filed a patent for the store bar-
rier cache[6], which keeps track of stores that tend to
cause memory-order violations. Stores causing memory-
order violations set a bit in the store barrier cache. When a
store with that bit set is fetched, the processor inhibits all
subsequent loads from executing until that store executes.
The intent is to reduce memory-order violations by en-
forcing strict ordering around stores that tend to conflict
with nearby loads, effectively creating store barriers.

Independently, Moshovos et al.[5] published a com-
prehensive description of memory dependence prediction.
This is the first published work identifying that memory
dependencies are problematic for out-of-order machines.
They also discovered that it is important to delay depend-

Figure 3.1: Performance of No Speculation, Naive Speculation and Perfect Prediction
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ent loads, but only as long as necessary to avoid memory-
order violations and not impose false dependencies. They
proposed a mechanism to avoid memory-order violations;
a pair of fully associative structures that hold store-load
pairs that have caused memory-order violations in the past.
These structures direct the order of execution for subse-
quent instances of the instructions.

Other work uses memory dependence prediction to
supply the consumers of dependent loads with data sooner.
In [7] Moshovos and Sohi use memory dependence pre-
diction to guide forwarding of data values from stores to
dependent loads. Work by Tyson and Austin[8] combines
memory dependence prediction and load value prediction
[12] to satisfy the consumers of a load early. The ideas
explored in our paper might also benefit from using these
ideas to further increase performance.

Our paper explores the premise that the history of
memory dependencies can accurately predict future mem-
ory dependencies. In order to do this we stress the concept
of a store set, which contains all prior memory dependen-
cies for a load. The concept of store sets is similar to an
idea mentioned in [7]. We show, in an idealized model,
that store sets are actually a good construct for use in pre-
dicting memory dependencies in the context of a large
instruction window machine. We then propose novel algo-
rithms to create a fast, reasonably low-cost "common tag"
style[11] implementation of a store-sets-based memory
dependence predictor that achieves nearly optimal per-
formance using direct mapped structures.

5. Store Sets
The concept of store sets is based upon two underlying

assumptions. The first is that the historic behavior of
memory-order violations is a good predictor of future
memory dependencies. The second is that it is important to
predict dependencies of loads where one load is dependent
on multiple stores or multiple loads depend on the same
store. In this section, we describe the concept of store sets
and their use in memory dependence prediction. Once we
have established that the use of store sets is effective for
memory dependence prediction, we go on to describe a
low-cost implementation in Section 6.

5.1 Concept
We define each load instruction in a running program

as having an associated set of store instructions, called its
store set. A load’s store set consists of all stores (identified
by their PC) upon which it has ever depended. A processor
will approximate the load’s store set by keeping track of
the stores that have caused the load to suffer memory-
order violations in the past.

When a program begins executing, all of the loads have
empty store sets, and the processor allows naive specula-
tion of loads around stores. When a load and store execute
in the wrong order, causing a violation, the store PC is
added to the load’s store set, e.g., set A. If another store
conflicts with that same load, that store PC is also added to
set A. The next time the processor sees that load, it re-
quires that the load execute after any recently fetched
stores in store set A. When the load is fetched, the proces-

sor will determine which stores in the load’s store set were
recently fetched but not yet issued, and create a depend-
ence upon those stores. Loads that never cause memory-
order violations will have no imposed memory dependen-
cies, and will execute as soon as possible. Loads that cause
memory-order violations will be dependent on only those
prior stores upon which they have depended in the past. If
one of the stores in store set A also causes a memory-order
violation with another load, it becomes part of that load’s
store set also. Loads and stores are identified by their PCs.
Here is an example:

Example 5.1
PC
0 store C
4 store A
8 store B
12 store C

28 load B  store set { PC 8 }
32 load D  store set { (null) }
36 load C  store set { PC 0, PC 12 }
40 load B  store set { PC 8 }

Each load’s store set has been annotated. Notice that a
load can have multiple store dependencies. For example,
the load at PC 36 depends on both the stores at PC 0 and
PC 12.  Also multiple loads can depend on the same store.
For example, the loads at PCs 28 and 40 both depend on
the store at PC 8. 

