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Abstract 

Branch misprediction penalties continue to increase as 
microprocessor cores become wider and deeper. Thus, 
improving branch prediction accuracy remains an impor- 
tant challenge. Simultaneous Subordinate Microthreading 
(SSMT) provides a means to improve branch prediction 
accurac): SSMT machines run multiple, concurrent mi- 
crothreads in support of the primary thread. We propose 
to dynamically construct microthreads that can specula- 
tively and accurately pre-compute branch outcomes along 
frequently mispredicted paths. The mechanism is intended 
to be implemented entirely in hardware. We present the de- 
tails for doing so. We show how to select the right paths, 
how to generate accurate predictions, and how to get this 
information in a timely way. We achieve an average gain 
of 8.4% (42% maximum) over a very aggressive baseline 
machine on the SPECint95 and SPECint2000 benchmark 
suites. 

1. Introduction 

Branch mispredictions continue to be a major limitation 
on microprocessor performance, and will be for the foresee- 
able future [9]. Though modern prediction mechanisms can 
achieve impressive accuracies, the penalty incurred by mis- 
predictions continues to increase with wider and deeper ma- 
chines. For example, a futuristic 16-wide, deeply-pipelined 
machine with 95% branch prediction accuracy can achieve 
a twofold improvement in performance solely by eliminat- 
ing the remaining mispredictions J. 

Simultaneous Subordinate Microthreading [2] has the 
potential to improve branch prediction accuracy. In this ap- 
proach, the machine "spawns" subordinate microthreads to 

I Averages over SPECint95 and SPECint2000. See Section 5 for exper- 
imenta/setup. 

generate some of the predictions, which are used in place 
of the hardware predictions. Because microthreads are not 
limited by hardware implementation and can target very 
specific behavior, they can generate very accurate predic- 
tions. Examples have been shown in previous research [2, 
z8]. 

However, effective use of microthreads for branch pre- 
diction is challenging. Microthreads compete with the pri- 
mary thread for resources, potentially decreasing perfor- 
mance. Because of this drawback, subordinate microthread- 
ing is not a good general solution--it must be targeted such 
that mispredictions are removed without incurring so much 
overhead that the performance gains are overshadowed. To 
maximize gains, it is important to have the following goals: 

Spawn only useful threads. A microthread incurs 
useless overhead if it generates a prediction for a cor- 
rectly predicted branch, or if a microthread is spawned 
but the prediction is never used. Additionally, if the 
branch is correctly predicted, there is a risk of intro- 
ducing additional mispredictions with microthreads. 

Generate accurate microthread predictions. A mi- 
crothread is useless if it does not generate a correct 
prediction. In fact, it can be harmful if the hardware 
prediction is correct and the microthread prediction is 
not. 

Complete microthreads in time to be useful. A 
microthread is useless if it does not complete before 
the target branch is resolved--at that point, the ma- 
chine has already computed the actual outcome of the 
branch. Microthreads should complete as early as pos- 
sible to eliminate or reduce misprediction penalties. 

We propose using a set of difficult-paths to guide mi- 
crothread branch prediction with the above goals in mind. 
Path-based confidence mechanisms [10] have demonstrated 
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that the predictability of a branch is correlated to the 
control-flow path leading up to it. We extend this notion 
by classifying the predictability of branches by control-flow 
path, rather than as an aggregate of all paths to a branch. In 
this manner, we identify difficult paths that frequently lead 
to mispredictions. These are the mispredictions we attack 
with specially-constructed microthreads. 

The remainder of this paper describes our difficult-path 
classification method and how to construct microthreads 
that will remove a significant number of hardware mis- 
predictions, while keeping microthread overhead in check. 
In addition, our mechanism can be implemented entirely 
in hardware, unlike previous schemes that rely on profile- 
based, compile-time analysis. We present the details of this 
hardware implementation in Section 4. 

This paper is organized as follows. Section 2 discusses 
prior research relevant to this paper. Section 3 describes 
our new approach of using difficult paths to guide mi- 
crothreaded branch prediction. Section 4 describes the algo- 
rithms and hardware necessary to implement our difficult- 
path branch prediction scheme. Section 5 provides experi- 
mental results and analysis. Section 6 provides conclusions. 

2. Related Work 

Branch prediction using subordinate microthreads was 
first proposed by Chappell et al. as an application of the Si- 
multaneous Subordinate Microthreading (SSMT) paradigm 
[2]. SSMT was proposed as a general method for leveraging 
spare execution capacity to benefit the primary thread. Sub- 
sequent authors have referred to subordinate microthreads 
as "helper threads." The original microthread branch pre- 
diction mechanism used a hand-generated microthread to 
exploit local correlation of difficult branches identified 
through profiling. Many concepts from this previous work 
carry over to this paper, such as the basic microthreading 
hardware and the means by which to communicate branch 
predictions to the primary thread. In this paper, we at- 
tack a larger set of branch mispredictions with an auto- 
mated, run-time mechanism that constructs more accurate 
microthreads. 

Zilles and Sohi [18] proposed using speculative slices to 
pre-compute branch conditions and prefetching addresses. 
Their method used profiling data to hand-construct back- 
ward slices of computation for instructions responsible for 
many branch mispredictions or cache misses. The pro- 
cessor executed these speculative slices as helper threads 
to generate branch predictions and prefetches. Backward 
slices could contain control-flow, and several speculative 
optimizations were suggested to improve slice performance. 
Hardware mechanisms were proposed to coordinate dy- 
namic branch prediction instances with the front-end and to 
squash useless threads on incorrect control-flow paths. Our 

work differs in the following ways: we target mispredic- 
tions using difficult paths, our hardware-based mechanism 
does not rely on profiling and hand analysis to generate mi- 
crothreads, we leverage run-time information to create more 
timely microthreads, and we present simpler mechanisms 
for aborting useless microthreads and communicating mi- 
crothread predictions to the front-end. 

