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Abstract
When multiple processor (CPU) cores and a GPU integrated
together on the same chip share the off-chip main mem-
ory, requests from the GPU can heavily interfere with re-
quests from the CPU cores, leading to low system performance
and starvation of CPU cores. Unfortunately, state-of-the-art
application-aware memory scheduling algorithms are ineffec-
tive at solving this problem at low complexity due to the large
amount of GPU traffic. A large and costly request buffer is
needed to provide these algorithms with enough visibility across
the global request stream, requiring relatively complex hard-
ware implementations.

This paper proposes a fundamentally new approach that de-
couples the memory controller’s three primary tasks into three
significantly simpler structures that together improve system
performance and fairness, especially in integrated CPU-GPU
systems. Our three-stage memory controller first groups re-
quests based on row-buffer locality. This grouping allows the
second stage to focus only on inter-application request schedul-
ing. These two stages enforce high-level policies regarding per-
formance and fairness, and therefore the last stage consists of
simple per-bank FIFO queues (no further command reordering
within each bank) and straightforward logic that deals only with
low-level DRAM commands and timing.

We evaluate the design trade-offs involved in our Staged
Memory Scheduler (SMS) and compare it against three
state-of-the-art memory controller designs. Our evaluations
show that SMS improves CPU performance without degrad-
ing GPU frame rate beyond a generally acceptable level, while
being significantly less complex to implement than previous
application-aware schedulers. Furthermore, SMS can be con-
figured by the system software to prioritize the CPU or the GPU
at varying levels to address different performance needs.

1 Introduction
With increasing number of cores in modern chip multiprocessor
(CMP) systems, the main memory system has become a critical
shared resource. Memory requests from multiple cores inter-
fere with each other, and this inter-application interference is a
significant impediment to individual application and overall sys-
tem performance. Previous work on application-aware memory
scheduling [14, 15, 24, 25] has addressed the problem by mak-
ing the memory controller (MC) aware of application character-
istics and appropriately prioritizing memory requests to improve
system performance and fairness.

Recent systems [4, 10, 27] present an additional challenge by
introducing integrated graphics processing units (GPUs) on the
same die with CPU cores. GPU applications typically demand
significantly more memory bandwidth than CPU applications
due to a GPU’s ability to execute a large number of parallel
threads. A GPU uses single-instruction multiple-data (SIMD)
pipelines to concurrently execute multiple threads, where a
group of threads executing the same instruction is called a wave-
front or a warp. When a wavefront stalls on a memory instruc-
tion, a GPU core hides this memory access latency by switching
to another wavefront to avoid stalling the pipeline. Therefore,
there can be thousands of outstanding memory requests from
across all of the wavefronts. This is fundamentally more mem-
ory intensive than CPU memory traffic, where each CPU appli-

cation has a much smaller number of outstanding requests, due
to the sequential execution model and limited instruction win-
dow size of CPU cores.

Recent memory scheduling research has focused on mem-
ory interference between applications in CPU-only scenarios.
These past proposals are built around a single centralized re-
quest buffer at each MC.1 The scheduling algorithm imple-
mented in the MC analyzes the stream of requests in the cen-
tralized request buffer to determine application memory charac-
teristics, decides on a priority for each core, and then enforces
these priorities. Observable memory characteristics may include
the number of requests that result in row-buffer hits [15], the
bank-level parallelism of each core [15, 25], memory request
rates [14, 15], overall fairness metrics [24, 25], and other in-
formation. Figure 1(a) shows the CPU-only scenario where the
request buffer holds requests only from the CPU cores. In this
case, the MC sees a number of requests from the CPU cores and
has visibility into their memory behavior. On the other hand,
when the request buffer is shared between the CPU cores and
the GPU, as shown in Figure 1(b), the large volume of requests
from the GPU occupies a significant fraction of the MC’s re-
quest buffer, thereby limiting the MC’s visibility of the CPU
applications’ differing memory behavior.
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Figure 1. Limited visibility example due to small buffer size. (a) CPU-only
case, (b) MC’s visibility when CPU and GPU are combined, (c) Improved
visibility with a larger request buffer

One approach to increasing the MC’s visibility is to increase
the size of its request buffer. This allows the MC to observe
more requests from the CPU cores to better characterize their
memory behavior, as shown in Figure 1(c). For instance, with
a large request buffer, the MC can identify and service multi-
ple requests from one CPU core to the same row such that they
become row-buffer hits, however, with a small request buffer as
shown in Figure 1(b), the MC may not even see these requests
at the same time because the GPU’s requests have occupied the
majority of the request buffer entries.

Unfortunately, very large request buffers impose significant
implementation challenges: analyzing many requests, and as-
signing and enforcing priorities require large structures with
high circuit complexity that consume significant die area and
power. Therefore, while building a very large, centralized MC
request buffer could lead to good application-aware memory
scheduling decisions, the resulting area, power, timing and com-
plexity costs are unattractive.

In this work, we propose the Staged Memory Scheduler
(SMS), a decentralized architecture for application-aware mem-
ory scheduling in the context of integrated multi-core CPU-GPU
systems. The key idea in SMS is to decouple the functional tasks
of an application-aware memory controller and partition these
tasks across several simpler hardware structures in a staged fash-
ion. The three primary functions of the MC, which map to the

1This buffer can be partly partitioned across banks, but each bank buffer is
centralized for all applications.

416978-1-4673-0476-4/12/$31.00(c)2012 IEEE



three stages of our proposed MC architecture, are: 1) detection
of basic within-application memory characteristics (e.g., row-
buffer locality), 2) prioritization across applications running on
both CPU cores and GPU, and enforcement of policies to reflect
the application priorities, and 3) low-level command schedul-
ing (e.g., activate, precharge, read/write), enforcement of device
timing constraints (e.g., tRAS, tFAW, etc.), and resolution of re-
source conflicts (e.g., data bus arbitration).

Our specific SMS implementation makes widespread use
of distributed FIFO structures to maintain a simple imple-
mentation. SMS can at the same time provide fast service
to low memory-intensity (likely latency-sensitive) applications
and effectively exploit row-buffer locality and bank-level par-
allelism for high memory-intensity (bandwidth-demanding) ap-
plications. While SMS provides a specific implementation of a
multi-stage memory controller, our staged approach for MC or-
ganization provides a general framework for exploring scalable
memory scheduling algorithms capable of handling the diverse
memory needs of integrated CPU-GPU systems and other het-
erogeneous systems of the future.

This work makes the following contributions:
• We identify and present the challenges posed to existing

memory scheduling algorithms due to the high memory-
bandwidth demands of GPU applications.

• We propose a new decentralized, multi-stage approach to
application-aware memory scheduling that effectively han-
dles the interference caused by bandwidth-intensive appli-
cations to other applications, while simplifying the hard-
ware implementation by decoupling different functional
tasks of a memory controller across multiple stages.

• We evaluate our proposed approach against three previous
memory scheduling algorithms [14, 15, 31] across a wide
variety of workloads and CPU-GPU systems and show
that it improves CPU performance without degrading GPU
frame rate beyond an acceptable level, while providing a
design that is significantly less complex to implement. Fur-
thermore, SMS can be dynamically configured by the sys-
tem software to prioritize the CPU or the GPU at varying
levels to address different performance needs.

2 Background
In this section, we provide a review of DRAM organization and
discuss how past research dealt with the challenges of providing
performance and fairness for modern memory systems.
2.1 Main Memory Organization
DRAM is organized as two-dimensional arrays of bitcells.
Reading or writing data to DRAM requires that a row of bitcells
from the array first be read into a row buffer. This is required
because the act of reading the row destroys the row’s contents.
Reads and writes operate directly on the row buffer. Eventually
the row is “closed” whereby the data in the row buffer is written
back into the DRAM array. Accessing data already loaded in the
row buffer, also called a row-buffer hit, incurs a shorter latency
than when the corresponding row must first be “opened” from
the DRAM array. A modern memory controller (MC) must or-
chestrate the sequence of commands to open, read, write, and
close rows. Servicing requests in an order that increases row-
buffer hits improves data throughput and reduces the average
latency to service requests. The MC is also responsible for en-
forcing a wide variety of timing constraints imposed by mod-
ern DRAM standards (e.g., DDR3), such as limiting the rate of
page-open operations (tFAW) and ensuring a minimum amount
of time between writes and reads (tWTR).