This situation where multiple loads depend on the same
store is fairly common, occurring when there is one writer
and multiple readers of a value. One load depending on
multiple stores is somewhat more obscure. Three situa-
tions where this can happen are: 1) A load can depend on
stores from different paths, e.g., if (expr) then x = a; else x
= b; ..... c = x;  2) a load can depend on multiple stores to
fields of a structure packed in a data word that are all read
together, e.g., writes of the red, green and blue compo-
nents of a color structure; and 3) assuming that memory
write-after-write hazards are treated as dependencies, a
load can depend on a series of stores to the same location;
e.g., multiple spills to the same location.

To evaluate the importance of allowing multiple loads
to depend on the same store, and one load to have multiple
store dependencies, we created three configurations of our
simulator. First, we created a configuration in which each
load in the program has its own store set, and that store set
can contain as many stores as necessary, but a store can
only reside in one store set. When a store causes a mem-
ory-order violation, it is eliminated from any store set it is
in, and placed in the store set of the load with which it
conflicted last. Essentially this prohibits multiple loads
from being dependent on the same store.

In the second configuration, we limited the size of a
store set to one, allowing each load in the program to
specify at most one store dependence. This prohibits one
load from being dependent on multiple stores. Note that
unlike the last configuration, we do allow one store to ex-
ist in as many store sets as necessary in this configuration.
When a memory-order violation occurs, the store replaces
any prior store in the load's store set.



Lastly we created an "infinite" configuration, in which
neither the store set size nor the number of store sets in
which a store can appear is confined. Figure 5.1 shows the
normalized increase in run time for each of the first two
configurations when compared with the third configura-
tion. Clearly, either of these two constraints on store-sets
would significantly impact overall IPC in some applica-
tions.

As an aside, we also expanded the second configura-
tion to allow one load to depend on 2, 4 or 8 stores. The 8-
way associative structure resulted in no performance deg-
radation over not constraining the number of stores per
load. The 4-way structure was also fairly good. Perl
(primes) was the only benchmark that suffered signifi-
cant performance degradation with the 4-way structure. In
Section 6, we describe a method for using direct mapped
structures and retaining multiple dependence flexibility for
both cases described above.

5.2 Performance
To evaluate the performance of store-set memory de-

pendence prediction, we used the “infinite” configuration
described above. Each dynamic load encountered in the
simulation was classified as one of the following: not pre-

dicted (for loads that have empty store sets), predicted
correctly, falsely dependent, or memory-order violation.
The performance of the predictor can be evaluated by the
quantity of memory-order violations and false dependen-
cies. The data for SPEC95 is shown in Figure 5.2.  For
most of the benchmarks, the infinite predictor does well.
As expected, it effectively eliminates memory-order vio-
lations for all of the benchmarks. A few of the benchmarks
have a significant number of false dependencies. Applu
and xlisp suffer from false dependencies the most, and
less so for vortex, gcc, go and swim.

The infinite store set predictor could suffer false de-
pendencies if a memory dependence does not exist for
every execution of a particular store-load pair. Once a
store PC is placed in a load’s store set, it stays there for the
rest of the run, requiring that the load wait for the store in
every future instance of the two PCs executing. If the
store-load pair access the same memory location infre-
quently, many false dependencies are imposed to save a
few memory-order violations.

