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Abstract

Simultaneous multithreading architectures have been de-
fined previously with fully shared execution resources. When
one thread in such an architecture experiences a very long-
latency operation, such as a load miss, the thread will
eventually stall, potentially holding resources which other
threads could be using to make forward progress.

This paper shows that in many cases it is better to free
the resources associated with a stalled thread rather than
keep that thread ready to immediately begin execution upon
return of the loaded data. Several possible architectures are
examined, and some simple solutions are shown to be very
effective, achieving speedups close to 6.0 in some cases, and
averaging 15% speedup with four threads and over 100%
speedup with two threads running. Response times are cut in
half for several workloads in open system experiments.

1 Introduction

Simultaneous multithreading (SMT) [18, 17, 20, 7] is an
architectural technique that allows a processor to issue in-
structions from multiple hardware contexts, or threads, to the
functional units of a superscalar processor in the same cycle.
It increases instruction-level parallelism available to the ar-
chitecture by allowing the processor to exploit the natural
parallelism between threads each cycle.

Simultaneous multithreading outperforms previous mod-
els of hardware multithreading primarily because it hides
short latencies (which can often dominate performance on
a uniprocessor) much more effectively. For example, neither
fine-grain multithreaded architectures [2, 8], which context
switch every cycle, nor coarse-grain multithreaded architec-
tures [1, 12], which context switch only on long-latency op-
erations, can hide the latency of a single-cycle integer add if
there is not sufficient parallelism in the same thread.

What has not been shown previously is that an SMT pro-
cessor does not necessarily handle very long-latency opera-
tions as well as other models of multithreading. SMT typi-

cally benefits from giving threads complete access to all re-
sources every cycle, but when a thread occupies resources
without making progress, it can impede the progress of other
threads. In a coarse-grain multithreaded architecture, for ex-
ample, a stalled thread is completely evicted from the pro-
cessor on a context switch; however, with SMT a stalled
thread continues to hold instruction queue or reservation sta-
tion space, and can even continue fetching instructions into
the machine while it is stalled.

This research demonstrates that an SMT processor can be
throttled by a single thread with poor cache behavior; how-
ever, by identifying threads that become stalled, and limiting
their use of machine resources, this problem can be elim-
inated. This provides not only significantly higher overall
throughput, but also more predictable throughput, as threads
with good cache behavior are much more insulated from co-
scheduled threads with poor cache behavior.

In many cases it is better to free the resources associ-
ated with a stalled thread rather than keep that thread ready
to immediately begin execution upon return of the loaded
data. Several possible architectures are examined, and some
simple solutions are found to be very effective, achieving
speedups close to 6.0 in some cases, and averaging 15%
speedup with four threads and over 100% speedup with two
threads running.

This paper is organized as follows. Section 2 demon-
strates the long-latency load problem. Section 3 discusses
previous and related work. Section 4 describes the measure-
ment methodology and Section 5 discusses the metrics used
in this study. Section 6 presents mechanisms for identify-
ing threads stalled waiting for long loads, and for freeing
resources once such loads are identified. Section 7 discusses
alternate mechanisms for freeing those resources. Section 8
presents results for a more conclusive set of response time
experiments using the presented solutions, and Section 9
demonstrates that the load problem exists across a variety
of architectural parameters. We conclude with Section 10.
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Figure 1. The performance of several two-thread
mixes of memory-bound and ILP-bound applica-
tions. The stacked bars represent two-thread runs,
the single bars represent the single-thread runs for
the same two benchmarks.

2 The Impact of Long-latency Loads

This section demonstrates the problem of long-latency
loads with a simple experiment, shown in Figure 1. For six
combinations of two threads (the actual workloads and ex-
perimental configuration are described in Section 4), the fig-
ure shows three results: the IPC of each of the two threads
running alone, and of the two threads running together on
the SMT processor. In each case the light bars represent
memory-intensive benchmarks, and the gray bars represents
applications with good cache behavior.

These results show that one thread with poor cache perfor-
mance can become a significant inhibitor to another thread
with good cache behavior. There are two factors that al-
low an application with poor cache locality to cripple co-
scheduled applications. First, an application that regularly
sweeps through the shared cache will evict data from the
other applications, degrading their cache hit rates. Second,
the memory-bound application can hold and/or use critical
execution resources while it is not making progress due to
long-latency memory operations, degrading every thread’s
performance. This research focuses on the latter problem.