Each two-dimensional array of DRAM cells constitutes a
bank. A DRAM chip consists of multiple banks. Multiple
DRAM chips are put together and operated in lockstep to form a
rank. One or more ranks form a channel. All banks on a channel
share a common set of command and data buses, and the MC

that controls that memory channel is responsible for schedul-
ing commands such that each bus is used by only one bank
at a time. Operations on multiple banks may occur in parallel
(e.g., opening a row in one bank while reading data from an-
other bank’s row buffer) so long as the commands are properly
scheduled and any other DRAM timing constraints are obeyed.
An MC can improve memory system throughput by scheduling
requests such that bank-level parallelism, or BLP (i.e., the num-
ber of banks simultaneously busy responding to commands), is
increased. A key challenge in the implementation of modern,
high-performance MCs is to effectively improve system perfor-
mance by maximizing both row-buffer hits and BLP while si-
multaneously providing fairness among multiple CPU cores and
the GPU.
2.2 Memory Request Scheduling
Accessing off-chip memory is a major performance bottleneck
in microprocessors. The MC is responsible for buffering and
servicing memory requests from the different cores and the
GPU. Typical implementations make use of a memory request
buffer to hold and keep track of all in-flight requests. Schedul-
ing logic then decides which requests should be serviced and
issues the corresponding commands to the DRAM devices.

As all of the cores must share the limited off-chip memory
bandwidth, a large number of outstanding requests greatly in-
creases contention for the memory data and command buses.
Because a bank can only process one command at a time, a
large number of requests also increases bank contention, where
requests must wait for busy banks to finish servicing other re-
quests. A request from one core can also cause a row buffer
containing data for another core to be closed, thereby reducing
the row-buffer hit rate of that other core (and vice-versa). All of
these effects increase the latency of memory requests by both in-
creasing queuing delays (time spent waiting for the MC to start
servicing a request) and DRAM device access delays (due to
decreased row-buffer hit rates and bus contention). As a result,
different memory scheduling algorithms have been designed to
service memory requests in an order different from the order in
which the requests arrived at the MC, to increase row-buffer hit
rates, bank level parallelism, fairness, or to achieve other goals.

2.3 Memory Request Scheduling in CPU-
only Systems

Memory scheduling algorithms can improve system perfor-
mance by reordering memory requests to deal with the differ-
ent constraints of DRAM. The first-ready first-come-first-serve
(FR-FCFS) [31, 37] algorithm prioritizes requests that result in
row-buffer hits, and otherwise prioritizes older requests. FR-
FCFS increases DRAM throughput, but it can cause fairness
problems by unfairly deprioritizing applications with low row-
buffer locality and low memory-intensity, as shown in previ-
ous work [21, 24]. Several application-aware memory schedul-
ing algorithms [14, 15, 23, 24, 25] have been proposed to bal-
ance both performance and fairness. Parallelism-aware Batch
Scheduling (PAR-BS) [25] batches requests based on their ar-
rival times and prioritizes the oldest batch over others, to pro-
vide fairness. In a batch, applications are ranked to preserve
bank-level parallelism (BLP) within an application’s requests.
ATLAS [14] prioritizes applications that have received the least
memory service. As a result, applications with low memory-
intensity, which typically attain low memory service, are pri-
oritized, improving system throughput. However, applications
with high memory-intensity are deprioritized and hence slowed
down significantly, resulting in unfairness [14]. Thread Clus-
ter Memory scheduling (TCM) [15] addresses this unfairness
problem by dynamically clustering applications into low and
high memory-intensity clusters based on their memory inten-
sities. To improve system throughput, TCM always prioritizes
applications in the low memory-intensity cluster. To prevent un-
fairness, TCM periodically shuffles priorities of high memory-
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intensity applications. TCM was shown to achieve high system
performance and fairness in multi-core systems.
2.4 Analysis of GPU Memory Accesses
A typical CPU application has a relatively small number of out-
standing memory requests at any time. The size of a processor’s
instruction window bounds the number of misses that can be si-
multaneously exposed to the memory system. Branch prediction
accuracy limits how large the instruction window size can be
usefully increased. In contrast, GPU applications have very dif-
ferent access characteristics. They generate significantly more
memory requests than CPU applications. A GPU application
can consist of many thousands of parallel threads, where mem-
ory stalls in one group of threads can be hidden by switching
execution to one of the many other groups of threads. GPUs
also use fixed-function units (e.g., texture units, z (depth) units,
and color units) that are responsible for a large number of mem-
ory requests.

Figure 2 (a) shows the memory request rates for a represen-
tative subset of our GPU applications and SPEC2006 (CPU)
applications, as measured by memory requests per thousand
instructions when each application runs alone on the system.2
The memory access intensity of the GPU applications is often
multiple times higher than that of the SPEC benchmarks. The
most intensive CPU application we study (mcf) has 42.8% of
the memory intensity of the least memory-intensive GPU appli-
cation we study (Bench01). Figure 2 (b) shows the row-buffer
hit rates (also called row-buffer locality or RBL). The GPU ap-
plications show consistently high levels of RBL, whereas the
SPEC benchmarks exhibit more variability. The GPU applica-
tions have high levels of spatial locality, often due to access pat-
terns related to large sequential memory accesses (e.g., frame
buffer updates). Figure 2(c) shows the average BLP for each ap-
plication, demonstrating that the GPU applications access many
banks at the same time.
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Figure 2. Memory access characteristics. (a) Memory intensity, mea-
sured by memory requests per thousand instructions, (b) row-buffer local-
ity, measured by the fraction of accesses that hit in the row buffer, and (c)
bank-level parallelism, measured by average number of banks kept busy
when there is at least one request outstanding.

In addition to the high-intensity memory traffic of GPU ap-
plications, there are other properties that distinguish GPU appli-
cations from CPU applications. Kim et al. [15] observed that
CPU applications with streaming access patterns typically ex-
hibit high RBL but low BLP, while applications with less uni-
form access patterns typically have low RBL but high BLP. In
contrast, GPU applications have both high RBL and high BLP.
The combination of high memory intensity, high RBL and high
BLP means that the GPU will cause significant interference
to other applications across all banks, especially when using a
memory scheduling algorithm that preferentially favors requests
that result in row-buffer hits.
2.5 Memory Request Scheduling in GPU-

only Systems
As opposed to CPU applications, GPU applications are not very
latency sensitive, as there are a large number of independent
threads to tolerate long memory latencies. However, the GPU

2Section 5 describes our simulation methodology.
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Figure 3. Performance and unfairness of different memory scheduling al-
gorithms with varying request buffer sizes, averaged over 35 workloads.

requires a significant amount of memory bandwidth far exceed-
ing even the most memory-intensive CPU applications, as we
have shown in Figure 2. Previous works [2, 3, 35] have pro-
posed memory request scheduling policies for GPUs and GPG-
PUs. However, to our knowledge, no previous work has ex-
plored application-aware memory scheduling in the context of
integrated CPU-GPU systems. In particular, as described in
Section 2.4, GPU memory accesses can cause significant inter-
ference to other CPU applications since GPU applications have
the combination of high memory intensity, high RBL, and high
BLP. Our goal in this work is to design a new application-aware
scheduler that mitigates inter-application interference to im-
prove system performance and fairness in heterogeneous CPU-
GPU systems.

3 Challenges with Existing Memory Controllers
3.1 Shortcomings of Previous Mechanisms
As discussed in Section 2, previously proposed
application-aware memory scheduling algorithms (for
CPU-only systems) are designed to improve system per-
formance and fairness by prioritizing some applications over
others, based on applications’ memory access characteristics.
However, when faced with CPU and GPU applications that
have vastly disparate memory access characteristics, these
scheduling algorithms are non-robust, due to specific aspects
in each of their designs, and perform poorly. Figure 3 shows
CPU performance, unfairness, and GPU frame rate of different
previously proposed memory schedulers with varying request
buffer sizes for a 16-core CPU/1-GPU system. These data are
averaged over 35 workloads; details of our methodology are
in Section 5. FR-FCFS [31] provides high GPU frame rate.
However, it provides poor CPU performance and fairness, as it
always prioritizes the row-buffer hits of the GPU. ATLAS [14]
provides high CPU performance and fairness compared to other
scheduling mechanisms; however, it significantly degrades the
frame rate of the GPU. As CPU applications have lower mem-
ory intensities than their GPU counterparts, ATLAS prioritizes
CPU applications over GPU applications, which leads to lower
GPU frame rate. TCM [15] provides good CPU performance
and GPU frame rate; however, it is highly unfair because of the
way it clusters applications. TCM places some high-memory-
intensity CPU applications in the low memory-intensity cluster,
unfairly prioritizing them over other high-memory-intensity
applications that are placed in the high-memory-intensity
cluster. In the light of these shortcomings of previous memory
scheduling algorithms, we aim to design a fundamentally
new memory scheduler that can robustly provide good system
performance (both CPU performance and GPU performance
together) as well as high fairness to CPU applications.