This intermittent memory conflict between a store and
a load encourages the notion of a “working” store set that
contains stores that the load depended on recently. To es-
timate this “working” store set, we use a feedback that

Figure 5.1: Effect on Run Time When Not Allowing Multiple Dependence Flexibility
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Figure 5.2: Infinite Store Sets Predictor - Dynamic Load Breakdown
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reinforces or decays prediction decisions. In particular,
using a method commonly found in branch predictors, we
chose to couple a simple two-bit saturating counter
scheme [10] with the infinite store-set memory depend-
ence predictor to see if we could reduce false dependen-
cies. A two-bit counter was appended to each store in a
load’s store set. When a memory violation occurred, the
two-bit counter would be set to its maximum value. After
a load is forced to order with a store in its store set, the
load’s address is compared to the store’s address to verify
that a memory dependence did exist. If a real dependence
did not exist, the counter is decremented by one. If a real
dependence did exist, the counter is incremented by one.
The load is forced to wait for a store in its store set only if
the high bit of the counter is set. This is an attempt to re-
duce false dependencies, but could allow memory-order
violations to recur if the pattern of memory dependence is
more sophisticated than the two-bit counters can detect.

We reran the SPEC95 benchmarks with the two-bit
counter configuration, again classifying the loads into four
categories. The results in Figure 5.3 show that two-bit
counters work well for reducing the number of false de-
pendencies without increasing the memory-order trap rate
to significant levels. The only remaining benchmark with a

significant number of false dependencies is applu. A
detailed analysis of applu appears in Section 7.

To quantify the performance of the infinite memory
dependence predictor using store sets, we compare the
performance in instructions per cycle (IPC) of the SPEC95
programs for different configurations of our simulator.
Figure 5.4 compares the performance of the infinite mem-
ory dependence predictor with and without two-bit count-
ers to the perfect memory dependence predictor.

Figure 5.4 shows that the infinite memory dependence
predictor achieves close to optimal performance for all of
the benchmarks. The biggest performance degradation was
in applu, which is 10-14% worse than optimal. This was
expected since applu also exhibited the highest number
of false dependencies as shown in Figures 5.2 and 5.3. The
two-bit counters slightly improved performance for
xlisp and applu, but perhaps not enough to warrant
their use.

In some rare instances, the IPC of the perfect predictor
configuration was slightly less than that of the infinite
predictor. This is because in our model, the "perfect" con-
figuration also requires the elimination of executing
wrong-path instructions in the event of a branch mispre-
diction. Instead, the fetcher stalls until the mispredicted

Figure 5.4: Performance of Store Set Memory Dependence Prediction
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Figure 5.3: Infinite Store Sets Predictor with 2 Bit Counters - Dynamic Load Breakdown
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branch resolves. We found this to be a minor effect (+/-
2%) due to the opposing effects of prefetching and cache
thrashing that the wrong-path execution causes. The re-
sults indicate that if we can approximate the performance
of the infinite store-set memory dependence predictor, we
would have a solution with nearly optimal performance.

6. Store Set Implementation
We find that by imposing a few restrictions on store

sets, we can retain the performance of the infinite memory
dependence predictor, while creating a low-cost solution.
The hardware used to implement store sets will consist of
structures with finite dimensions. Limiting the size of the
structures will force unrelated loads to share store sets,
potentially introducing false dependencies.  We also limit
store PCs to exist in at most one store set at a time. This is
similar to configuration two in Section 5.1, except that we
propose algorithms to merge store sets, allowing two loads
that depend on the same store to share a store set.

Since store sets allow a load to be dependent on multi-
ple stores, it would theoretically be necessary to have a
mechanism that delayed the load until all the stores in the
store set had executed. Constructing such a mechanism
could be expensive. We would like to make the load de-
pendent on just one of those stores, but we do not know
which of the load’s store dependencies will be the last to
execute. To solve this problem, we have conservatively
constrained stores within a store set to execute in order.
This is accomplished by making each of the stores de-
pendent on the last fetched store within its store set. Each
store specifies one dependence and each load specifies one
dependence to form an in-order chain resulting in correct
program behavior.

Requiring that the stores in a store set execute in order
has the benefit that it eliminates complicated write-after-
write hazard detection in the processor. If two sequential
stores that are in the same store set both write to location
X and are followed by a load to location X, the load really
only depends on the second store in the sequence. Since
we enforce ordering within store sets, special hardware is
not needed to make this distinction.