Few applications contain sufficient parallelism to hide
long memory operations (e.g., more than a dozen cycles).
While multithreading allows other threads to hide that la-
tency, if the stalled thread fills the instruction queue with
waiting instructions, it shrinks the window available for the
other threads to find instructions to issue. Thus, when par-
allelism is most needed (when one or more threads are no
longer contributing to the instruction flow), fewer resources
are available to expose that parallelism.

This is most clearly demonstrated for the instruction
queues by the MIX.2.5 workload, where the integer queue
is on average 97% occupied when at least one L2 miss is
outstanding, but only 62% occupied at other times. Other
resources that are potentially held or used by a thread stalled
waiting for a long memory operation are renaming regis-
ters and fetch/decode bandwidth. The rest of the paper will
demonstrate that contention for shared resources is by far the
dominant factor causing the poor performance shown in Fig-
ure 1.

3 Related Work

Simultaneous multithreading [18, 17, 20, 7] is an architec-
tural technique that allows a processor to issue instructions
from multiple hardware contexts, or threads, to the func-
tional units of a superscalar architecture each cycle. This
paper builds upon the SMT architecture presented in [17].
Previous SMT research has not exposed the problem (or so-
lutions) examined in this paper. One important reason for
that has been the inability of pre-2000 instantiations of the
SPEC benchmarks to put significant pressure on a reason-
able cache hierarchy.

Less aggressive models of multithreading are less prone
to such problems. Coarse-grain multithreading [1, 12] is
aimed only at the long-latency load problem, and makes
no attempt to address any other machine latency. Because
coarse-grain architectures allow only one thread to have ac-
cess to execution resources at any time, they alway flush
stalled threads completely from the machine. Fine-grain
multithreading [2, 8] could potentially have shared schedul-
ing resources which exhibit this problem, depending on
the architecture. However, these architectures (e.g., the
Cray/Tera MTA [2]) have traditionally been coupled with
in-order execution, where scheduling windows only need to
keep a few instructions per thread visible.

We ignore the latency of synchronization operations (the
other source of long and non-deterministic latencies) in this
paper. Tullsen, et al.[19] have shown the advantage of a
synchronization primitive which both blocks and flushes a
thread from the queue when it fails to acquire a lock; how-
ever, the performance implications of not flushing were not
investigated, and that paper gives no indication that a similar
technique is necessary for loads.

Previous work on the interaction of SMT processors and
the cache hierarchy have focused on cache size and organi-
zation (Nemirovsky and Yamamoto [11]), cache bandwidth
limitations (Hily and Seznec [6]), or cache partitioning [18].

Cache prefetching [3, 10] attacks the long-latency load
problem in a different way, seeking to eliminate the latency
itself. Recent work in prefetching targets multithreaded pro-
cessors specifically, using idle hardware contexts to initiate
prefetching. These include Collins, et al. [4], Luk [9], and
Zilles and Sohi [21].



Benchmark Input Fast Forward
Memory-Intensive

ammp ref 1.7 billion
applu ref .7

art c756hel.in (ref) .2
mcf ref 1.3

swim ref .5
twolf ref 1

ILP-Intensive
apsi ref .8 billion
eon cook (ref) 1
fma ref .1
gcc integrate.i (ref) .5
gzip log (ref) .1

vortex ref .5

Table 1. The benchmarks used in this study, along
with the data set and the number of instructions
emulated before beginning measured simulation.

Name Applications
ILP.2.1 apsi, eon
ILP.2.2 fma3d, gcc
ILP.2.3 gzip, vortex
ILP.4.1 apsi, eon, fma3d, gcc
ILP.4.2 apsi, eon, gzip, vortex
ILP.4.3 fma3d, gcc, gzip, vortex

MEM.2.1 applu, ammp
MEM.2.2 art, mcf
MEM.2.3 swim, twolf
MEM.4.1 ammp, applu, art, mcf
MEM.4.2 art, mcf, swim, twolf
MEM.4.3 ammp, applu, swim, twolf
MIX.2.1 applu, vortex
MIX.2.2 art, gzip
MIX.2.3 swim, gcc
MIX.2.4 ammp, fma3d
MIX.2.5 mcf, eon
MIX.2.6 twolf, apsi
MIX.4.1 ammp, applu, apsi, eon
MIX.4.2 art, mcf, fma3d, gcc
MIX.4.3 swim, twolf, gzip, vortex

Table 2. The multithreaded workloads used.