3.2 The Need for Request Buffer Capacity
The non-robustness of previously proposed CPU-only schedul-
ing algorithms is further magnified when there are a small num-
ber of entries in the request buffer, as the memory-intensive
GPU application hogs a large number of request buffer entries.
The results from Figure 2 show that a typical GPU application
has a very high memory intensity. As discussed in Section 1,
the large number of GPU memory requests occupy many of the
MC’s request buffer entries, thereby making it difficult for the
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MC to properly determine the memory access characteristics of
each of the CPU applications. Figure 3 shows the performance
impact of increasing the MC’s request buffer size for a variety
of memory scheduling algorithms. As can be observed, with
increased visibility within larger request buffers, CPU perfor-
mance improves (while GPU performance does not degrade be-
yond a generally acceptable level).

3.3 Implementation Challenges in Providing
Request Buffer Capacity

Figure 3 shows that when the MC has enough visibility across
the global memory request stream to properly characterize the
behavior of each core, a sophisticated application-aware al-
gorithm like TCM improves CPU performance and fairness
by making better scheduling decisions compared to FR-FCFS,
which is application-unaware. Unfortunately, implementing a
sophisticated algorithm like TCM over such a large request
buffer introduces significant implementation challenges. For
all algorithms that use a centralized request buffer and prior-
itize requests that result in row-buffer hits (FR-FCFS, PAR-
BS, ATLAS, TCM), content associative memories (CAMs) are
needed for each request buffer entry, to compare its requested
row against the currently open row in the corresponding DRAM
bank. For all algorithms that prioritize requests based on
rank/age (FR-FCFS, PAR-BS, ATLAS, TCM), a large com-
parison tree (priority encoder) is needed to select the highest
ranked/oldest request from all request buffer entries. The size
of this comparison tree grows with request buffer size. Further-
more, in addition to this logic for reordering requests and en-
forcing ranking/age, TCM also requires additional logic to con-
tinually monitor each core’s last-level cache MPKI (note that
a CPU core’s instruction count is not typically available at the
MC), each core’s RBL, which requires additional shadow row
buffer index tracking [6, 24], and each core’s BLP.

Apart from the logic required to implement the policies of the
specific memory scheduling algorithms, all of these MC designs
need additional logic to enforce DRAM timing constraints. Note
that different timing constraints will apply depending on the
state of each memory request. For example, if a memory re-
quest’s target bank currently has a different row loaded in its
row buffer, then the MC must ensure that a precharge (row close)
command is allowed to issue to that bank (e.g., has tRAS elapsed
since the row was opened?), but if the row is already closed, then
different timing constraints will apply. For each request buffer
entry, the MC will determine whether or not the request can is-
sue a command to the DRAM based on the current state of the
request and the current state of the DRAM system. The DRAM
timing-constraint checking logic (including data and command
bus availability tracking) needs to keep track of the commands
that come from every request buffer entry. This type of mono-
lithic MC effectively implements a large out-of-order sched-
uler. Note that typical instruction schedulers in modern out-
of-order processors have only 32 to 64 entries [9]. Even after
accounting for the clock speed differences between CPU core
and DRAM command frequencies, it is very difficult to imple-
ment a fully-associative,3 age-ordered/prioritized, out-of-order
scheduler with hundreds of entries [28]; the resulting complex-
ity, cycle time, and power consumption would be unnecessarily
or prohibitively high.

Our goal in this paper is to devise an easier-to-implement,
scalable, application-aware memory scheduling algorithm that
provides high system performance and fairness in heteroge-
neous CPU-GPU systems. To this end, we devise both 1) a
new scheduling algorithm and 2) new principles with which a
memory scheduler can be organized and simply implemented.

3Fully associative in the sense that a request in any one of the request buffer
entries could be eligible to be scheduled in a given cycle.

4 The Staged Memory Scheduler
Overview: Our proposed SMS architecture introduces a new
memory controller (MC) design that provides 1) scalability and
simpler implementation by decoupling the primary functions of
an application-aware MC into a simpler multi-stage MC, and
2) performance and fairness improvement by reducing the in-
terference from bandwidth-intensive applications. Specifically,
SMS provides these benefits by introducing a three-stage design.
The first stage is the batch formation stage that groups requests
from the same application that access the same row to improve
row-buffer locality. The second stage is the batch scheduler that
schedules batches of requests across different applications. The
last stage is the DRAM command scheduler that schedules re-
quests while satisfying all DRAM constraints.

The staged organization of SMS lends directly to a
low-complexity hardware implementation. Figure 4 illustrates
the overall hardware organization of the SMS.
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Figure 4. Organization of the SMS.
In Sections 4.1 and 4.2, we describe the algorithm used in

each stage. Section 4.3 describes the rationale behind these al-
gorithms. Section 4.4 describes the hardware implementation
of SMS. Section 4.5 qualitatively compares SMS to previously
proposed scheduling algorithms.
4.1 The SMS Algorithm
Stage 1 - Batch Formation: The goal of this stage is to com-
bine individual memory requests from each source into batches
of row-buffer hitting requests. It consists of several simple FIFO
structures, one per source (i.e., a CPU core or the GPU). Each
request from a given source is initially inserted into its respec-
tive FIFO upon arrival at the MC. A batch is simply one or more
memory requests from the same source that access the same
DRAM row. That is, all requests within a batch, except perhaps
for the first one, would be row-buffer hits if scheduled consecu-
tively. A batch is deemed complete or ready when an incoming
request accesses a different row, when the oldest request in the
batch has exceeded a threshold age, or when the FIFO is full.
Only ready batches are considered by the second stage of SMS.
Stage 2 - Batch Scheduler: The batch scheduler deals directly
with batches, and therefore need not worry about scheduling to
optimize for row-buffer locality. Instead, the batch scheduler
can focus on higher-level policies regarding inter-application
interference and fairness. The goal of the batch scheduler is
to prioritize batches from applications that are latency critical,
while making sure that bandwidth-intensive applications (e.g.,
the GPU) still make reasonable progress.

The batch scheduler operates in two states: pick (a batch to
send downstream) and drain (the picked batch of requests). In
the pick state, the batch scheduler considers every source FIFO
(from stage 1) that contains a ready batch. It picks one ready
batch based on either a shortest job first (SJF) or a round-robin
policy. Using the SJF policy, the batch scheduler chooses the
oldest ready batch from the source with the fewest total in-flight
memory requests across all three stages of the SMS. SJF prioriti-
zation reduces average request service latency, and it tends to fa-
vor latency-sensitive applications, which tend to have fewer total
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requests. Using the round-robin policy, the batch scheduler sim-
ply picks the next ready batch in a round-robin manner across
the source FIFOs. This ensures that high memory-intensity ap-
plications receive adequate service. Overall, the batch scheduler
uses the SJF policy with a probability p and the round-robin pol-
icy otherwise. p is a configurable parameter, which is explained
in detail in Section 4.2.

After picking a batch, the batch scheduler enters a drain state
where it forwards the requests from the selected batch to the
final stage of the SMS. The batch scheduler simply dequeues
one request per cycle until all requests from the batch have been
removed from the selected FIFO. The batch scheduler then re-
enters the pick state to select the next batch to drain.
Stage 3 - DRAM Command Scheduler (DCS): The DCS
consists of one FIFO queue per DRAM bank (e.g., eight
banks/FIFOs per rank for DDR3). The drain state of the batch
scheduler places the memory requests directly into these FIFOs.
Note that because batches are moved into the DCS FIFOs one
batch at a time, row-buffer locality within a batch is preserved
within a DCS FIFO. At this point, any higher-level policy deci-
sions have already been made by the batch scheduler; therefore,
the DCS simply issues low-level DRAM commands, ensuring
DRAM protocol compliance.

In any given cycle, the DCS considers only the requests at the
head of each of the per-bank FIFOs. For each request, the DCS
determines whether that request can issue a command based on
the request’s current row-buffer state (e.g., is the row buffer al-
ready open with the requested row?) and the current DRAM
state (e.g., time elapsed since a row was opened in a bank, and
data bus availability). If more than one request is eligible to is-
sue a command in any given cycle, the DCS arbitrates across
each DRAM bank in a round-robin fashion.