Roth and Sohi [16] proposed a processor capable 
of using data-driven threads (DDT) to perform critical 
computations---chains of instructions that lead to a mispre- 
dicted branch or cache miss. The DDT threads were non- 
speculative and the values produced were capable of being 
integrated into the primary thread via register integration 
[15]. The construction of the threads was performed auto- 
matically at compile-time using profiling data to estimate 
when DDT construction would be useful. This scheme did 
not convey branch predictions to the front-end, but instead 
pre-computed the results of branches so that they could be 
integrated back into the primary thread at rename time, thus 
shrinking misprediction penalties but not removing them. 
Our mechanism targets mispredictions with difficult paths, 
does not rely on the compiler, and is not constrained by the 
non-speculative nature of the threads. 

Farcy et al. proposed a mechanism to target highly mis- 
predicted branches within local loops [6]. The computa- 
tions leading up to applicable branches were duplicated at 
decode time and used to pre-compute the conditions of  the 
branches several loop iterations ahead of the current itera- 
tion. In order to get ahead, their scheme used stride value 
prediction for live-input values. This paper also proposed a 
mechanism by which to communicate predictions to the ap- 
propriate later iterations of  the local loop. Though clever, 
the applicability of their overall mechanism was limited 
only to local loop branches based on predictable live-input 
values. 

Roth et al. also proposed hardware pre-computation 
mechanisms to predict virtual function call targets [ 13] and 
to prefetch linked data structures [14]. In these mecha- 
nisms, the machine detected specific instruction sequences 
leading to virtual function call targets or linked-list jump 
pointers. These mechanisms did not use separate threads to 
perform the computations, but instead mimicked them on a 
separate execution engine. 

Several papers have recently investigated the use of 
pre-computation threads for prefetching. Collins, et al. 
proposed speculative pre-computation [4] and then dy- 
namic speculative pre-computation [3]. The former used 
a profiling-based, compile-time mechanism to build sim- 
ple address computations for load instructions that caused 
many cache misses. The follow-on paper proposed a hard- 
ware mechanism for dynamically capturing the computa- 
tions. Luk proposed a mechanism for doing compiler- 
controlled prefetching using separate threads [12]. In this 
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mechanism, the machine would fork multiple speculative 
copies of  the primary thread in order to prefetch irregular 
address patterns. Annavaram et al. proposed using a sep- 
arate pre-computation engine to execute threads generated 
on-the-fly at fetch time [1]. This mechanism essentially pri- 
oritized computations for loads accounting for many cache 
misses. 

Assisted Execution [5], proposed by Dubois and Song, 
is a multithreading paradigm that uses compiler-generated 
nanothreads in support of  the primary thread. This previous 
work proposed a nanothread prefetching scheme and sug- 
gested other general ways which nanothreads could be used 
to improve single-threaded performance. This paper did not 
address branch prediction and suggested nanothreads as a 
means for the compiler to interact with a running program. 

3. Difficult-Path Classification and Branch 
Prediction 

In this paper, we refer to a path as a particular sequence 
of control-flow changes that lead to either a conditional or 
indirect terminating branch. We use the addresses of  the n 
taken branches prior to the terminating branch to specify the 
path. These n addresses are combined in a shift-XOR hash 
to yield a path identifier, or Path_ld. 

Figure I shows all paths with n < 2 to terminating 
branch A (paths leading away from A are not shown). When 
n = 1, there are 2 paths: B A  and EA.  For n = 2, there 
are 5 paths: CBA,  DBA,  F E A ,  GEA,  and H E A .  The 
Path_Id for each would be computed using a shift-XOR 
hash of the n branch address. For example, the Path_Id of 
path G E A  would use the addresses of  branches G and E .  

A difficult path has a terminating branch that is poorly 
predicted when on thatpath. More formally, given a thresh- 
old T,  a path is difficult if its terminating branch has a mis- 
prediction rate greater than T when on that path. Note that 
it is entirely possible (and desirable) that many other paths 
to the same terminating branch are not difficult. 

An important concept related to control-flow paths is 
scope. We define the scope of  a path to be the sequence 
of instructions that comprise the n control-flow blocks of  
that path 2. Figure 1 shows the scope of path G E A  in the 
shaded blocks. This set of  instructions is guaranteed to ex- 
ecute each time path GEA is taken to branch A. Note that 
the block containing branch G is not part of  the scope, since 
it could have multiple entry points that alter the sequence of  
instructions executed before the branch instruction (7. 

ZThis is similar to the idea of an instruction's "'neighborhood" as de- 
fined in [6]. A branch's neighborhood was used as the set of instructions 
to be analyzed for detecting local loops. 

D G 

F 

Figure 1. Paths are identified by a terminat- 
ing branch (A) and the last n control-flow 
changes. Ovals indicate blocks adjacent 
along fall-through paths, Letters indicate 
taken branches. The scope of path G E A  is 
the set of instructions in the shaded blocks. 

3.1. Measuring Path Characteristics 

We characterized the behavior of  our chosen benchmarks 
in terms of paths and average scope as described in the pre- 
vious section. The results are shown in Table 1 for several 
values of n. 

As one would expect, the number of  unique paths es- 
calates quickly as n increases. A larger value of n results 
in the differentiation of several unique paths that would be 
considered a single path with a smaller value of n. Adjust- 
ing the value of n adjusts the resolution at which paths are 
differentiated. 

The average scope among unique paths also tends to in- 
crease with n. Paths get longer as more control-flow blocks 
are added. It is interesting to note that, with relatively small 
values of n, it is possible to produce paths with scopes in 
excess of  100 instructions. 

The number of  difficult paths does not change markedly 
as T is varied between .05 and .15, especially with higher 
values of  n. This is interesting, since it implies there is a 
fairly stable set of  difficult paths that really are difficult. 

3.2. Using Difficult Paths 

Our goal is to improve machine performance via higher 
branch prediction accuracy. Previous research has demon- 
strated that more accurate branch predictions can be pro- 
duced using subordinate microthreads. For these mecha- 
nisms to be successful, microthreads must target hardware 
mispredictions, compute accurate predictions, and complete 
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Table 1. Unique paths, average scope size (in # of instructions), and number of difficult paths for 
different values of n and T. 