4 Methodology

Table 1 summarizes the benchmarks used in our simula-
tions. All benchmarks are taken from the SPEC2000 suite
and use the reference data sets. Six are memory-intensive
applications which in our system experience between 0.02
and 0.12 L2 cache misses per instruction, on average, over
the simulated portion of the code. The other six benchmarks
are taken from the remainder of the suite and have lower miss
rates and higher inherent ILP. Table 2 lists the multithreaded
workloads used in our simulations. All of the simulations in
this paper either contain threads all from the first group (the
MEM workloads in Table 2), or all from the second group
(ILP), or an equal mix from each (MIX). Most of the paper
focuses on the MIX results; however, the other results are
shown to demonstrate the universality of the problem.

Parameter Value

Fetch width 8 instructions per cycle
Fetch policy ICOUNT.2.8 [17]
Pipeline depth 8 stages
Min branch misprediction penalty 6 cycles
Branch predictor 2K gshare
Branch Target Buffer 256 entry, 4-way associative
Active List Entries 256 per thread
Functional Units 6 Integer (4 also load/store), 3 FP
Instruction Queues 64 entries (32 int, 32 fp)
Registers For Renaming 100 Int, 100 FP
Inst Cache 64KB, 2-way, 64-byte lines
Data Cache 64KB, 2-way, 64-byte lines
L2 Cache 512 KB, 2-way, 64-byte lines
L3 Cache 4 MB, 2-way, 64-byte lines
Latency from previous level L2 10 cycles, L3 20 cycles
(with no contention) Memory 100 cycles

Table 3. Processor configuration.

Execution is simulated on an out-of-order superscalar
processor model which runs unaltered Alpha executables.
The simulator is derived from SMTSIM [15], and models
all typical sources of latency, including caches, branch mis-
predictions, TLB misses, and various resource conflicts, in-
cluding renaming registers, queue entries, etc. It models
both cache latencies and the effect of contention for caches
and memory buses. It carefully models execution down the
wrong path between branch misprediction and branch mis-
prediction recovery.

The baseline processor configuration used for most sim-
ulations is shown in Table 3. The instruction queues for our
eight-wide processor are roughly twice the size of the four-
issue Alpha 21264 (15 FP and 20 integer entries) [5]. In ad-
dition, the 21264 queues cannot typically remain completely
full due to the implemented queue-add mechanism, a con-
straint we do not model with our queues. These instruction
queues, as on the 21264, remove instructions upon issue, and
thus can be much smaller than, for example, a register update
unit [14] which holds instructions until retirement. Section 9
also investigates larger instruction queues.

The policies of the SMT fetch unit have a significant im-
pact on the results in this paper. Our baseline configuration
uses the ICOUNT.2.8 mechanism from [17]. The ICOUNT
mechanism fetches instructions from the thread or threads
least represented in the pre-execute pipeline stages. This
mechanism already goes a long way towards preventing a
stalled thread from filling the instruction queue (Section 9
shows how much worse the load problem becomes without
ICOUNT), but this paper will show that it does not com-
pletely solve the problem. In particular, if the processor is
allowed to fetch from multiple threads per cycle, it becomes
more likely a stalled thread (while not of the highest prior-
ity) can continue to dribble in new instructions. Our base-
line fetch policy (ICOUNT.2.8) does just that, fetching eight
instructions total from two threads. Section 9 also looks



at fetch policies that only fetch from one thread per cycle,
demonstrating that the problem of long-latency loads persists
even in that scenario.

5 Metrics

This type of study represents a methodological chal-
lenge in accurately reporting performance results. In multi-
threaded execution, every run consists of a different mix of
instructions from each thread, making IPC (instructions per
cycle) a questionable metric. This problem is most problem-
atic when we apply policies that bias execution against a par-
ticular thread or threads. It is further exacerbated when those
policies bias execution against inherently low-IPC threads.

Any policy that favors high-IPC threads boosts the re-
ported IPC by increasing the contribution from the favored
threads. But this does not necessarily represent an improve-
ment. While the IPC over a particular measurement interval
might be higher, in a real system the machine would even-
tually have to run a workload inordinately heavy in low-IPC
threads, and the artificially-generated gains would disappear.