6.1 Components
Our implementation of memory dependence prediction

with store sets consists of two tables. The first is a PC in-
dexed table called the Store Set Identifier Table (SSIT)
that maintains the store sets using a common tag for each
load and the stores in its store set. The second is called the
Last Fetched Store Table (LFST) and maintains dynamic
information about the most recently fetched store for each
store set. The information in this table is the inum of the
store, which is a hardware pointer that uniquely identifies
the instance of each instruction in flight.

Recently fetched loads access the SSIT based on their
PC and get their store set identifier (SSID). If the load has
a valid SSID, then it has a valid store set. It will access the
second table, the LFST, and get the inum of the most re-
cently fetched store instruction that was a member of its
store set.

Recently fetched stores also access the SSIT. If the
store finds a valid SSID, then it belongs to a valid store
set. The store must then do two things. First, it must access
the LFST and get the most recently fetched store instruc-
tion in its store set. The new store will become dependent
upon the store it found in the LFST. Second, it will update
the table, inserting its own inum, since it is now the last
fetched store in that particular store set.

After a store instruction issues, it accesses the LFST
and invalidates the entry if it still refers to itself. This en-
sures that loads and stores will only be made dependent on
stores that have not yet issued. If the stores are from dif-
ferent code paths and not executed every time the load is
executed, only the store that is fetched will access the
SSIT and modify the LFST. The load will always be de-
pendent on the appropriate store and the stores will never
be forced to depend on each other, since they are executed
at different times. Figure 6.1 shows a diagram of the ta-
bles.

When the CPU recovers from a misspeculation (branch
mispredict, jump mispredict, or memory-order violation)
the SSIT does not need to be modified. Ideally, the LFST
must roll back each entry to the last live store that wrote
that entry. Although we modeled that behavior, we believe
that simply marking aborted stores as done in the table
would be sufficient.

Figure 6.1: Implementation of Store Sets Memory Dependence Prediction
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The mechanism for memory dependence prediction
using these tables is best explained by example. At the
start of a program, assume that all the entries in the SSIT
are invalid. Initially, store and load instructions will access
the table and get no valid memory dependence informa-
tion. If a load commits a memory-order violation, a store
set is created in the SSIT. The load and store instructions
involved in the conflict will be assigned a store set identi-
fier, say SSID X. SSIDs can be assigned in a number of
ways. We chose an exclusive-or hash on the load’s PC.
SSID X will be written into two locations in the SSIT; the
first location will be indexed by the load PC, and the sec-
ond by the store PC. The next time that store PC is
fetched, it will read the SSIT entry indexed by its PC.
Since the SSID is valid, it uses that store set’s SSID to
access the LFST where it finds no valid recent fetched
instructions from store set X. So, it will not be made de-
pendent on another store. The store proceeds to write its
own inum into the LFST. When the load instruction is
subsequently fetched, it accesses the SSIT and then the
LFST with SSID X. The LFST conveys to the instruction
scheduler that the load is dependent upon the store in-
struction it finds there.  This time, the instruction sched-
uler will impose a dependence between the load and store,
in a similar manner to the way it imposes register depend-
ence constraints.

If the load later conflicts with a different store, the
SSIT is notified of the new memory-order violation. SSID
X is copied into the SSIT entry indexed by the new store’s
PC. Now there are three entries in the SSIT that point to
SSID X. The next time the two stores and the load are
fetched, the second store will depend on the first store, and
the load will depend on the second store.

Note that stores are constrained to be in only one store
set at a time to keep the SSIT and the LFST simple. A
store could be part of more than one store set if we al-
lowed the SSIT to hold more than one SSID in each entry.
The multiple SSIDs would then have to access the LFST,
increasing the number of read ports needed. Also, each
load would then be dependent on up to two stores, adding
more size and complexity to the instruction scheduling
hardware that needs to impose dependencies.

The tables depicted in Figure 6.1 allow a store to be in
only one store set at a time. This apparently violates the
premise that a memory dependence predictor should allow
multiple loads to be dependent on the same store. In the
next subsection, we describe an algorithm that can use the
simple hardware in Figure 6.1 and retain that functionality.