Bench 

comp 
gcc 
go 

ijpeg 
li 

m88ksim 
perl 

vortex 
bzip2_2k 
crafly_2k 

eon_2k 
gap_2k 
gcc_2k 
gzip_2k 
mcL2k 

parser_2k 
perlbmk_2k 

twolL2k 
vortex_2k 

vpr_2k 

r ~ : 4  
path scope T=.05 T=. 10 T=. 15 

1332 49.38 349 329 315 
131967 37.14 51259 41776 34942 
113825 51.16 61526 54830 48127 

7679 62.98 1567 1263 1083 
4095 36.16 576 491 457 
5342 41.20 1266 1072 928 

11003 39.75 3109 3027 2926 
36951 48.12 6231 4973 4415 
23585 216.94 8861 6884 5685 
59559 83.76 23225 18980 15806 
15986 44.77 2584 2340 2147 
28760 52.17 6883 5799 4966 

203334 55.63 75697 63754 54165 
21942 100.94 9311 8091 7111 

7707 46.05 2834 2387 2090 
22174 49.65 8567 7851 7296 
12608 47.38 5145 5083 4996 
24280 62.46 7894 7097 6403 
57718 65.13 9285 8103 7384 
34589 I l i A !  10977 9586 8579 

n =  10 
path scope T=.05 T=.IO T=. I5  

3320 123.77 723 682 646 
428613 89.18 148513 129331 113982 
681239 113.49 295722 273068 250213 

30624 153.64 7837 6873 6146 
8933 88.13 1401 1204 1093 

12397 99.60 2819 2486 2198 
26572 91.98 8116 7948 7717 
76350 114.28 11929 9766 8672 

836082 551.77 195652 180377 162349 
361879 214.84 96830 86047 76964 

32789 102.88 5021 4565 4182 
84630 131.52 17855 15506 13455 

671250 132.41 185210 167533 151113 
472396 267.46 118583 112095 105213 

65498 118.08 17960 16357 15010 
105758 119.59 29265 27014 25026 

22337 112.44 8108 8020 7920 
91321 162.95 23630 21395 19457 

130800 148.84 18813 16991 15820 
1330809 348.34 247932 240666 230405 

n = 1 6  
path scope T=,05 T=. 10 T=. 15 

8205 195.64 1307 1228 1145 
886147 137.82 254463 229376 208212 

1697537 171.80 589034 555140 519209 
94023 228.17 21174 19401 17716 
16602 142.26 2615 2304 2084 
23460 164.51 4851 4-445 4043 
47152 137.67 12311 12130 11929 

119339 178.32 15672 13193 11779 
4455846 541.59 935579 913986 882787 

942334 351.84 175022 159997 146174 
48633 160.16 6540 5980 5493 

165838 217.80 28742 25333 22332 
1191885 205.37 262718 244412 226077 
1973159 412.21 340683 332439 322094 

232125 165.48 45391 42793 40289 
374747 181.99 74828 69928 65378 

28475 175.75 9207 9109 9011 
240853 251.63 48833 44970 41313 
208697 229.24 24619 22534 21086 

4895234 550.59 616776 613795 608067 
Average 41222 65.09 14857 12686 10991 273680 164.26 72096 66396 60879 882515 239.99 173518 166125 158311 

in a timely manner. 
ficult paths, we can 
these goals. 

This section describes how, using dif- 
construct microthreads to accomplish 

3.2.1. Targeting Mispredictions.  We wish to use mi- 
crothreads only for branch instances likely to be mispre- 
dicted. As described in Section l, any microthread spawned 
for a correctly predicted branch incurs useless overhead 
(note that such overhead is not always useless, if signifi- 
cant prefetching occurs). Any microthread spawned for a 
correctly predicted branch also risks introduction of  a mis- 
prediction. 

In practice, targeting mispredictions is somewhat com- 
plicated. Predictability must be considered at the time mi- 
crothreads are constructed. Previous studies have targeted 
mispredictions simply by concentrating on static branches 
that exhibit poor predictability. We propose to use difficult 
paths instead. 

A correlation exists between dynamic control-flow in- 
formation and branch predictability [ 10]. Given this, it fol- 
lows that a set of difficult paths can achieve greater "mis- 
prediction resolution" than a set of difficult branches. This 
also makes sense intuitively: difficult branches often have 
many easy paths, and easy branches often have a few diffi- 
cult paths. By considering only the set of difficult paths, we 
eliminate a great number of branch instances. 

Table 2 shows the misprediction and execution coverages 
for the SPECint95 and SPECint2000 benchmark suites for 
different values of n and T. The same definition of "dif- 
ficult" (mispr_rate > T) applies to both branches and 
paths. The table shows that, generally, classifying by paths 
increases coverage of mispredictions, while lowering exe- 
cution coverage. 

3.2.2. Accurate Microthreads.  The importance of  ac- 
curate microthread predictions should be clear: if a mi- 
crothread generates an incorrect prediction, it causes a mis- 
prediction recovery and lowers performance. 

Previous research has shown that pre-computation 
threads can very accurately pre-compute branch conditions 
[6, 16, 18] (see Section 2). However, these mechanisms re- 
quire hand-analysis or complex profiling to generate mi- 
crothreads. Hand-analysis methods clearly have limited ap- 
plicability. Previous profiling methods require analysis to 
consider and reconcile all possible paths to each difficult 
branch. The storage and complexity both scale with the 
control-flow depth considered. 

We propose to construct a pre-computation microthread 
to predict the terminating branch of each difficult path. Be- 
cause microthreads pre-compute the outcome of the branch, 
the predictions are very accurate. Because each microthread 
need predict the terminating branch for a single difficult 
path, the construction process is very simple. 

To construct a microthread, we consider the scope of the 
difficult path (the set of instructions guaranteed to execute 
each time the path is encountered). By observing the data- 
flow within the scope, we can easily extract a subset of in- 
structions that will pre-compute the branch condition and 
target address. This subset of instructions becomes the pre- 
diction microthread for the given difficult path. The con- 
struction process is simple enough to implement in hard- 
ware. Details are presented in Section 4. 