4.2 Additional Algorithm Details
Batch Formation Thresholds: The batch formation stage
holds requests in the per-source FIFOs until a complete batch
is ready. This could unnecessarily delay requests, as the batch
will not be marked ready until a request to a different row arrives
at the MC, or the FIFO becomes full. This additional queuing
delay can be particularly detrimental to the performance of low
memory-intensity, latency-sensitive applications.

SMS considers an application’s memory intensity in form-
ing batches. For applications with low memory-intensity (<1
miss per thousand cycles (MPKC)), SMS completely bypasses
the batch formation and batch scheduler stages, and forwards
requests directly to the DCS per-bank FIFOs. For these latency-
sensitive applications, such a bypass policy minimizes the de-
lay to service their requests. Note that this bypass operation
will not interrupt an on-going drain from the batch scheduler,
which ensures that any separately scheduled batches maintain
their row-buffer locality.

For medium memory-intensity (1-10 MPKC) and high
memory-intensity (>10 MPKC) applications, the batch forma-
tion stage uses age thresholds of 50 and 200 cycles, respectively.
That is, regardless of how many requests are in the current batch,
when the oldest request’s age exceeds the threshold, the entire
batch is marked ready (and consequently, any new requests that
arrive, even if accessing the same row, will be grouped into a
new batch).4
Request Bypass: We observe that there are two instances when
it is beneficial to let requests bypass the batch formation and
scheduling stages and proceed directly to the DCS per-bank
FIFOs: 1) the latency-sensitive requests of applications with low

4Note that while TCM uses the MPKI metric to classify memory intensity,
SMS uses misses per thousand cycles (MPKC) since the per-application instruc-
tion counts are not typically available in the MC. While it would not be overly
difficult to expose this information, this is just one more implementation over-
head that SMS can avoid. We also evaluated our mechanism using MPKI, and
we found that it provides similar results.

memory-intensity, as described in Section 4.1 and 2) all appli-
cations’ requests when the system is lightly loaded, such that
requests are not unnecessarily delayed in the batch formation
FIFOs, while banks are potentially idle. This latter bypass is
enabled whenever the total number of in-flight requests (across
all sources) in the DCS is less than sixteen.
SJF Probability: As described above, the batch scheduler uses
the SJF policy with probability p and the round-robin policy
with probability 1− p. The value of p determines whether the
CPU or the GPU receives higher priority. When p is high, the
SJF policy is applied more often and applications with fewer
outstanding requests are prioritized. Hence, the batches of the
likely less memory-intensive CPU applications are prioritized
over the batches of the GPU application. On the other hand,
when p is low, request batches are scheduled in a round-robin
fashion more often. Hence, the memory-intensive GPU appli-
cation’s request batches are likely scheduled more frequently,
and the GPU is prioritized over the CPU. Different systems
(and maybe even the same system at different times) could have
different performance needs. In some systems, CPU perfor-
mance could matter more than GPU performance, while in other
systems, GPU performance could matter more. Therefore, we
make p a dynamically configurable parameter that can be tuned
to appropriately prioritize the CPU or the GPU based on the sys-
tem’s needs. We evaluate sensitivity to p and its configurability
in Section 6.2.1.
4.3 SMS Rationale
In-Order Batch Formation: It is important to note that batch
formation occurs in the order of request arrival. This poten-
tially sacrifices some row-buffer locality, as requests to the
same row may be interleaved with requests to other rows. We
considered many variations of batch formation that allowed
out-of-order grouping of requests, to maximize the length of
a run of row-buffer hitting requests, but the overall perfor-
mance benefit was not significant.5 First, constructing very large
batches of row-buffer hitting requests can introduce significant
unfairness as other requests may need to wait a long time for
a bank to complete its processing of a long run of row-buffer
hitting requests [21, 24]. Second, row-buffer locality across
batches may still be exploited by the DCS. For example, con-
sider a core that has three batches accessing row X, row Y, and
then row X again. If X and Y map to different DRAM banks,
say banks A and B, then the batch scheduler will send the first
and third batches (row X) to bank A, and the second batch (row
Y) to bank B. Within the DCS’s FIFO for bank A, the requests
for the first and third batches could still all be one after the other,
thereby exposing the row-buffer locality across the batches.
In-Order Batch Scheduling from a Per-Source FIFO: Due to
contention and back-pressure in the system, it is possible that a
FIFO in the batch formation stage contains more than one valid
batch. In such a case, it could be desirable for the batch sched-
uler to pick one of the batches not currently at the head of the
FIFO. For example, the bank corresponding to the head batch
may be busy while the bank for another batch is idle. Schedul-
ing batches out of order could decrease the service latency for
the later batches, but in practice we found that it does not make a
big difference6 and adds significant implementation complexity.
It is important to note that even though batches are dequeued
from the batch formation stage in arrival order per FIFO, re-
quest ordering can still slip between FIFOs. For example, the
batch scheduler may choose a recently arrived (and formed)
batch from a high-priority (i.e., latency-sensitive) source even
though an older, larger batch from a different source is ready.
In-Order DRAM Command Scheduling: For each of the

5We evaluated our mechanism with out-of-order batch formation. Out-of-
order provides <5% performance difference over in-order batch formation.

6We found there is less than 1% performance difference because per-source
FIFOs already keep batches in age order.
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Storage Description Size
Storage Overhead of Stage 1: Batch formation stage
CPU FIFO queues A CPU core’s FIFO queue Ncore×Queue Sizecore = 160 entries
GPU FIFO queues A GPU’s FIFO queue NGPU ×Queue SizeGPU = 20 entries
MPKC counters Counts per-core MPKC Ncore× log2MPKCmax = 160 bits
Last request’s row index Stores the row index of the last request to the FIFO (Ncore +NGPU )× log2Row Index Size = 204 bits
Storage Overhead of Stage 2: Batch Scheduler
CPU memory request counters Counts the number of outstanding memory requests of a CPU core Ncore× log2Countmax CPU = 80 bits
GPU memory request counter Counts the number of outstanding memory requests of the GPU NGPU × log2Countmax GPU = 10 bits
Storage Overhead of Stage 3: DRAM Command Scheduler
Per-Bank FIFO queues Contains a FIFO queue per bank Nbanks×Queue Sizebank = 120 entries

Table 1. Hardware storage required for SMS.

per-bank FIFOs in the DCS, the requests are already grouped
by row-buffer locality (because the batch scheduler drains an
entire batch at a time), and arranged in an order that reflects
per-source priorities. Further reordering at the DCS could undo
the prioritization decisions made by the batch scheduler. The
in-order nature of each of the DCS per-bank FIFOs does not
prevent out-of-order scheduling at the global level. A CPU’s
requests may be scheduled to the DCS in arrival order, but the
requests may get scattered across different banks, and the issue
order among banks may be out-of-order relative to each other.

4.4 Hardware Implementation
Batch Formation: The batch formation stage consists of one
FIFO per source. Each FIFO maintains an extra register that
records the row index of the last request inserted into the FIFO,
so that any incoming request’s row index can be compared to
determine if the request can be added to the existing batch. Note
that this requires only a single comparator (used only once at
insertion) per FIFO. Contrast this to a conventional monolithic
request buffer where comparisons on every request buffer entry
are made every cycle, potentially against all currently open
rows across all banks.
Batch Scheduler: The batch scheduling stage consists pri-
marily of combinatorial logic to implement the batch selection
rules. When using the SJF policy, the batch scheduler needs
to pick the batch corresponding to the source with the fewest
in-flight requests, which can be easily performed with a tree
of MIN operators (a priority encoder). Note that this tree
is relatively shallow since it grows as a function of only the
number of FIFOs. Contrast this to the monolithic scheduler
where the various ranking trees grow as a function of the total
number of request buffer entries.
DRAM Command Scheduler: The DCS stage consists of the
per-bank FIFOs. The logic to track and enforce the various
DRAM timing and power constraints is identical to the case of
the monolithic scheduler, but the scale is drastically different.
The DCS’ DRAM command-processing logic considers only
the requests at the head of each of the per-bank FIFOs (eight
per rank for DDR3), whereas the monolithic scheduler requires
logic to consider every request buffer entry.
Request Bypass: Bypass for a low memory-intensity applica-
tion is enabled by setting its threshold age for batching to zero.
This allows incoming requests of the application to fall through
the first stage into the batch scheduler. The batch scheduler, by
design, prioritizes low memory-intensity applications using the
SJF policy. Therefore, no additional logic/wiring is required to
bypass low memory-intensity applications’ requests. Bypassing
requests of all applications when the system is lightly loaded
can be accomplished by simply setting both SJF probability and
threshold age to zero. This will allow requests from every appli-
cation to proceed directly into the DCS FIFOs in a round-robin
fashion at a rate of one request per cycle. However, request by-
pass in both of these cases incurs a minimum two-cycle delay as
a request needs to spend at least one cycle in the batcher and at
least one cycle in the DCS.
Overall Configuration and Hardware Cost: The final con-
figuration of SMS that we use in this paper consists of the fol-
lowing hardware structures whose sizes are empirically deter-
mined. The batch formation stage uses 10-entry FIFOs for each
of the CPU cores, and a 20-entry FIFO for the GPU. The DCS