6.2 Store Set Assignment
When a memory-order violation occurs, entries are

created in the SSIT. When neither the load’s nor the
store’s SSID is valid, one is created and assigned to both.
If the load’s SSID is valid and the store’s is not, the store
inherits the load’s SSID, and becomes part of the load’s
store set. We have not yet discussed what happens if the
store already had a valid SSID. Overwriting the store’s old
SSID will effectively remove the store from its old store
set and put it into a new one. This has the undesirable ef-
fect of limiting a store to be in only one store set at a time.
To govern the decisions made when determining whether

to overwrite one valid SSID with another, we have estab-
lished some store-set assignment rules.

Limiting the number of store sets to which a store can
belong could create new possibilities for memory-order
violations. Multiple loads may cause memory-order viola-
tions due to the same store, and since a store can only be-
long to one store set, a conflict can occur where the loads
compete to have the store in their own store set. This can
result in poor behavior, similar to a cache thrash where
two loads always cause each other to miss.

Example 6.1
Ld PC 1 -> Store Set 1 { St PC X, St PC Y, St PC Z}
Ld PC 2 -> Store Set 2 { St PC J, St PC K}

In Example 6.1, two loads have conflicted with stores in
the past. Ld PC 1 has conflicted with the three stores
specified in store set 1, and Ld PC 2 has conflicted with
the two stores specified in store set 2.  Now suppose that
Ld PC 1 causes a memory-order violation when executing
out of order with St PC J. We’d like to add St PC J to store
set 1, but since we only allow a store to exist in one store
set at a time, we must also remove it from store set 2. The
next time Ld PC 2 executes, it traps because it conflicts
with St PC J, and the memory dependence predictor did
not enforce a dependence between them because St PC J is
no longer in store set 2.  It is apparent that if we are not
careful, we can have an oscillation where Ld PC 1 and Ld
PC 2 take turns trapping and removing St PC J from the
other load’s store set. To avoid this destructive interfer-
ence, the store set assignment rules promote store-set
merging. The store set assignment rules pertain to when a
store-load pair has caused a memory-order violation. The
rules are:

1. If neither the load nor the store has been assigned a
store set, one is allocated and assigned to both in-
structions.

2. If the load has been assigned a store set, but the
store has not, the store is assigned the load’s store
set.

3. If the store has been assigned a store set, but the
load has not, the load is assigned the store’s store
set.

4. If both the load and the store have already been as-
signed store sets, one of the two store sets is de-
clared the "winner". The instruction belonging to
the loser’s store set is assigned the winner’s store
set.

Rule four alludes to an arbitration algorithm that
chooses a “winner” among two store sets. The arbitration
algorithm should be one that, when asked to choose a win-
ner among two specific sets, will always choose the same
set. The simple algorithm we employ is choosing the store
set with the smaller store set number. This algorithm will
converge, and the store sets will be merged after some
constant number of traps. Although there are more com-
plicated algorithms that we could use, we found that this
one works well. Figure 6.2 shows the performance benefit



of dynamic store set merging by comparing a run using the
store set assignment rules, to a run where a store is auto-
matically assigned the SSID pertaining to the most recent
load with which it had a memory-order violation. Without
store set merging, we lose an average of 12% perform-
ance. The data shows the importance of being able to pre-
dict memory dependencies for multiple loads that depend
on the same store.