3.2.3. Timely Microthreads.  Microthread predictions 
must arrive in time to be useful. Ideally, every microthread 
would complete before the fetch of the corresponding 
branch. However, late predictions are still useful to ini- 
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Table 2. Misprediction and execution coverages for difficult branches (Branch) and difficult paths 
(n = {4, 10, 16}). Each percentage represents the fraction of total mispredictions or dynamic branch 
executions covered by the set of difficult branches or paths. 

T : .05 T = .10 7 '  = .15 [ 
Branch n = 4  [ n :  10 n =  16 Branch n = 4  n = 10 I n----1~ II Branch l n : 4  [ n = 10 I n =  16 [ 

Bench mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe% mis% exe%] 

comp 98.2  18.2, 98,2 17.5 98.2 15.8 97.9 15.1 9 4 ~ 6  16.5 9 4 . 2  15.5 95.3 13.8 94.9 i3.2 94.6 16.5 88.5 13.1 91.0 12.1 I 9 2 [ 1  12.0 
gcc 83.3 31.6 85.3 26.0 88.4 22.8 90.2 20.6 63.6 17.6 72.1 16.4 78.1 15.3 81.4 14.1 47,2 10.6 60.4 11.4 68.5 11.3! 73.5 10.8 
go 96,3 66.2 94.9 57.8 95.2 47.9 96.1 40.91 85.2 49.0 84.6 41.4 87.5 35.7 90.0 31.3 68.3 34.2 i 73.8 31.6 79,0 27.9 83.3 25.2 

ijpeg 90.6 25.8 90.1 21.0 91.6 17.5 93.1 16.8 85.5 21.8 83.7 14.6 88.7 15.0 91.6 15.4 65.7 10.9 81.8 13.6 86.3 13.8 i 88.6 13.8 
li 89.6 18.3 92.1 15,5 95.8 14.8 94.8 12,2 79,6 13.9 83.1 11.2 91.2 12.1 92.8 11.2 64,6 10.0 80.9 10.5 87,3 11,0 86.3 9.5 

m88ksim , 58.7 4.0 64.9 3,8 69.3 3.2 87.9 6.3 48.4 2.6 57.7 2.8 62.8 2.3 67.8 2.5 41.2 2.01 47.0 1.8 56,4 1.8 60.7 !.8 
perl 68,4 6.1 90.7 7.7 95.7 5.2 97,0 4,3 58,2 4.2 71.6 3.7 91.0 4.1 94.t 3.7 38.5 1.8 63,5 2.81 86,8 3.6 90.7 3.3 

vortex 75.8 4.0 81.2 3.0 87.6 2.9 90,8 2.71 61.2 2.7 72.7 2.2 78.5 2.1 83.6 2.1 34.4 l.li 59.3 1.4~ 68.3 1.5 73.1 1.5 
bzip2_2k 96.8 38.5 96.0 33.2 96.0 29.2 97.0 23.5, 91.7 32.5 91.7 28.1 90,5 23.1 93,4 19.1 81.4 25.5, 84.6 23.3 85,5 19.6 90,2 17.0 
crafty_2k 80.6 26.6 86.2 22.4 90.3 18,3 92.4 15.9 56.9 12.8 70.7 13.2 79.4 11.8 84.0 10.9 35.6 5.7 56.2 8.2 69,5 8.4 ! 75.9 8.1 
eon_2k 78.6 6.5 81.9 5.7 88.1 5.6 90.6 5.5 65.4 4.0 67.5 3.3 75.1 3.5 78.3 3.5 36.4 1.2 55.2 2.1 62.0 2.3 67.7 2.5 
gap_2k 78.6 6.9 86.1 5.6 90.0 5.0 92.4 4.4[ 56.4 3.5 75.7 4.0 79.7 3.4 86,2 3.5 48.2 2.71 63.3 2,9, 69.0 2.4 74,4 2.4 

I gcc_2k 84.0 31.7 88.9 26.4 91.1 20.7 93.5 19.0 66.7 18.7 76.7 16.7 83.4 14.8 86.5 13.5 49.1 11.0 65.6 11.9 75.1 I1.1 79.8 10.5 
gzip_2k 91.4 38.0 87.1 24.3 91.8 21.0 93.9 18.0 78.9 27.1 79.0 17.2 85.8 15.9 89.0 13.8 43.5 9.31 72.2 14.0! 80.6 13.4 84.6 11.7 
mcf_2k 73.5 21.6 84.6 21.2 83.9 15.3 85.1 13.11 47.7 9.8 62.2 10.6 66.1 7.3 73.6 7.2 40.6 7.91 34.5 3.5 59.0 5.5 68.0 5.7 

parser_2k 85.7 21.0 94.1 22.2 94.0 17.6 95.4 16.6 78.9 16.9 84.2 15.8 88.9 14.2 90.2 13.1 67.7 127 69.4 lO.OI 79.0 10.6 83.8 10.8 
0.08 perlbmk_2k 86.6 0.11 90.5 0.08 93.5 0,07 94.5 0.07 83.4 0.09 88.7 0.07 92.3 0,07 93.2 0.06 80.6 87.0 0.07 89.7 0.06 91.2 0.05 

twolf_2k 91,7 22.9 95.8 21.2 96.5 18.0 97.0 16.6 87.8 20,0 91.1 17.5 92.9 15.1 93.8 14.0 79.4 6.3 84.5 14.3 88.8 13.1 90.6 12.5 
vortex_2k 82.5 3.9 87,8 2.5 90.7 2.3 91.5 2.1i 54.9 1 ,8  80.1 1.8 83.5 1.7 85.9 1.7 35,5 0,81 69.7 1.31 76.3 1.4 77.6 1.3 

vpr_2k 90.9 28.9 96.5 30.7 98.4 23.5 99,2 14.2 87.5 24,41 91.6 25.0 96.3 21.1 98.4 13.3 85.0 22.8 85.4 20.81 92.5 18.6 96.8 12.2 
Average 84,1 21.1 88,6 18.4 91.3 15.3 93,5 13,4, 71.6 15,0  79.0 13.0 84.3 11.6 87,4 10.4 56.9 10.1i 69.1 9.9 77.5 9.5 81.4 8.6 

tiate early recoveries (we assume that microthread predic- 
tions will always be more accurate). 