uses a 15-entry FIFO for each of the eight DDR3 banks. For
sixteen CPU cores and a GPU, the aggregate capacity of all
of these FIFOs is 300 requests, although at any point in time,
the SMS logic can only consider or act on a small subset of
the entries (i.e., the seventeen batches at the heads of the batch
formation FIFOs and the requests at the heads of the per-bank
DCS FIFOs). In addition to these primary structures, there are a
small number of bookkeeping counters. One counter per source
is needed to track the number of in-flight requests. Counters
are also needed to track per-source MPKC rates for memory-
intensity classification, which are periodically reset to adapt to
phase changes.7 Table 1 summarizes the hardware overhead re-
quired for each stage of SMS.

4.5 Qualitative Comparison with Previous
Scheduling Algorithms

We described recently proposed application-aware memory
schedulers (PAR-BS [25], ATLAS [14], and TCM [15]) in Sec-
tion 2. We now qualitatively compare SMS with these sched-
ulers.

PAR-BS batches memory requests based on their ages and
cores, and prioritizes all requests from one batch over others.
As a result, the bandwidth-intensive GPU’s requests in the old-
est batch are prioritized over all CPU requests that are not in
the oldest batch. This leads to significant CPU performance and
fairness loss compared to SMS, which keeps the slowdown of
CPU applications in check by employing the SJF batch schedul-
ing policy described in Section 4.

ATLAS ranks applications based on their attained memory
service and prioritizes higher-ranked (low-attained-service) ap-
plications over lower-ranked ones. As a result, it effectively
deprioritizes the GPU, which has high memory bandwidth de-
mand, for most of the time. ATLAS prioritizes the GPU over
a CPU application only when the attained service of that ap-
plication becomes higher than that of the GPU. While this
attained-service based behavior of ATLAS was shown to lead
to high unfairness in CPU-only systems (due to its almost-
consistent deprioritization of heavily memory-intensive appli-
cations) [14], we found that ATLAS provides the best fairness
(and the best performance) among previous algorithms because
of the shortcomings of TCM we describe next. However, as
it consistently deprioritizes the GPU and has a strict rank order
between applications, ATLAS reduces the row-buffer locality of
the GPU and leads to unfairness among CPU applications. SMS
overcomes these two problems by 1) servicing GPU requests in
batches, and 2) prioritizing requests at the batch level instead
of enforcing a rank order among applications (which improves
fairness).

TCM was shown to provide the best performance and
fairness in CPU-only systems [15]. Grouping applications
into latency-sensitive or bandwidth-sensitive clusters based on
their memory intensities and employing a throughput oriented
scheduling policy for the former cluster and a fairness ori-
ented policy for the latter leads to both high system perfor-
mance and fairness in CPU-only systems. However, in an in-
tegrated CPU-GPU system, the GPU generates a significantly
larger number of memory requests compared to the CPU cores,

7In a 16-core CPU/1-GPU design, SMS requires sixteen 10-bit counters, six-
teen 5-bit counters, and one 10-bit counter. In our experiment, we reset every
10,000 cycles.
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Parameter Setting Parameter Setting Parameter Setting Parameter Setting
CPU Clock Speed 3.2GHz GPU Clock Speed 800Mhz Channels/Ranks/Banks 4/1/8 DRAM Row buffer size 2KB
CPU reorder buffer 128 entries GPU Max Throughput 1600 ops/cycle DRAM Bus 64 bits/channel tRCD/tCAS/tRP 12.5/12.5/12.5 ns
CPU L1 cache 32KB Private, 4-way GPU Texture/Z/Color units 80/128/32 tRAS/tRC/tRRD 35/47.5/6.25 ns tWTR/tRTP/tWR 7.5/7.5/15 ns
CPU L2 cache 8MB Shared, 16-way CPU Cache Rep. Policy LRU MC request buffer size 300

Table 2. Simulation parameters.

which makes it difficult for TCM to appropriately group ap-
plications into two clusters using a single threshold value. As
a result, TCM ends up grouping the GPU together with other
memory-intensive CPU applications in the bandwidth-sensitive
cluster. The fairness-oriented policy employed in this cluster
causes the GPU to be prioritized over the memory-intensive
CPU applications, thereby leading to high slowdowns for the
deprioritized CPU applications and thus low fairness. In addi-
tion, we found that TCM makes non-robust clustering decisions,
which classify some applications with high memory-intensity
into the latency-sensitive cluster, again due to the fact that the
intensity of the GPU skews the bandwidth measurements TCM
uses to form the clusters. These misclassified memory-intensive
applications that are admitted to the latency-sensitive cluster
cause significant slowdowns to memory-non-intensive applica-
tions, leading to high unfairness and low system performance
compared to ATLAS and SMS.

In contrast to all these previous schedulers, SMS prioritizes
shorter batches of row-buffer-hit requests over longer batches
(as determined by the SJF probability, p). As a result, SMS
1) preserves row-buffer locality, and most of the time, priori-
tizes the CPU applications which have shorter batches than the
GPU (for sufficiently high values of p), leading to high system
performance, and 2) does not result in a strict ranking of CPU
applications among each other, leading to high fairness. As we
will quantitatively demonstrate in Section 6, SMS provides the
best CPU performance and fairness compared to these previous
schedulers, while maintaining GPU frame rate above an accept-
able level, at a lower hardware cost and with simpler scheduling
logic.

5 Experimental Methodology
We use an in-house cycle-level simulator to perform our eval-
uations. For our performance evaluations, we model a system
with sixteen x86-like CPU cores and a GPU. Each CPU core
is a three-wide out-of-order processor with a cache hierarchy
including per-core L1 caches and a shared L2 cache. The GPU
does not share the CPU caches. The specification of the GPU we
model is similar to the AMD Radeon 5870 specification [1]. The
GPU has 20 cores, and each core consists of 16 SIMD functional
units. A SIMD functional unit can process a VLIW instruction
that can span up to 5 scalar operations, every cycle. As a result,
the GPU has the capability to provide a maximum throughput
of 1600 scalar operations per cycle. Table 2 shows the detailed
system parameters for the evaluated CPU and GPU.

The parameters for the main memory system (DDR3
SDRAM-1600 [20]) are shown in Table 2. Unless stated oth-
erwise, we use four memory controllers (one channel per mem-
ory controller) for all experiments. In order to prevent the GPU
requests from occupying the vast majority of the request buffer
entries, we reserve half of the request buffer entries for CPU
requests for non-SMS MCs. To model the memory bandwidth
used by the GPU accurately, we perform coalescing of GPU
memory requests before they are sent to the MC as is done in
current GPUs [17].
Workloads: We evaluate our system with a set of 105 multi-
programmed workloads, each simulated for 500 million cycles.
Each workload consists of sixteen SPEC CPU2006 benchmarks
and one GPU application selected from a mix of video games
and graphics performance benchmarks described in Table 3. For
each CPU benchmark, we use Pin [18] with PinPoints [29] to se-
lect the representative phase. Our GPU traces are collected from
GPU benchmarks and recent games through a proprietary GPU
simulator. Note that our GPU memory traces include mem-
ory requests coming from fixed function units (FFUs). Table 3

shows the memory intensity of GPU applications, measured in
terms of misses per kilo instructions (MPKI)8 and also the per-
centage of memory requests that come from fixed function units.
GPU memory accesses are collected after having first been fil-
tered through the GPU’s internal cache hierarchy; therefore, we
do not further model internal GPU caches in our hybrid CPU-
GPU simulation framework.

Name Description MPKI % of Requests from FFUs
Bench01 3D Mark 1 204.0 62.3%
Bench02 3D Mark 2 267.0 54.2%
Bench03 3D Mark 3 419.7 99.6%
Game01 Shooting Game 1 304.7 80.2%
Game02 Shooting Game 2 173.5 51.0%
Game03 Shooting Game 3 345.8 60.3%
Game04 Adventure Game 206.6 61.0%
Game05 Role-playing Game 321.2 78.5%

Table 3. GPU benchmarks.