To understand how the store set assignment rules pro-
mote dynamic store set merging we look back at Example
6.1. Suppose Ld PC 1 causes a memory-order violation by
executing before St PC J. We have the conditions for rule
four to fire: the store involved in the violation is already in
a store set and the load’s store set is non-empty. Now we
must declare a “winning” store set. Let’s assume that we
declare store set 1 the winner; now St PC J is removed
from store set 2 and placed in store set 1. In the near fu-
ture, Ld PC 2 causes a memory-order violation by exe-
cuting before St PC J, since it has been removed from its
store set. Again, we have the conditions for rule four. If
store set 2 were declared the winner, Ld PC 1 and Ld PC 2
would alternatively cause memory-order violations be-
cause of St PC J. Therefore, rule four should choose store
set 1 as the winner again. This would cause Ld PC 2 to
adopt store set 1. If we keep going, Ld PC 2 will then
cause a memory-order violation with St PC K, since St PC
K is no longer in Ld PC 2’s designated store set. St PC K
is in its own store set (although no load points to it), and
Ld PC 2’s store set is not empty. Again, rule four should
specify the winner, and once again to avoid oscillating
memory-order violations, it should choose store set 1,
bringing Ld PC 2’s final conflicting store into its new
store set. Now, both Ld PC 1 and Ld PC 2 point to store
set 1, and all the stores are in store set 1. All further mem-
ory-order violations are avoided by this dynamic merging
of store sets 1 and 2.

Merging store sets could potentially create false de-
pendencies of one load on another load’s stores. We found
no performance impact resulting from such false depend-
encies.

6.3 Prediction Feedback
As a program runs, the SSIT registers valid SSIDs, cre-

ating valid store sets. We have not yet described any
mechanism that invalidates entries in the SSIT. Because

there are no tags in the SSIT, every load and store instruc-
tion that accesses the table uses the information that it
finds. Two loads, one that needs a store set, and one that
does not, might both index into the same SSIT entry. This
can have a negative impact on performance, potentially
causing false dependencies for loads that are not in danger
of committing memory-order violations.  Also, without a
method of invalidating the table, all the entries in the SSIT
will eventually become valid, randomly imposing ordering
restrictions on whatever program executes in the proces-
sor.

As in Section 5.2, this argues for the use of a “work-
ing” store set. We use two methods to achieve this effect.
First, we employ a cyclic clear algorithm on the valid bits
in the SSIT. This simply means that every so often (in
experiments we clear every one million cycles), the valid
bits of the SSIT are cleared, and the table must retrain.
Second, we again use the two-bit counter scheme that was
added to the infinite store set memory dependence pre-
dictor. If false dependencies are incorrectly imposed on
certain loads, the counters will decrement and eventually
invalidate the entry, reducing the number of false depend-
encies.

We included two-bit counters in our implementation by
appending each SSIT table with a two bit counter. When a
store instruction first creates its entry in the SSIT, the two-
bit counter is set to its maximum value. As long as the
high bit of the counter is set, the instruction scheduler en-
forces memory dependencies predicted by the SSIT and
LFST. The addresses of a predicted store-load dependence
are compared to determine whether there is a false de-
pendency. If the addresses do not match, there is a false
dependency, and the counter associated with the store is
decremented; otherwise it is incremented.

The counters are used only for store instructions, just
as in the infinite predictor. Figure 6.3 shows the perform-
ance of what we found to be sufficiently large SSIT and
LFST tables  (16K and 512 entries, respectively) with two-
bit counters, compared with the performance of a cyclic
clear scheme. The two-bit counters help the performance
of applu, reducing the number of false dependencies.
Xlisp, however, shows a performance degradation, as
opposed to the improvement seen when using two-bit
counters in the infinite store-set predictor. This is caused
by destructive aliasing in the SSIT. A load that does not

Figure 6.2: Performance Improvement Due to Store Set Merging
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need a store set decrements the counter of an SSIT entry
that another load uses to obtain memory dependence in-
formation. This results in allowing a significant number of
memory-order violations, which degrades performance.

The comparison in Figure 6.3 argues against the use of
two-bit counters in the SSIT. The extra space and com-
plexity of maintaining the counters, and the address com-
paritors needed to determine whether a false dependence
was imposed, are not worth the minor improvement in
applu. Also, xlisp degrades about as much as applu
improves, so there is no clear performance advantage to
using two-bit counters. Clearing the valid bits of the SSIT
on some large regular interval can easily be implemented
with two counters, one that specifies a clearing interval,
and the other that sweeps through the SSIT, invalidating
entries. We look more carefully at the specific case of ap-
plu in the analysis section.