Timeliness requires two components: early spawns and 
quick microthread execution. Unfortunately, these two fac- 
tors tend to work against each other--earlier spawns tend 
to require longer, and slower, microthread computations to 
pre-generate the branch outcome. 

We can obtain earlier spawn points by increasing the 
scope of the difficult paths (by increasing n). This al- 
lows the microthread to be launched further "ahead" of the 
branch, while maintaining the important microthread char- 
acteristics described in the previous sections. There are 
downsides to doing this, such as increasing the number of 
unique paths and the number of extraneous spawns. These 
problems are adequately handled in our mechanism. 

We propose to shorten microthread computations using 
a technique called pruning, which is applied at the time mi- 
crothreads are constructed. Value and address predictabil- 
ity are known to exist in applications [11, 17]. We intend 
to prune sub-trees of computation by exploiting this pre- 
dictability 3. An example of pruning is shown in Figure 2. 

Pruning requires two capabilities. First, the machine 
must identify predictable values and addresses at the time 
microthreads are being constructed. If  this is done at 
compile-time, profiling information could be used. If this 
is done at run-time, this information must be tracked by the 
construction hardware. 

3 G o n z f l e z  and  Gonzfdez  p r o p o s e d  to use  value  specu la t ion  for  the in- 

puts  to b r a n c h  c o m p a r i s o n s  [8]. It w a s  d o n e  at  p red ic t ion  t ime b y  a hard-  
w a r e  m e c h a n i s m .  This  is s imi la r  to p r u n i n g  in that  it shor tcu t s  the b r a n c h  
p red ica t e  ca lcu la t ion .  

Second, the machine must be able to dynamically gen- 
erate value and address predictions for use in pruned mi- 
crothread computations. To accomplish this, we add two 
new micro-instructions, Vp_lnst and Ap_Inst. Either of 
these instructions is used to replace each pruned sub-tree of 
computation. The machine executes these new instructions 
by querying special-purpose value and address predictors. 

Liv 

Replaced with 
v p m s t  

Predictable Value 

Figure 2. An example of pruning. 

4. Building and Using Difficult-Path 
Microthreads 

This section presents a hardware implementation of our 
mechanism. It includes structures to identify difficult paths, 
construct and optimize microthreads, and communicate mi- 
crothread predictions to the primary thread. Compile-time 
implementations, which we have also investigated, are out- 
side the scope of this paper. 
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4.1. Ident i fy ing Difficult Paths:  The  Path  Cache  

Our hardware mechanism for identifying difficult paths 
is straightforward. We assume that the front-end can triv- 
ially generate our Path_Id hash and associate the current 
value to each branch instruction as it is fetched. A back-end 
structure, called the Path Cache, maintains state to identify 
difficult paths. 

The Path Cache is updated as follows. As each branch 
retires from the machine, its Path_Id is used to index the 
Path Cache and update the corresponding entry. Each Path 
Cache entry contains two counters: one for the number of 
occurrences of  the path, and another for associated number 
of hardware mispredictions of  the terminating branch. 

We define a number of  occurrences, called the training 
interval, over which to measure a path's difficulty. At the 
end of a training interval, the hardware misprediction rate 
represented by the counters is compared to the difficulty 
threshold T.  A Difficult bit stored in each Path Cache entry 
is set to represent the current difficulty of the path, as de- 
termined during the last training interval. After the Difficult 
bit is updated, the occurrence and misprediction counters 
are reset to zero. 

Allocation and replacement in the Path Cache is tuned to 
favor difficult paths. We allocate a new entry only if the cur- 
rent terminating branch was mispredicted by the hardware 
predictor. Because of this, roughly 45 % of the possible allo- 
cations can be ignored for an 8K-entry Path Cache, leaving 
more space to track difficult paths. When a Path Cache en- 
try must be replaced, we use a modified LRU scheme that 
favors entries without the Difficult bit set. 

4.2. Bui ld ing  Microthreads  for Difficult  Paths  

Our mechanism uses microthreads to predict the termi- 
nating branches of  difficult paths. The Path Cache, de- 
scribed above, identifies difficult paths at run-time. Now 
we must build microthreads to predict them. 

4.2.1. Promotion and Demotion. We refer to the deci- 
sion to predict a difficult path with a microthread as path 
promotion. The opposite decision is called path demotion. 

In the simplest case, promotion and demotion events 
should correspond to changes in a Path Cache entry's Dif- 
ficult bit. When the Difficult bit transitions from 0 to l, we 
promote the path. When the Difficult bit transitions from 1 
to 0, we wish to demote the path. To keep track of which 
paths are promoted, we add a Promoted bit to each Path 
Cache entry. 

The promotion logic is responsible for generating pro- 
motion requests. Each time a Path Cache entry is updated 
(ie. when a branch retires), the entry's Difficult and Pro- 
moted bits are examined. In the case that the Difficult bit is 

set, but the Promoted bit is not set, a request is sent to the 
Microthread Builder to begin construction. I f  the builder 
can satisfy the request, the Promoted bit is then set. 

4.2.2. The Basics of Building Microthreads. We refer to 
the the hardware associated with generating microthreads 
as the Microthread Builder. Figure 3 shows a high-level 
diagram of the various components.  

F r o m  R e t i r e d  Prorr  
Inslr .  S t r e a m  

oltk.st I ~ ~ 

) l iOn 

Mie r~ read  

- -  Bu f f e r  

m e r  

s e n t  to M i c r o R A M  

Figure 3. The Mierothread Builder 

The Post-Retirement Buffer (PRB) is used to store the 
last i instructions to retire from the primary thread (we as- 
sume i = 512 in our implementation), Instructions enter the 
PRB after they retire and are pushed out as younger instruc- 
tions are added. Dependency information, computed during 
instruction execution, is also stored in each PRB entry. 