We classify CPU benchmarks into three categories (Low,
Medium, and High) based on their memory intensities, mea-
sured as last-level cache misses per thousand instructions
(MPKI). Table 4 shows the MPKI for each CPU benchmark.
Benchmarks with less than or equal to 1 MPKI are classi-
fied as low memory intensity, between 1 and 15 MPKI as
medium memory intensity, and greater than 15 as high mem-
ory intensity. Based on these three categories, we randomly
choose a number of benchmarks from each category to form
workloads with seven different intensity mixes: L (All Low),
ML (Medium/Low), M (All Medium), HL (High/Low), HML
(High/Medium/Low), HM (High/Medium) and H (All High).
The co-running GPU benchmark is randomly selected for each
workload.

Name MPKI Name MPKI Name MPKI
povray 0.01 gobmk 0.51 milc 16.18
tonto 0.01 gromacs 1.12 xalancbmk 18.32

calculix 0.04 h264ref 1.22 omnetpp 19.20
perlbench 0.08 hmmer 2.82 GemsFDTD 24.70

dealII 0.11 bzip2 4.10 libquantum 26.24
namd 0.11 cactusADM 4.74 soplex 27.96
wrf 0.12 astar 5.19 lbm 28.30
gcc 0.22 sphinx3 13.21 mcf 74.35

sjeng 0.37 leslie3d 14.79

Table 4. L2 Cache Misses Per Kilo-Instruction (MPKI) of 26 SPEC 2006
benchmarks.

Performance Metrics: We measure the performance of the
multi-core CPU using the weighted speedup metric [8, 33], as
shown in Equation 1. We measure the performance of the GPU
by calculating the frame rate (frames per second), a commonly
used graphics performance metric [16, 32]. We compute the
GPU speedup as the ratio of its frame rate when it is sharing the
system with the CPU over the GPU’s frame rate when it is run
alone on the same baseline system, as shown in Equation 2.

CPUWS =
NumCores

∑
i=1

IPCshared
i

IPCalone
i

(1)

GPUSpeedup =
GPU shared

FrameRate

GPUalone
FrameRate

(2)
Measuring overall system performance in an integrated CPU-

GPU system is not straightforward. Using the conventional
weighted speedup metric for this purpose weights the GPU as
equivalent to a single CPU core. However, having the same
weight for the GPU as a single CPU core does not allow for flex-
ibility in quantifying the system performance of different sys-
tems that have different performance requirements. In some sys-
tems (e.g., those used by video gaming enthusiasts), GPU per-
formance could be much more important than CPU performance

8MPKI of a GPU application is calculated as the total number of memory
accesses divided by the number of scalar GPU operations, where a scalar GPU
operation is the closest unit of work to a CPU instruction.
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Figure 5. Performance of CPU and GPU for 7 workload categories (105 workloads). % values are gains of SMS0.9 over FR-FCFS, ATLAS, and TCM.

to the end-user. In contrast, in some other systems (e.g., those
with interactive applications running together with graphics or
in mobile systems), CPU performance could be much more im-
portant than GPU performance. Therefore, we need a metric
that is flexible to evaluate the performance of different heteroge-
neous systems, given different end-user needs. To this end, we
propose an integrated CPU-GPU Weighted Speedup (CGWS)
metric (Eqn. 3) where the GPU’s speedup is weighted by a pa-
rameter GPUweight .

CGWS =CPUWS +GPUweight ∗GPUSpeedup (3)
The GPUweight parameter determines the weight of the GPU

relative to a CPU core. When the GPUweight is set to 1, the GPU
is treated as equivalent to a single CPU core, and CPU perfor-
mance (weighted speedup) becomes an important factor in de-
termining system performance. On the other hand, when the
GPUweight is set to a large value (e.g., 1000), CPU performance
becomes negligible, and GPU performance becomes the domi-
nant factor. Section 6.2.1 shows the performance of our system
for a wide range of values of the GPUweight parameter.

In addition to system performance, we measure Unfairness
(Eqn. 4) using maximum slowdown [5, 14, 15, 34] over all of the
CPU cores and the GPU. We report the harmonic mean instead
of arithmetic mean for Unfairness in our evaluations because
slowdown is the inverse metric of speedup.

Un f airness = max

{
max

i

IPCalone
Corei

IPCshared
Corei

,
GPUalone

FrameRate

GPU shared
FrameRate

}
(4)

Parameters of Evaluated Algorithms: For SMS, we set the
batching FIFO queue size for each CPU core to 10 entries, and
for the GPU to 20 entries. The DCS FIFO queue size for each
bank is 15 entries. In addition to the age thresholds given in Sec-
tion 4.2, the thresholds for a low-intensity CPU application (<
1 MPKC) and the GPU are 0 and 800 cycles, respectively. We
use a QuantumLength of 1M cycles and HistoryWeight of 0.875
for ATLAS. We use a ClusterThresh of 0.1 and ShuffleCycles of
800 for TCM.
Area and Power Modeling: We use Verilog models synthe-
sized with a commercial 180nm design library. The standard-
cell synthesis models area, leakage power and timing of FR-
FCFS and SMS scheduling logic and buffers.9 In Section 6.4,
we report the area and leakage power of SMS normalized to
FR-FCFS.
6 Experimental Evaluation
6.1 Individual CPU and GPU Performance
First, we compare the individual CPU and GPU performance
of SMS with three state-of-the-art memory scheduler configu-
rations: FR-FCFS, ATLAS and TCM, and their variants, CFR-
FCFS and CTCM, which are similar to FR-FCFS and TCM re-
spectively, but always prioritize the CPU cores’ requests over
the GPU’s requests. We present SMS with two values of p,
the SJF probability: SMS0.9 denotes the configuration where
p = 0.9 (i.e., with 90% probability the application with fewest
total requests is selected to be scheduled), and SMS0 denotes
the configuration where p = 0 (i.e., the batch scheduler always

9Each buffer is modeled using a flip-flop. Neither logic nor buffers are opti-
mized for area and power.

is round-robin). Results are presented across 105 workloads of 7
intensity categories described in Section 5, with workload mem-
ory intensities increasing from left to right.

Figure 5 shows the performance of the CPU (weighted
speedup), and the individual performance of the GPU (frame
rate) separately. Three major conclusions are in order. First,
SMS0.9 improves CPU performance by 22.1%/ 35.7% over the
two best previous scheduling policies, ATLAS and TCM, on av-
erage. This is because ATLAS, TCM, and other previously pro-
posed scheduling policies10 are not designed to robustly han-
dle the high degree of disparity in memory access intensities
present between CPU and GPU applications in an integrated
CPU-GPU system, as we explained in Section 4.5. Previous
scheduling policies allocate a large fraction of the system mem-
ory bandwidth to the GPU, thereby penalizing the CPU ap-
plications. Second, CFR-FCFS provides better CPU perfor-
mance than FR-FCFS as it prioritizes CPU requests, prevent-
ing the GPU’s row-buffer hits from hogging memory bandwidth.
CTCM performs similarly as TCM because the baseline TCM
is already application-aware as it prioritizes low-intensity ap-
plications over others. However, SMS0.9 still provides better
CPU performance than both CFR-FCFS and CTCM, on average
across all workloads. Third, SMS0.9 achieves this CPU perfor-
mance improvement over previous schedulers and their variants
by appropriately restricting the fraction of system bandwidth al-
located to the GPU, resulting in 18.1%/ 26.7% reduction in GPU
frame rate as compared to ATLAS and TCM, on average. Al-
though SMS0.9 reduces the frame rate of the GPU, it still main-
tains a frame rate greater than 30 frames per second (for all
workload categories except the HM category), which is likely
acceptable for a large number of applications and users. In sys-
tems and use cases that require a higher GPU frame rate, we
can adjust the value of p, the SJF probability, to ensure that an
adequate frame rate is achieved. In particular, Figure 5 shows
that SMS0 (p = 0) provides a significantly higher GPU frame
rate, at the cost of lower CPU performance. In Section 6.2.1, we
present further analysis on the tradeoff between CPU and GPU
performance by configuring the SJF probability appropriately.

6.2 Combined CPU-GPU Performance
6.2.1 Effect of Configurable SJF Probability
In this section, we present and analyze the combined CPU-GPU
performance of the 16-core CPU/1 GPU system and the effect
of changing the parameter p (SJF probability).