An actual result from this paper will illustrate. The base-
line processor runs two threads together, with the first thread
achieving 1.29 IPC, and the second 1.95 IPC, for a com-
bined 3.24 IPC. With a particular optimization, the machine
now runs at a slightly higher IPC of 3.25, achieved by the
first thread running at 1.02 IPC and the second 2.23. How-
ever, this increase in IPC was achieved by running the first
thread 21% slower and the second thread 14% faster. The
processor is not making better progress through the given
workload, despite the higher IPC. Any reasonable mea-
sure of system-level performance (for example, average job
turnaround time), would see more degradation from the 21%
slowdown than gain from the 14% speedup.

This paper will use weighted speedup, which is derived
from, but not identical to, the metric of the same name pro-
posed by Snavely and Tullsen [13]. In that paper, a thread’s
IPC is derated by its single-thread IPC; this paper derates
a thread’s IPC by its IPC in the baseline configuration with
the same mix of threads; however, the spirit of the metric is
the same: to make it impossible to quote artificial speedups
by simply favoring high-IPC threads. We use this modifica-
tion because, (1) in this study we have a more well-defined
baseline case, and (2) when two threads are running slowly
together, we benefit from either running faster, regardless of
how they would run in single thread mode.

Our definition of weighted speedup is as follows:

Weighted Speedup =
X

threads

IPCnew

IPCbaseline

By this formula, then, the previously cited simulation re-
sult would achieve a weighted speedup (slowdown) of 0.97.
The nature of the optimizations in this paper are such that vir-
tually all of our results report lower weighted speedup than

unweighted speedup, but we feel strongly that this is a more
accurate metric.

In Section 8, we also follow the lead of [13] by using open
system response time experiments to assess the benefit of
these optimizations in a dynamic system with jobs entering
and leaving the processor over time.

6 Identifying and Handling Long-latency
Loads

This section details our primary mechanisms for (1) iden-
tifying that a thread or threads are likely stalled, and (2) free-
ing resources associated with those threads.

Identifying stalled threads in most cases operates on two
assumptions: that only loads can incur sufficient latency to
require this type of drastic action, and that if a load takes
long enough, it is almost certain to stall the thread. (See [19]
for a study of synchronization mechanisms on SMT, which
is the other potential source of long thread stalls). Note that
in an out-of-order processor, the notion of a “stalled” thread
is much fuzzier than in an in-order processor. In an out-
of-order processor, only those instructions dependent on the
load will get stuck in the instruction queue, but if the memory
latency is long enough, eventually the thread will run out of
instructions that are independent of the load (or the active
list/reorder buffer will fill with the stalled load at the head).
At that point, the thread has gone from partially stalled to
fully stalled.

Freeing resources requires removing instructions from the
processor. In most of our experiments we assume that the
processor uses the exact same flushing mechanism that is
used for a branch misprediction, which can flush part of a
thread starting at a given instruction. Such a flush frees re-
naming registers and instruction queue entries.

We make the following assumptions in all of the exper-
iments in this paper. First, that we always attempt to leave
one thread running; we do not flush or block a thread if all
others have already been flushed or blocked. Second, that
any thread which has been flushed is also blocked from fur-
ther fetching until the load returns from memory. Third, that
the processor core receives little advance warning that a load
has returned from memory. In our case, the two-cycle cache
fill time allows us to possibly begin fetching one cycle be-
fore the load data is available (roughly four cycles too late
to get the first instructions in place to use the returned data
immediately). A mechanism that accurately predicted the re-
turn of a load, or received that information from the memory
subsystem early, would allow the thread to bring the instruc-
tion stream back into the scheduling window more quickly,
achieving higher performance than shown here at the cost of
some complexity.