When a promotion request is received, the Microthread 
Builder extracts the data-flow tree needed to compute the 
branch outcome. The PRB is frozen and scanned from 
youngest to oldest (the branch will always be the youngest 
instruction, as it just retired). Instructions making up the 
data-flow tree are identified and extracted into the Mi- 
crothread Construction Buffer (MCB). The identification 
is not difficult, as the dependency information is already 
stored in the PRB. The basic extraction of the data-flow tree 
in this manner is similar to the mechanism in [3]. 

Termination of the data-flow tree occurs when any of the 
following conditions are satisfied: 1) the MCB fills up, 2) 
the next instruction being examined is outside the path's 
scope, or 3) a memory  dependency is encountered (the store 
is not included). At this point, the MCB can be examined to 
turn the extracted data-flow tree into a microthread. 

To create a functional microthread, we convert the termi- 
nating branch into a special Store_PCache microinstruc- 
tion. When executed, the Store_PCache communicates 
the branch outcome generated by the microthread to the 
front-end of the machine. The communication takes place 
via the Prediction Cache (see Section 4.3.3). 

The last step in in microthread construction is to select a 
spawn point. This is the point in the primary thread's exe- 
cution that we wish the microthread to be injected into the 
machine-- logical ly ,  a single program instruction. Choos- 
ing an effective spawn point is a difficult problem. In the 
current mechanism, we assume only that we wish to launch 
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the microthread as early as possible. As such, we choose 
the earliest instruction possible that is both within the path's 
scope and satisfies all of  the microthread's live-in register 
and memory dependencies. 

Our current design assumes there is only one Mi- 
crothread Builder, and that it can construct only one thread 
at a time. Our experiments have shown that the microthread 
build latency, unless extreme, does not significantly influ- 
ence performance. 

4.2.3. Basic Microthread Optimizations. Move elimina- 
tion and constant propagation are simple code optimizations 
we employ in the MCB to further improve the timeliness 
of our microthreads. We find that microthreads frequently 
span many control-flow levels in the program. As such, they 
tend contain many un-optimized sequences of  code, many 
resulting from stack pointer manipulations or loop-carried 
variables. Hardware implementations of both of  these op- 
timizations have been previously proposed in fill-unit re- 
search [7]. Similar functionality could be installed in a 
hardware MCB. 

4.2.4. Memory Dependencies. Memory dependencies 
also provide an opportunity for optimization. We terminate 
data-flow tree construction upon a memory dependency. 
The spawn point is chosen such that this memory depen- 
dency will be satisfied architecturally when the microthread 
is spawned. This assumes, pessimistically, that memory 
dependencies seen at construction time will always exist. 
The opposite case also occurs - - i f  the memory dependency 
did not exist at construction time, it results in an optimistic 
speculation that there will never be a dependency in the fu- 
ture. 

Our hardware mechanism naturally incorporates mem- 
ory dependency speculation into the microthreads. The de- 
cision to speculate is simply based on the data-flow tree at 
construction time. We prevent over-speculation by rebuild- 
ing the microthread if a dependence violation occurs during 
microthread execution. When the microthread is rebuilt, the 
current mis-speculated dependency will be seen and incor- 
porated into the new microthread. 

A more advanced rebuilding approach might correct only 
speculations that cause repeated violations. We find that our 
simpler approach approximates this fairly well and requires 
almost no additional complexity. 

4.2.5. Pruning.  Pruning, introduced in Section 3.2.3, is 
an advanced optimization applied in the MCB that uses 
value and address predictability to eliminate sub-trees of 
computation within a microthread. When pruning is suc- 
cessful, the resulting microthread is smaller, has shorter de- 
pendency chains, and has fewer live-in dependencies. 

To implement pruning, the machine must support the 
Vp_lnst and Ap_lnst micro-instructions. To provide this 

functionality, we add separate value and address predic- 
tors to the back-end of the processor. These predictors are 
trained on the primary thread's retirement stream just be- 
fore the instructions enter the PRB. Since these predictors 
will not be integrated into the core, they can be kept apart 
from the critical sections of  the chip. 

The decision to prune is straightforward. We assume 
our value and address predictors have an integrated confi- 
dence mechanism. We access the current confidence and 
store it with each retired instruction in the PRB. When a mi- 
crothread is constructed, instructions marked as confident 
represent pruning opportunities. 

Pruning actually occurs in the MCB. Value-pruned in- 
structions are removed from the MCB, along with the sub- 
trees of  data-flow leading up to them. In place of  the re- 
moved data-flow, a Vp_Inst microinstruction is inserted to 
provide the output register value. Address-pruned instruc- 
tions are treated similarly, except that the prunable load it- 
self is not removed from the routine, and the Ap_Inst pro- 
vides the address base register value. 

When the microthread is spawned, the Vp_Inst and 
Ap_Inst microinstructions must contain all the informa- 
tion necessary to access the value and address predictors 
to receive a prediction. This process seems to be compli- 
cated by the fact that predictions must be made in advance 
of the progress of  the primary thread (recall that the predic- 
tors are trained on retiring primar;¢ thread instructions). The 
distance between the spawn point and the instruction being 
predicted must be reconciled. This is actually simple to ac- 
complish, since every microthread is tied to the scope of  a 
particular path. At construction time, we need only com- 
pute the number of  predictions that the Vp_Inst/Ap_Inst 
is ahead. At execution time, this information is passed to 
the value or address predictor, which generates a prediction 
for the correct instance. Adapting the predictor design to 
support this operation is trivial, if  we restrict our predictors 
to handle only constant and stride-based predictions. We 
assume this in our mechanism. 

4.3. G e n e r a l  S S M T  Hardware  

This section provides a brief overview of  the general 
mechanism for spawning and simultaneously executing mi- 
crothreads on an SSMT core. A more detailed description 
is not possible due to space limitations. We assume the gen- 
eral capabilities described in [2]. A high-level diagram of 
the core is shown in Figure 4. 

4.3.1. General Microthread Operation. A microthread 
is invoked when its spawn point is fetched by the primary 
thread. If  resources are available, the machine allocates a 
microcontext4for the newly spawned microthread. A spawn 
request is sent to the MicroRAM-- the  structure that stores 
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Figure 4. Basic SSMT Processor Core 

SSMT routines. The MicroRAM delivers instructions from 
the specified routine into a microcontext queue. Each cycle, 
active microcontext queues are processed to build a packet 
of  microthread instructions. These instructions are renamed 
and eventually issued to the reservations stations, where 
they execute out-of-order simultaneously with the primary 
thread. A microcontext  is de-allocated when all instructions 
have drained from its issue queue. 