Figure 6 (a) shows the performance of SMS at different val-
ues of p, the SJF probability, when the GPUweight is varied from
0.001 to 1000. This weight represents the relative importance
of GPU performance vs. CPU performance in the combined
CPU-GPU Weighted Speedup (CGWS) metric. Two key con-
clusions are in order. First, SMS0.9 has higher CGWS than FR-
FCFS, ATLAS and TCM, for low values of GPUweight (< 7.5).
However, as GPUweight increases, SMS0.9 has lower CGWS than
previous scheduling policies like FR-FCFS, ATLAS and TCM.
This is because previous scheduling policies prioritize the GPU
at varying levels, while penalizing CPU cores, hence provid-
ing higher GPU performance, as illustrated in Figure 5 and de-

10We do not show PAR-BS in these figures so as not to clutter the graphs, but
it consistently has lower performance and fairness than that of ATLAS/TCM.
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Figure 6. Combined performance of the CPU-GPU system (a) for different SMS configurations with different SJF probability, (b) for the SMS configuration
that provides the maximum CGWS, and (c) unfairness for the configuration that provides the maximum CGWS.

 0

 2

 4

 6

 8

 10

 12

 14

L ML M HL HML HM H Avg

C
G

W
S

 (
G

P
U

w
ei

g
h

t 
=

 1
)

46.4%

17.2%
25.7%

FR-FCFS

CFR-FCFS

ATLAS

TCM

CTCM
SMS0.9

SMS0

L ML M HL HML HM H Avg
 0

 15

 30

 45

 60

 75

 90

 105

U
n
fa

ir
n
es

s
(L

o
w

er
 i

s 
B

et
te

r)

244.6%

47.6%
205.7%

Figure 7. System performance and fairness for 7 workload categories (105 workloads). % values are gains of SMS0.9 over FR-FCFS, ATLAS, and TCM.

scribed qualitatively in Section 4.5. Therefore, they provide
higher CGWS than SMS, when the contribution of the GPU
to the CGWS metric is weighted significantly higher. Sec-
ond, although SMS0.9 provides a lower value of CGWS com-
pared to previous algorithms when GPUweight is higher than 7.5,
SMS0 leads to higher CGWS than all previous algorithms. A
small p value enables SMS to prioritize GPU requests much
more often than CPU requests (due to round-robin scheduling of
batches and long batches for the GPU), thereby largely improv-
ing GPU performance over other algorithms except FR-FCFS
(which achieves a similar effect by prioritizing the row hit re-
quests, which are much more common in the GPU than in the
CPU).

Note that p is an adjustable knob provided by our SMS
design, which can be statically or dynamically configured to
trade off between CPU and GPU performance, depending on
the needs of the system. If a designer or system software care
more about GPU performance, they can set p to be very low
(causing the SMS algorithm to implicitly favor the GPU over
the CPU, as we have seen in Figure 6(a)). On the other hand,
if they care more about CPU performance, they can set p to be
very high (causing the SMS algorithm to favor the CPU cores
over the GPU). Therefore, one can determine and select at de-
sign time the best SJF probability, p for a given GPUweight . This
means that for each GPUweight , we can find an SJF probability
that maximizes CGWS.11

Figures 6 (b) and (c) show the performance and fairness of
SMSMax, which is defined as SMS with a p value that maxi-
mizes CGWS for each given GPUweight . Two key observations
are in order. First, as we increase the GPUweight , a p value that
maximizes CGWS favors the GPU over CPU cores, increasing
the slowdown of CPU applications, and thus leading to higher
unfairness. However, for smaller values of GPUweight (i.e., when
CPU performance is important), SMS provides the highest fair-
ness across all schedulers. Second, SMSMax provides the best
CPU-GPU Weighted Speedup (CGWS) compared to FR-FCFS,
ATLAS and TCM across all values of GPUweight considered.
Therefore, we conclude that SMS can be configured to consis-
tently provide better system performance than state-of-the-art
memory schedulers regardless of how important the CPU or the
GPU is to system performance.

11In fact, new instructions can be added to the ISA to change p dynamically
to achieve the best performance in cases where GPUweight (importance of the
GPU) varies dynamically.

6.2.2 Performance & Fairness Analysis (GPUweight = 1)
We study the system performance and fairness of SMS when the
GPUweight has a low value of 1. This represents a system or a
dynamic use case where CPU performance matters significantly
to the user, e.g., a typical system running a GPU application
alongside multiple CPU applications.

Figure 7 shows the system performance (measured as
CGWS) and fairness of the previously proposed algorithms,
SMS0.9, and SMS0 for all workload categories, when the
GPUweight is 1. SMS0.9 provides 46.4%/17.2%/25.7% sys-
tem performance improvement and 244.6%/47.6%/205.7%
fairness improvement over FR-FCFS/ATLAS/TCM. SMS0
provides 6.8%/33.4%/24.3% system performance degra-
dation and 15.2%/89.7%/36.7% fairness degradation over
FR-FCFS/ATLAS/TCM, respectively. As discussed in Sec-
tion 4, SMS0.9 improves system performance and fairness for
a low GPUweight of 1, as it prioritizes the short batches of the
CPU cores over the long batches of the GPU, while SMS0
degrades system performance, as it selects between CPU and
GPU batches in merely a round-robin fashion. Therefore, we
conclude that for a GPUweight of 1, SMS with an appropriately
selected p value of 0.9 provides better system performance and
fairness than all previously proposed scheduling policies.

Based on the results for each workload category, we
make the following major observations. First, SMS0.9 con-
sistently outperforms previously proposed algorithms both in
terms of system performance and fairness across most of
the workload categories. Second, in the “H” category with
only high memory-intensity applications, SMS0.9 underper-
forms ATLAS and TCM by 16.7% and 12.5%, but it still pro-
vides 7.1% higher system performance than FR-FCFS. ATLAS’
attained service based scheduling tends to prioritize all CPU ap-
plications equally, as all CPU applications in a “H” category
workload have similar memory intensities. This leads to high
performance and fairness for ATLAS (SMS achieves similar
fairness). TCM, on the other hand, improves performance by
unfairly prioritizing certain applications over others, which is re-
flected by its higher unfairness in the “H” category, as compared
to other workload categories. Specifically, TCM misclassifies
some high memory-intensity applications into the low memory-
intensity cluster, which starves the requests of applications in
the high memory-intensity cluster. On the other hand, SMS pre-
serves fairness in all workload categories by using its proba-
bilistic SJF batch scheduling policy described in Section 4. As
a result, SMS provides 205.7% better fairness relative to TCM.
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6.2.3 Performance & Fairness Analysis (GPUweight=1000)
We also study the system performance and fairness of SMS
when the GPUweight is 1000. This represents a system or
a use case where CPU performance matters less to the user
than GPU performance does, e.g., a system intended for
gaming or watching high definition video. Figure 8 shows
the system performance (measured as CGWS) of the previ-
ously proposed algorithms, SMS0, and SMS0.9 for all work-
load categories when the GPUweight is 1000. SMS0 pro-
vides 1.6%/32.7%/16.4% system performance improvement,
while SMS0.9 provides 44.3%/13.3%/27.7% system perfor-
mance degradation, over FR-FCFS/ATLAS/TCM. Fairness of
these algorithms was already shown in Figure 7 (note that the
unfairness measure does not depend on GPUweight ). However,
when GPUweight is high, fairness is not an important concern
because the goal is to optimize for GPU performance. Two
key observations are in order from Figure 8. First, when the
GPUweight is very high, FR-FCFS, which predominantly priori-
tizes the GPU owing to the GPU’s very high row-buffer locality
and very high memory intensity, provides the best system per-
formance among previous techniques. Second, SMS0 provides
similar system performance as FR-FCFS, on average, across all
workload categories, as it predominantly prioritizes the GPU
requests when a low value of p is used. Therefore, we con-
clude that for a GPUweight of 1000, SMS with an appropriately
selected p value of 0 provides better system performance than
previously proposed scheduling policies.