We’ll examine two mechanisms for identifying long-
latency loads. Trigger on miss assumes we get a signal from
the L2 cache on each miss, and that the processor can at-
tribute that miss to a particular thread and instruction. We
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Figure 2. The instruction throughput of all workloads with a simple mechanism for flushing threads waiting for
long-latency loads. The contributions by each thread to the total IPC are shown by the segmented bars. For the
MIX results the memory-intensive benchmarks are those closest to the bottom of the graph. In each pair, the left
bar uses no flushing, and the right bar uses the “T15” policy.

also assume that a TLB miss triggers a flush, on the assump-
tion that most TLB misses will incur expensive accesses to
fill the TLB and will often also result in cache misses after
the TLB is reloaded. If the TLB miss is handled by software
in the same thread context, the processor must not flush un-
til after the miss is handled. A simpler mechanism, trigger
on delay, just initiates action when an instruction has been
in the load queue more than L cycles after the load was first
executed. For most of our experiments, L is 15. That is more
than the L2 hit time (10 cycles), plus a few more cycles to ac-
count for the non-determinism caused by bank conflicts and
bus conflicts.

Figure 2 shows just the latter mechanism (T15 — trigger
a flush after 15 cycles) compared to regular execution (no
flushing) for all combinations of workloads. This graph plots
instructions per cycle, for each thread, and shows that the
performance gains are mostly coming from the non-memory
threads being allowed to run unencumbered by the memory
threads, with the memory threads suffering slightly. Because
of the difficulties discussed in Section 4 with using IPC as
a performance metric, all further graphs will show only the
weighted speedup results; however, Figure 2 does give in-
sight into how the speedups are achieved. This figure also
shows that long-latency load flushing is effective even when
the threads are uniform: all memory-bound or all ILP-bound.
The average weighted speedup for the ILP workloads is 1.03
and for the MEM workloads is 1.25. Subsequent results will
focus on the mixed workloads, however.

Figure 3 shows more mechanisms for identifying long-
latency loads, including TM (trigger on L2 miss), T5, T15,
and T25 (trigger a flush after a load becomes 5, 15, or 25
cycles old), and T15S (S for selective — only flush if some
resource is exhausted, such as instruction queue entries or

renaming registers). T5 flushes after L1 misses and T15 after
L2 misses. T25 is an interesting data point, because an L3
miss takes at least 30 cycles; it will identify the same misses
as T15, but identify them later.

The results are both clear and mixed. It is clear that flush-
ing after loads is important, but the best method of triggering
a flush varies by workload. Triggering after 15 cycles and
triggering after a cache miss are consistently good. The se-
lective flush is best in several cases, but also performs poorly
in other cases. When it performs poorly, it is because a flush
is often inevitable (especially since the stalled thread can
still fetch instructions to fill the queue); then, being selec-
tive only delays the flush until some harm has actually been
done and allows the doomed thread to utilize precious fetch
bandwidth in the meantime. In other cases, being conserva-
tive about flushing (see both T15S and T25) pays off. This
is not so much because it reduces the number of flushes, but
because it allows more loads from the doomed thread to get
into the memory subsystem before the flush. Thus, perfor-
mance is best when we can find the right balance between
the need to purge a memory-stalled thread from the machine,
and the need to exploit memory-level parallelism within the
memory-bound thread. That balance point varies among the
workloads displayed here.

When there is little contention for the shared resources,
flushing after loads can hinder one thread without aiding the
other(s); in our simulations, we only see that in the MIX.2.2
workload.

The average weighted speedup for load flushing in this
figure is over 2.0 when two threads are active, and 1.13–1.15
for four threads. The two-thread case is extreme because it is
easy for a stalled thread to eventually take over the processor
when we are fetching from two threads every cycle. How-
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Figure 3. The weighted speedup of flushing after long loads, comparing several mechanisms for identifying
long-latency loads.

ever, the four-thread case shows that even when that effect
is no longer dominant, all threads still suffer from the “equal
portion” of the machine which is held by a stalled thread.

Once a thread is identified as stalled and selected for
flushing, the processor must choose an instruction to flush
forward from; we examine several schemes. Next flushes
beginning with the next instruction after the load. First use
flushes at the first use of the loaded data. After 10 and after
20 flush beginning 10 or 20 instructions beyond the load.
Next branch flushes at the next branch. This mechanism
simplifies load flushing on processors that checkpoint only
at branches. The Alpha 21264 and 21364 checkpoint all
instructions, and would have more flexibility in choosing a
flush point. The results presented so far have all used the
flush after first use technique. Figure 4 shows the perfor-
mance of different flush point selection techniques; the T15
load identification scheme was used for these experiments.