4.3.2. A b o r t  M e c h a n i s m .  Our SSMT machine con- 
tains a mechanism to detect and abort useless mi- 
crothreads. Microthreads are often spawned to predict 
branches on control-flow-paths that the machine doesn ' t  
take. Our mechanism uses a concatenated path hash, called 
Path_History, to detect when the machine deviates from 
the path predicted by an active microthread. When this oc- 
curs, these microthreads are aborted and the microcontext 
is reclaimed. We assume microthread instructions already 
in the out-of-order window cannot be aborted. 

The abort mechanism is very important. Our machine is 
very wide and deep, which means spawns must be launched 
very early to stay ahead of the primary thread. Many use- 
less spawns occur, but the abort mechanism is able to keep 
the overhead in check. On average, 67% of the attempted 
spawns are aborted before allocating a microcontext. 66% 
of successful spawns are aborted sometime before the mi- 
crothread has completed. 

4.3.3. T h e  P r e d i c t i o n  C a c h e .  The Prediction Cache, orig- 
inally proposed by Chappell et al. in [2], is the structure 
responsible for communicating branch predictions between 
microthreads and the primary thread. We have modified 
the Prediction Cache slightly from its original incarnation 
to support our path-based prediction scheme, Its operation 
within the front-end is summarized in Figure 5. 

4A microcontext, proposed in [2], is the set of state associated with an 
active microthread. 
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Figure 5. Prediction Cache Operation 

A microthread writes the Prediction Cache using 
the Path_Id hash and the instruction sequence num- 
ber, Seq_Num 5, of the branch instance being predicted. 
The microthread computes the target branch Seq_Num 
by adding the predetermined instruction separation to 
the Seq_Num of the spawn. Because each (Path_ld, 
Seq_Num) pair specifies a particular instance of a branch 
on a particular path, our Prediction Cache naturally matches 
up microthread predictions written by Store_PCache in- 
structions and the branches intended to consume them. Be- 
cause both Path_[d and Seq_N'um are used, aliasing is 
almost non-existent. 

The (Path_ld, Seq_Num) pair is also used to match late 
microthread predictions with branch instances currently in- 
flight. I f  a late microthread prediction does not match the 
hardware prediction used for that branch, it is assumed that 
the microthread prediction is more accurate, and an early 
recovery is initiated. Because of the width and depth of our 
baseline machine, late predictions occur rather frequently. 

The Prediction Cache does not need to maintain many 
concurrently active entries. Stale entries are easily de- 
allocated from the Prediction Cache by comparing the 
(Path_Id, Seq._Nura) pair to the current position of the 
front-end. Because entries can be quickly de-allocated, the 
space can be more efficiently used. Our Prediction Cache 
can be made quite small (128 entries) with little impact on 
performance. 

5 .  P e r f o r m a n c e  A n a l y s i s  

5 .1 .  M a c h i n e  M o d e l  

Our baseline configuration for these experiments mod- 
eled an aggressive wide-issue superscalar machine. The 
machine parameters are summarized in Table 3. All 
experiments were performed using the SPECint95 and 

5An instruction sequence number, or Seq_Num, is assigned to each 
instruction to represent its order within the dynamic instruction stream, 
Many machines already use sequence numbers for normal processing. 
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Table 3. Baseline Machine Model 
Fetch, Decode, 64KB, 4-way associative, instruction cache with 3 cycle latency capable of processing 3 accesses per cycle; 16-wide decoder with 1 cycle latency; 
Rename 16-wide renamer with 4 cycle latency 
Branch 128K-entry gshare/PAs hybrid with 64K-entry hybrid selector; 4K-entry branch target buffer; 32-entry call/return stack; 64K-entry target cache (for 
Predictors indirect branches); all predictors capable of generating 3 predictions per cycle; total misprediction penalty is 20 cycles 
Execution 512-entry out-of-order window; physical register file has 4 cycle latency; 16 all-purpose functional units, fully-pipelined except for FP divide; full 
Core forwarding network; memory accesses scheduled using a perfect dependency predictor 
Data Caches 64KB, 2-way assoc L1 data cache with 3 cycle latency; 4 L 1 cache read ports, 1 L2 write port, 8 LI cache banks; 32-entry store/write-combining buffer; 

stores are sent directly to the L2 and invalidated in the LI ; 64B-wide, full-speed LI/L2 bus; 1MB, 8-way associative L2 data cache with 6 cycle latency 
once access starts, 2 L2 read ports, 1 L2 write port, 8 L2 banks; caches use LRU replacement; all intermediate queues and traffic are modeled 

Busses and memory controller on chip; 16 outstanding misses to memory; 32B-wide core to memory bus at 2:1 bus ratio; split address/data busses; I cycle bus 
Memory arbitration; 100 cycle DRAM part access latency once access starts, 32 DRAM banks; all intermediate queues modeled 

SPECint2000 benchmark suites compiled for the Alpha 
EV6 ISA with - f a s  t: optimizations and profiling feedback 
enabled. 

It is important to note that our experiments focused on 
improving an aggressive baseline. When using our ap- 
proach, it is more difficult to improve performance when the 
primary thread already achieves high performance. Spawns 
must occur very early for microthreads to "stay ahead." This 
fact necessitates longer microthreads and causes many more 
useless spawns. This results in more overhead contention 
with the primary thread, despite the fact that our wide ma- 
chine generally has more resources to spare. 

Our machine also used an idealized front-end, also to 
avoid biasing our results. Microthreads take advantage of 
resources unused by the primary thread. A fetch bottleneck 
would unfairly under-utilize execution resources and leave 
more for the microthreads to consume. Our front-end can 
handle three branch predictions and three accesses to the 
instruction cache per cycle. In a sense, we are modeling a 
very efficient trace cache. 