6.4 Table Sizes
An important implementation consideration is the size

of the SSIT and LFST tables. We used the cyclic clearing
implementation described in the last subsection, and var-
ied the size of the SSIT and LFST to determine the per-
formance/cost curve. Figure 6.4 shows our results for the
SSIT sizing.  The performance is relative to a configura-
tion with sufficiently large SSIT and LFST tables (again,
16K and 512 entries respectively). For the experiments
varying the SSIT table size, the LFST table was left suffi-

ciently large. The data shows that a 4K entry SSIT does
not compromise performance, and 1K entries is still ac-
ceptable.

To see the effect of reducing the table size more
clearly, we look at the benchmark whose performance is
most greatly influenced by the SSIT size, fpppp. Figure
6.5 plots false dependencies for fpppp across the various
SSIT table sizes. As the size of the SSIT shrinks, loads and
stores begin to alias. False dependencies are imposed be-
cause loads and stores that do not require ordering will use
the same store-set table entry as those that do. Figure 6.5
shows that performance is correlated with the number of
false dependencies. Adding tags to the SSIT would effec-
tively reduce the number of SSIT entries needed, but
would add the cost of a tag array and comparison logic.
When the table becomes small, the advantage of the mem-
ory dependence predictor is virtually gone, approaching
the performance levels of the no-speculation approach as
described in Section 3.1.

The performance impact resulting from reducing the
size of the LFST is similar to that of the SSIT. The number
of entries in the LFST limits the total number of store sets.
Reducing the number of total store sets causes loads and
stores that suffer memory-order violations to share store
sets with one another. The number of store set entries
needed is much smaller than the number of entries in the
SSIT because store sets can be shared more effectively. If
two loads share one store set, it is quite possible that one

Figure 6.3: Implementation of Store Sets vs. Perfect 
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Figure 6.4: Peformance Sensitivity to 
Number of Entries in SSIT
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Figure 6.5: Fpppp - Peformance vs.
 Number of Entries in SSIT
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load’s conflicting stores and the other load’s conflicting
stores are never in the processor at the same time. This
means that although one store set identifier is shared, tem-
porally one load and its stores never intersect with the
other load and its stores; therefore no false dependencies
are created. Figure 6.6 shows the relative performance of
constructing an LFST with varying numbers of entries.
Only 128 entries are needed for full performance. This
also reduces the size of the SSIT table because the SSIDs
will be only 7 bits.

Our proposed implementation of store sets memory
dependence prediction has a 4K entry SSIT and a 128 en-
try LFST, and uses cyclic clearing to invalidate the SSIT
every million cycles. The performance comparison to per-
fect is shown in Figure 6.7.  Since we did not choose to
implement the two bit counters, applu suffers a perform-
ance loss of 14%. The remaining benchmarks are close to
optimal performance. Once again, in rare cases, the perfect
model has a slight degradation due to the same reason as
mentioned in Section 5.2. For comparison, we’ve included
an implementation of the store barrier cache[6] with 32K
entries, one for each potential store instruction in a 128K
instruction cache. Our store set implementation had an
average of 34%, and as high as 100% performance im-
provement over the store barrier cache for the benchmarks
we tested.

7. Analysis
Of all the benchmarks that we considered when evalu-

ating store-set memory dependence prediction, applu
had the largest performance degradation compared with a
perfect predictor. We looked closely at this benchmark to
understand why it was suffering a 10-14% performance
degradation.  Looking back at Figure 5.2, we observed that
the infinite store set predictor was producing a fairly large
number of false dependencies. Adding two-bit counters to
each store in a store set significantly reduced the number
of false dependencies, but a considerable number still re-
mained. Also, adding the two-bit counters caused mem-
ory-order violations. Although it is a small number (about
1.75 per 1K retired instructions), memory-order traps can
have a significant performance penalty. Here, two-bit
counters are not predicting memory dependencies well. It
turns out that all of the memory-order violations and false
dependencies are coming from few load instructions that
exhibit a recurring pattern of dependencies.