These results show some definite trends. When the load
problem is most drastic (in the two-thread workloads, partic-
ularly MIX.2.4), it is critical to flush as close to the problem
as possible, to minimize the held resources. In those cases,
flushing on next, first-use, and (sometimes) first-branch all fit
that bill. When the load problem is less critical, sometimes
being more liberal about where to flush can actually help.
However, because there is so much more to gain when the
load problem is most evident, the average results are domi-
nated by mechanisms that flush close to the load.

Further results in this paper will use the trigger after 15
cycles scheme to identify long loads, and will flush begin-
ning with the first use. This policy will be simply denoted as
T15.

The results in this section demonstrate that flushing after
a long-latency load can be extremely effective in allowing
non-stalled threads to make the best use of the execution re-
sources. Flushing a thread is a fairly drastic action to take
on an SMT processor, but appears warranted across a wide
variety of workloads. Among the questions examined in the

next section is the effectiveness of less drastic measures to
solve the long-load problem.

7 Alternate Flush Mechanisms
This section investigates a wider range of mechanisms to

free execution resources during long-latency loads. It seeks
to answer these questions: (1) is the complexity and perfor-
mance cost of flushing on long-latency loads necessary, and
(2) what further benefits might be gained from more complex
mechanisms?

One simpler alternative would be to only moderate fetch-
ing. That is, do not flush, but immediately stop fetching from
a thread experiencing an L2 miss. This does not clear space
occupied by the stalled thread, but prevents it from taking
more than its share while it is not making progress. This is
the stall fetch scheme of Figure 5.

Alternatively, we could make it more difficult for a thread
to ever occupy too much of the shared queue. Certainly,
a statically partitioned queue does not experience the load
problem. However, that is a dear price to pay, sacrificing
the most efficient use of the queue at other times, especially
when not all contexts are active. A middle ground solution,
however, would be a hard limit on how many instructions
a single thread could have in the pre-execute portion of the
pipeline (presumably this limit could be turned off when exe-
cuting in single-thread mode). We experimented with several
different limits, and the best performer appears as pseudo
static in Figure 5. For that policy, no thread is allowed to
fetch a new block when it has more than 20 instructions in
the queue stage or earlier if we have two threads active, or
more than 15 instructions if there are four threads active.

More complex mechanisms are also possible. Only
slightly more complex is a hybrid of T15S and stall fetch.
This mechanism stops fetching as soon as a long-latency load
is detected, but only flushes if a resource is exhausted. Stop-
ping fetch for the offending thread immediately increases the
chances that no resource will be exhausted and no flush will
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Figure 4. The weighted speedup of several mechanisms to identify the flush point after a load triggers a flush.

be necessary, if all other threads’ queue pressure is light.
This policy is labeled T15SF — stall, then flush.

The last scheme examined adds stall buffers to the pro-
cessor. This is intended to eliminate the delay in getting
instructions back into the instruction queues. Instructions
that belong to a thread that is stalled, and are themselves
not ready to issue, will be issued (subject to issue bandwidth
constraints) to the stall buffer using the normal issue mech-
anism. When the load completes, instructions will be dis-
patched to the instruction queue (temporarily over-riding the
rename-issue path), again subject to normal dispatch band-
width. This eliminates the delay in resuming the stalled
thread, allowing it to make more progress as parallelism al-
lows. Typically, only the load-dependent instructions will go
into the stall buffer, so even a small buffer can allow many
independent instructions after the load to execute and avoid
unnecessary squashing. Once the stall buffer fills, the thread
is flushed starting with the instruction that found the buffer
full.

Figure 5 shows the results. Just stalling fetch improves
performance over no flushing, but falls far short of the
other solutions. The pseudo-statically partitioned queue also
falls short due to the inherent inefficiencies of placing ar-
tificial limits on threads’ use of the queues. The stall and
flush mechanism (T15SF) is a small change to our previous
scheme and does show an improvement over that approach
(T15). The performance of the stall buffer is disappointing.
It only solves half the problem: while relieving the instruc-
tion queue, it puts more pressure on the renaming registers
and increases those conflicts.

The T15 mechanism strikes a good balance between im-
plementation complexity and performance, on a wide variety
of workloads.

8 Response Time Experiments

While most of the methodological concerns with this re-
search are eliminated with the use of weighted speedup, there
are some questions that can only be answered definitively by

a comprehensive model of an open system, with jobs arriving
and departing. For example, one possible issue is whether
even weighted speedup appropriately accounts for the fact
that a continued bias against the slow threads may mean that
they stay in the system longer, causing problems for more
threads. In fact, we’ll show that this isn’t the case, a fact that
is not obvious from the previous experiments.