5.2. Potential  o f  Diff icult-Path Branch  Predict ion 

Figure 6 shows the potential speed-up (in IPC) gained 
by perfectly predicting the terminating branches of  diffi- 
cult paths. Difficult paths were identified using T = .10 
and n = {4, 10, 16}. We tracked difficult paths dynami- 
cally using an 8K-entry Path Cache and a training interval 
of 32. The MicroRAM size, which determines the number 
of  concurrent promoted paths, was also set to 8K. We sim- 
ulated many other configurations that we cannot report due 
to space limitations. 

It is interesting that our potential speed-up was not closer 
to perfect branch prediction, since Table 2 suggests difficult 
paths have large misprediction coverage. However, Table 1 
shows that benchmarks often have tens to hundreds of  thou- 
sands of difficult paths. Our simple, realistic Path Cache 
simply could not track the sheer number of  difficult paths 
well enough at run-time. Improving difficult path identifi- 
cation, both with the Path Cache and using the compiler, is 
an area of  future work. 

m~=4  
i ~ =  10 
a o = ] 6  

petli~¢t Branch b~i~fion 

Figure 6. Potential speed-up from perfect 
prediction (8K-entry Path Cache, T = .10), 

5.3. Realist ic  Per formance  

Figure 7 shows realistic machine speed-up when using 
our full mechanism. Speed-up is shown with and without 
the pruning optimization. Also shown is the speed-up when 
including microthread overhead, but not the microthread 
predictions. Parameters for difficult path identification were 
set as in the previous experiment. Microthread build latency 
was set to a fixed 100 cycles. 
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Figure 7. Real ist ic  s p e e d - u p  (n = 10, T = .10). 

Our mechanism was successful at increasing perfor- 
mance in all benchmarks except eon_2k, which saw a slight 
loss. eon._2k and some other benchmarks are relatively well- 
behaved and do not have much tolerance for microthread 
overhead. Microthreads have a difficult time trying to "get 
ahead" of the front-end and compete more heavily for ex- 
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ecution resources. We are experimenting with feedback 
mechanisms to throttle microthread usage to address these 
problems. 

Figure 7 also demonstrates the effectiveness of  pruning. 
Pruning succeeded at increasing performance over our base- 
line microthread mechanism. We examine the reasons for 
this in the next section. 

The remaining bar of Figure 7 shows speed-up due to 
microthread overhead alone. This measures the impact of  
overhead on the primary thread, without the positive effect 
of increased prediction accuracy. Pruning was disabled for 
this run. The majority of  benchmarks saw a slight loss, 
which is to be expected. A couple benchmarks,  notably 
mcf_2k, saw a significant gain. This can be attributed to 
prefetching effects from the microthread rou t ines- -a  very 
pleasant side-effect. 

5.4. Timeliness of Predictions 

The pruning optimization increases performance by en- 
abling smaller and faster microthread routines. This not 
only results in more timely microthread predictions, but also 
a smaller impact on the primary thread. 

Figure 8 shows the average routine size and average 
longest dependency chain length of all routines generated 
with and without pruning. In general, pruning succeeded 
both at shortening microthread routines and reducing the 
critical dependency chains. 
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Figure 8. Average routine size and average 
longest dependency chain length (in # insts). 

In a few interesting cases, such as compress, pruning in- 
creased the average routine length. This is because many 
live-in address base registers (typically global) were re- 
placed by an Ap_Inst instruction, eliminating the live-in 
dependency but also lengthening the routine by one instruc- 
tion. Even so, pruning was still successful at reducing the 
average longest dependency chain. 

Microthread predictions can arrive before the branch is 
fetched (early), after the branch is fetched but before it is re- 
solved (late), or after the branch is resolved (useless). Fig- 

ure 9 shows the breakdown of prediction arrival times for 
our realistic configurations. Use of pruning resulted in an 
increased number of  early predictions and useful (early + 
late) predictions. Use of pruning also slightly increased the 
overall number of  predictions generated. This is because 
smaller microthreads free microcontexts more quickly, al- 
lowing more spawns to be processed. 
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Figure 9. Prediction timeliness broken down 
into early, late, and useless. The left and right 
bars represent no pruning and pruning, re- 
spectively. Useless does not include predic- 
tions for branches never reached. 

It is interesting to note from Figure 9 that, even with 
pruning, the majority of  predictions still arrive after the 
branch is fetched. This is due, to some extent, to our idealis- 
tic fetch engine and rapid processing of the primary thread. 
However, it also indicates that there is still potential perfor- 
mance to be gained by further improving microthread time- 
liness. 

6. Conc lus ions  

Achieving accurate branch prediction remains a key 
challenge in future microprocessor designs. Previous re- 
search has proposed the use of  subordinate microthreads to 
predict branches that are not handled effectively by known 
hardware schemes. Though microthread mechanisms have 
great potential for improving accuracy, past mechanisms 
have been limited by applicability and microthread over- 

head. 
This paper proposes using difficult paths to improve pre- 

diction accuracy. We have shown how to build microthreads 
that better target hardware mispredictions, accurately pre- 
dict branches, and compute predictions in time to remove 
some or all of the misprediction penalty. To demonstrate 
our approach, we have presented a hardware-only imple- 
mentation of our scheme. We propose to identify diffi- 
cult paths using the Path Cache, construct and optimize mi- 
crothreads using the Microthread Builder, and communicate 
predictions to the primary thread using a modified Predic- 
tion Cache. 
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Because our  mechanism can be implemented in hard- 
ware, we are not limited by compile- t ime assumptions. We 
do not depend on profiling data to construct  our threads, 
and our mechanism can adapt during the run o f  a program. 
We have shown how our implementat ion can exploit run- 
time information to dynamical ly  perform microthread op- 
timizations. These optimizations include memory  depen- 
dency speculation and pruning, a novel method of  improv-  
ing microthread latency based on value and address predic- 
tion. 

Al though this paper has shown our initial mechanism to 
be successful, there are many ways in which it could be im- 
proved. In particular, our future work includes ways  to bet- 
ter track the often vast numbers  of  paths, further limit use- 
less spawns, and further improve microthread timeliness. 
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