A good example of the difficulty in predicting memory
dependencies in applu is found in the routines “blts” and
“buts”, both of which contain the following loop:

Example 7.1
0     do ip = 1, 4
1         tmp1 = 1.0d+00 / tmat(ip,ip)
2         do m = ip+1, 5
3              tmp = tmp1 * tmat(m,ip)
4              do l = ip+1, 5
5                 tmat(m,l) =  tmat(m,l) - tmp * tmat(ip,l)

This triply nested loop creates a scenario where a load
and store sometimes conflict. The problem is on line 5.
The store instruction that writes tmat(m,l) and the load
instruction that reads tmat(ip,l) will sometimes conflict. To
see this more clearly, we reduce the problem to:

Example 7.2
do ip = 1,4
   do m = ip+1, 5
      do l = ip+l, 5
         load  tmat[ip,l]    ; PC A
         store tmat[m ,l]    ; PC B

Figure 6.7: Final Store Set Implementation vs. Perfect
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Multiple iterations of the loop are in-flight at once in
the processor, which means that multiple instances of the
load and store PC are in-flight at once. Consider a point in
the loop execution when ip equals 3. The inner loops will
produce this sequence of the load and store PCs:

Example 7.3
PC
A load  tmat(3,4)  ip=3, m=4, l=4 – iter V
B store tmat(4,4)
A load  tmat(3,5)  ip=3, m=4, l=5 – iter W
B store tmat(4,5)
A load  tmat(3,4)  ip=3, m=5, l=4 – iter X
B store tmat(5,4)
A load  tmat(3,5)  ip=3, m=5, l=5 – iter Y
B store tmat(5,5)
A load tmat(4,5)  ip=4, m=5, l=5 – iter Z
B store tmat(5,5)

Here the load in iteration Z is dependent on the store in
iteration W. When those two instructions execute out of
order they cause a memory-order violation, and the store
at PC B becomes a member of the load’s store set. This is
unfortunate, because the load will always wait for the most
recent iteration of the store before executing. So, the next
time this triply nested loop is executed, the second itera-
tion load will wait for the first iteration store, the third
iteration load will wait for the second iteration store and so
on. Really, only certain iterations of the load are depend-
ent on certain iterations of the store.  The store set imple-
mentation that we have chosen does not keep track of it-
eration information. Most of the parallelism in the loop is
serialized in hardware, resulting in a severe performance
degradation for this loop. In fact, this loop executes twice
as fast with the perfect memory dependence predictor as it
does with the store set predictor. To eliminate this prob-
lem, a compiler could fully unroll the triply nested loop.
This would create separate PCs for the loads and stores in
different iterations. Then the store set memory dependence
predictor would allow a load to specify which specific
store conflicts with it. After we unrolled the triply nested
loop manually, there was no performance difference be-
tween the perfect memory dependence predictor and our
store set implementation.

One could also imagine a memory dependence predic-
tor that could detect such patterns of conflict. This is a
possible direction for future work.

8. Conclusion
Memory dependence prediction is important for future

out-of-order processors. Poor or no memory dependence
prediction will severely constrain the IPC of future de-
signs. We showed that using the concept of store sets as
the basis for memory dependence prediction in an ideal-
ized structure yields nearly optimal prediction accuracy.
We discovered that an important advantage of store sets is
that they handle cases where multiple loads depend on one
store and one load depends on multiple stores. We then
developed a low cost implementation based on direct
mapped structures by: 1) limiting the total number of loads
that can have their own store set, 2) limiting stores to be-
ing in at most one store set at once, and 3) constraining

stores within a store set to execute in order. To retain the
advantage of idealized store sets, we developed a set of
store set assignment rules that enabled multiple loads to
depend on the same store through dynamic store set
merging. Our memory dependence predictor exhibited
nearly optimal performance in a large instruction window,
superscalar processor when compared with a perfect
memory dependence predictor.
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