In this experiment, we modified the simulator to allow
jobs to enter the simulated system at various intervals, and
run for a predetermined number of instructions. Because the
runtime intervals were by necessity much less than the actual
runtimes of these programs, we still fast-forwarded to an in-
teresting portion of execution before entering the job into the
system. Since the MEM threads run more slowly, we used
a mix of two ILP threads to every MEM thread; this yielded
a fairly even mix of jobs in the processor at any point in
time. Eighteen total jobs were run, with MEM jobs run once
each, and ILP jobs run twice each. In such an experiment,
the only useful measure of performance is average response
time (execution time), since the instruction throughput is for
the most part a function of the schedule rather than the ar-
chitecture. The mean response times were calculated using
the geometric mean due to the wide disparity in response
times for different jobs. In these simulations, all jobs exe-
cute for 300 million instructions, then exit the system. In
the light load experiment, jobs arrive every 200 million cy-
cles, in medium load, they arrive every 150 million cycles,
and in heavy load, they arrive every 100 million cycles. For
the baseline cases, there were on average 2.9, 3.4, and 4.5
jobs in the system for the light, medium, and heavy loads,
respectively.

Figure 6 presents the results of the three experiments. For
each experiment, the ILP and MEM thread response times
are shown computed separately as well as combined. The re-
sults show dramatic decreases in response time through the
use of load flushing. Surprisingly, these decreases are not re-
stricted to the ILP threads: the MEM threads gain very sig-
nificantly as well, despite being the target of bias. The gains
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are significant with both light loads, where the average num-
ber of jobs in the system is closer to the worst-case of two
threads, and with heavy loads, where the average number of
jobs is much higher.

These results expose two phenomena not shown in the
previous sections. First, when one thread inhibits the
progress of other threads, it only causes further queueing de-
lays as more jobs enter the system. Conversely, if a thread
can accelerate a co-scheduled job’s exit from the system, it
gains a larger share later to accelerate its own progress. This
is the source of the high speedup for the MEM threads. With
the medium-load workload, load flushing reduced the aver-
age number of jobs in the system from 3.4 to 2.5, which ben-
efited every job.

The second phenomenon which degraded the perfor-
mance of the no-flushing results was the exaggeration of the
two-thread problem seen in earlier results. Since this exper-
iment saw anywhere from zero to eight threads in the sys-
tem at any one time, we would hope that it would not spend
too much time in the disastrous two-thread scenario. How-
ever, just the opposite took place, as the poor performance
of the two-thread case made it something of a local mini-
mum that the system constantly returned to, for some of the

experiments. When more than two threads were in the sys-
tem, throughput would improve, returning the system more
quickly to dual execution. Similarly, the system was unlikely
to move to single-thread execution if two-thread throughput
was low. Thus we see that the poor dual-thread performance
highlighted by previous sections will take a much larger toll
on overall throughput than might be expected statistically —
if it is not eliminated using the techniques outlined here.

9 Generality of the Load Problem

The benefit from flushing after long loads will vary with
the parameters of the architecture. This section shows how
the technique works under different assumptions about fetch
policies and instruction queue size. By varying those param-
eters which most impact the applicability of this mechanism,
this section demonstrates that these techniques solve a real
problem that exists across a wide range of assumed architec-
tures.

The effectiveness of, and necessity for, flushing after
loads will necessarily vary with cache sizes and cache la-
tency. We do not explore this space here, however, because
we will be able to rely on two constants for the foreseeable
future that will ensure the continued and increasing need for
this technique: there will always be memory-bound applica-
tions, and memory latencies will continue to grow.

The ICOUNT fetch policy attempts to prevent a thread
from ever taking more than its share of the processor. One
reason that threads are able to circumvent it in these exper-
iments is that, with a fetch policy that allows two threads
to fetch concurrently, a thread not of the highest priority is
still able to add instructions. Figure 7 examines the speedups
achieved with various fetch policies, using the terminology
from [17]. The ICOUNT.1.8 policy fetches up to eight in-
structions from a single thread each cycle. With that scheme
a thread cannot fetch more instructions unless it is the least
represented thread that is ready to fetch. The ICOUNT.2.4
scheme fetches four instructions from each of two threads for
a maximum of eight. The ICOUNT.2.8 policy is the baseline
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policy used throughout this paper. The RR.1.8 uses round-
robin priority for fetch rather than ICOUNT.

Figure 7 shows that the ICOUNT.1.8 fetch policy goes
a long way toward solving the problem, but it is not suffi-
cient: there is still a significant gain for flushing, especially
with two threads. This is because even if the machine is suc-
cessful at preventing a thread from occupying more than an
equal portion of the processor, it still loses that equal por-
tion of the instruction window to find parallelism in other
threads. Fetching from a single thread is not a panacea, any-
way, because the ICOUNT.1.8 policy also has a performance
cost not seen in this graph (because the speedups are nor-
malized to different baselines). With load flushing applied,
the ICOUNT.1.8 result is 9% slower than the ICOUNT.2.8
result with four threads for the MIX experiments, a result
that confirms those in [17]. The ICOUNT.2.4 results show
even greater gains than the ICOUNT.2.8 results. This comes
from the fact that the ICOUNT.2.4 scheme gives the top
two threads equal access to fetch, unlike the ICOUNT.2.8
scheme. With round-robin instruction fetching, we see to
what extent the ICOUNT scheme was protecting the proces-
sor from load stalls. With round-robin fetching (the RR.1.8
results), flushing after loads is absolutely essential to good
performance, regardless of the number of threads.

The size of the instruction scheduling window (in this
case, the instruction queues) will also impact how easy it is
for a context to monopolize the structure. Figure 8 shows the
performance of load flushing for two larger queue sizes (in
addition to the previous results for 64 total queue entries). As
the queues become larger, the processor does become more
tolerant of long-latency loads when sufficient thread paral-
lelism exists. With fewer threads, however, it only takes the
stalled thread a little longer to take over the queue, regardless
of size.
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Another factor that would also affect these results is the
presence of other memory latency tolerance techniques, such
as memory prefetching (either hardware or software). While
techniques such as these are less important on a multi-
threaded processor, it can be expected that they will be avail-
able. In fact, much recent research is exploiting the existence
of threads to create prefetching engines [4, 9, 21].

We expect this technique to co-exist efficiently with, and
in some cases supplant, prefetching. No current prefetchers
provide full coverage of cache misses for all important ap-
plications; so, a prefetcher could be used to boost the perfor-
mance of a particular memory-intensive benchmark, while a
load-flushing technique would still protect system through-
put when the prefetcher fails. A hardware prefetcher for a
processor that included this load-flushing mechanism would
have the luxury of focusing on achieving high accuracy, be-
cause high coverage will be less important.

Some environments, however, are inappropriate for
prefetching. When memory bandwidth is limited or heav-
ily shared [16], the extra bandwidth generated by prefetch-
ing might be unacceptable, but load-flushing incurs no such
cost. The extra bandwidth required for prefetching is also
undesirable for low-power applications; however, the cost of
re-execution after a flush may also be unacceptable, in which
case stalling fetch or a static or pseudo-static partitioning of
the instruction queues might become more desirable.

10 Conclusions

A thread with a high concentration of long-latency cache
misses can reduce the throughput of a co-scheduled thread by
as much as a factor of ten. This happens when the memory-
bound thread constantly fills the instruction scheduling win-
dow with instructions that cannot be issued due to depen-
dence on these long-latency operations. The co-scheduled
thread cannot get enough instructions into the processor to



expose the parallelism needed to hide the latency of the
memory operation. Thus, we lose the primary advantage of
multithreading.

This problem is solved by forcing threads waiting for
long-latency loads to give up resources, using the same
mechanism used for branch mispredictions, allowing the
thread to resume fetching once the load returns from mem-
ory.

This technique achieves a 15% speedup with four threads
active, and more than doubles the throughput with two
threads active. Response time experiments show that under
various load levels the average response time is cut by about
a factor of two, including a significant reduction even for the
memory-bound jobs our techniques bias against.

This paper shows that less aggressive techniques (just
stalling fetch, or limiting full access to the instruction
queues) can help but do not provide the speedups achieved
by flushing. More aggressive techniques, such as providing
dedicated buffers for holding stalled instructions, do provide
some further gains, but may not justify the additional cost.
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