 0

 200

 400

 600

 800

 1000

 1200

 1400

L ML M HL HML HM H AvgC
G

W
S

 (
G

P
U

w
ei

g
h
t 
=

 1
0
0
0
)

1.6%
32.7%

16.4%

FR-FCFS

CFR-FCFS

ATLAS

TCM

CTCM
SMS0.9

SMS0
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Observing the results for each workload category, we see that
SMS0 performs better as the CPU workload intensity increases.
In the high-intensity workloads that have high interference be-
tween the CPU and GPU, SMS0 allows the GPU to form batches
with high row-buffer locality without being interfered by re-
quests from high-intensity CPU applications. On the other hand,
FR-FCFS performs better at lower CPU workload intensities.
When the CPU applications in a workload have low memory in-
tensities, they seldom interfere with the GPU application. Thus,
merely prioritizing row-buffer hits favors the GPU application,
which has high row-buffer locality, thereby providing high GPU
performance (which is good in this scenario as GPUweight is
1000). However, the wait time for batch formation in SMS0
can sometimes throttle back the GPU application unnecessar-
ily, leading to a slight performance degradation for the GPU.
On the other hand, when the CPU applications in a workload
have high memory intensities, these applications sometimes in-
terfere with the GPU application in the row buffers when a naive
application-unaware scheduling policy like FR-FCFS is used. In
contrast, SMS explicitly prioritizes the GPU application by us-
ing a very low value of the parameter p, which improves GPU’s
row buffer locality, leading to a larger improvement in GPU per-
formance and, thus, CGWS than FR-FCFS.
6.3 Scalability with CPU Cores and Memory

Channels
Figure 9 compares the CPU performance (weighted
speedup), GPU performance (frame rate), and fairness of
SMS (we use SMS0.9 for our sensitivity studies) against

FR-FCFS/ATLAS/TCM (averaged over 75 workloads12) with
the same number of request buffers, as the number of CPU
cores is varied. We make the following observations. First,
SMS always provides better CPU performance and fairness
than FR-FCFS/ATLAS/TCM. Second, the fairness gains
increase as the number of CPU cores increases to 16, as this
significantly reduces the memory bandwidth per core given the
same memory system configuration. With lower bandwidth
per core, the interference between applications becomes more
severe. SMS mitigates the interference by effectively throttling
back the GPU. Third, similar to the observation made in
Section 6.1, SMS reduces GPU frame rate compared to other
memory schedulers. However, SMS still maintains a frame rate
above 30 frames per second for all systems. In general, SMS
provides consistent improvement in CPU performance and
fairness relative to other memory schedulers while maintaining
likely acceptable GPU performance (30 frames per second)
across systems with different numbers of CPU cores. SMS’
benefits are likely to become more significant as CPU core
counts in future technology nodes increase, as this would lead
to higher interference between the CPU cores and the GPU,
which previous scheduling algorithms like ATLAS and TCM
do not handle robustly.
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Figure 9. Performance and fairness vs. number of CPU cores. % values
are gains of SMS0.9 over the best previous algorithms (ATLAS for weighted
speedup and fairness, and FR-FCFS for GPU frame rate).

Figure 10 shows the CPU performance (weighted speedup),
GPU performance (frame rate), and fairness of SMS compared
against FR-FCFS, ATLAS, and TCM as the number of mem-
ory channels is varied. Three key observations are in order.
First, SMS provides consistent improvement in CPU perfor-
mance and fairness across a wide range of system configu-
rations with different numbers of channels. Second, as the
number of memory channels increases to eight, the available
memory bandwidth increases, and hence SMS is able to pro-
vide GPU frame rates that are within 13.4%/7.6%/10.5% of
FR-FCFS/ATLAS/TCM, while improving CPU system perfor-
mance by 54.7%/22.2%/38.5%, respectively. Third, the GPU
frame rate of SMS drops below 30 frames per second in a
two-channel system. However, these results are without an ap-
propriate reconfiguration of p. As described in Section 6.2.1,
SMS can provide more adequate GPU frame rates by adjust-
ing the SJF probability, p, while trading off CPU performance.
We conclude that SMS provides high CPU performance and
high fairness compared to previously proposed scheduling al-
gorithms without degrading the GPU frame rate below a usually
acceptable level, across a wide range of system configurations
with different core and memory channel counts.
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12We use 75 randomly selected workloads per core count. We could not use
the same workloads/categorizations as earlier because those were for 16-core
systems, whereas we are now varying the number of CPU cores.
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6.4 Power and Area
We present the power and area of FR-FCFS and SMS in Ta-
ble 5 for a system with 300 request buffers. Two major con-
clusions are in order. First, SMS consumes 66.7% less leak-
age power than FR-FCFS, the simplest of all evaluated pre-
vious memory schedulers. Second, SMS requires 46.3% less
area than FR-FCFS. The majority of the power and area sav-
ings of SMS over FR-FCFS comes from the decentralized re-
quest buffer queues and simpler scheduling logic in SMS, as
compared to centralized request buffer queues, CAMs, and
complex scheduling logic in FR-FCFS. Because ATLAS and
TCM require more complex ranking and scheduling logic than
FR-FCFS does, SMS provides likely more significant power and
area reductions over ATLAS and TCM.

Data Type FR-FCFS SMS
Leakage (Normalized) 1 0.667

Area (Normalized) 1 0.463

Table 5. Power and area comparison.
6.5 Analysis of SMS Algorithm Parameters
Figure 11 shows CPU performance, fairness and GPU frame
rate (all normalized to SMS0.9), when we vary threshold age
(left) for applications in all intensity categories from 0% (no
batching) to 300% of the default values specified in Section 5
and DCS FIFO queue size (right) from 5 to 20 entries. Three
observations are in order. First, as threshold age increases, the
GPU frame rate increases. However, CPU performance de-
grades, when threshold age is increased beyond a point. This
is because as threshold age increases, SMS takes longer to form
a batch. While longer batches help improve the GPU’s row-
buffer hit rate and hence its frame rate, they increase the wait
time of latency-sensitive CPU applications, degrading CPU per-
formance. Second, as threshold age decreases, batches become
smaller, degrading row-buffer locality. This reduces both GPU
performance and CPU performance; however, GPU perfor-
mance degrades more than CPU performance because SMS0.9
prioritizes CPU requests over GPU requests, leading to addi-
tional interference from the CPU cores to the GPU. Third, CPU
performance and fairness increase while GPU performance de-
creases as we lower DCS FIFO queue size. When DCS FIFO
queue size becomes smaller, the DCS FIFOs can hold a smaller
number of batches. Hence, once a few batches are scheduled to a
DCS FIFO, other batches would need to wait until the batches in
the DCS FIFO are drained. This particularly impacts the GPU,
as SMS0.9 prioritizes CPU requests over GPU requests. This
reduction in GPU performance leads to lower interference from
the GPU, and hence increases CPU performance. We also found
that increasing the DCS FIFO size beyond 20 entries provides
only very small performance benefit.
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6.6 Analysis of CPU-only Systems
In Sections 6.1-6.3, we showed that SMS effectively mitigates
inter-application interference in a CPU-GPU integrated sys-
tem. In this section, we evaluate the performance of SMS in
a CPU-only scenario.13 Figure 12 shows the system perfor-
mance and fairness of SMS on a 16-core system with exactly the

13In view of simulation bandwidth and time constraints, we reduce the simu-
lation time to 300M cycles for these studies. We did not tune the configuration
parameters of ATLAS, TCM and SMS for CPU-only cases.

same system parameters as described in Section 5, except that
the system does not have a GPU. We present results for only
workload categories with at least some high memory-intensity
applications, as the performance and fairness of SMS in the
other workload categories are quite similar to that of ATLAS
and TCM. First, we observe that SMS degrades performance by
only 8.8% and 4% respectively compared to ATLAS and TCM,
while it improves fairness by 1.2% and 25.7% respectively, on
average across all workloads, compared to ATLAS and TCM.
Compared to ATLAS, SMS improves fairness in “HL”, “HML”
and “HM” categories but reduces the performance in those cat-
egories slightly. However, ATLAS provides the best fairness in
the “H” workload category, as ATLAS’ attained service based
prioritization mechanism achieves the same effect as shuffling
request priorities between applications, when they have simi-
lar memory intensities. Compared to TCM, SMS’ performance
degradation mainly comes from the “H” workload category; as
discussed in our main evaluations in Section 6, TCM places
some high memory-intensity applications into the low memory-
intensity cluster, which results in the strict prioritization of such
applications over those (slightly more intensive applications)
placed in the high memory-intensity cluster. Therefore, TCM
gains performance at the cost of unfairness to the memory-
intensive applications that fall into the latter cluster. On the other
hand, SMS reduces unfairness with its probabilistic SJF policy,
while still maintaining good system performance. We conclude
that SMS can be employed in CPU-only systems as an effec-
tive, low-complexity, and scalable memory scheduling policy to
provide high fairness and reasonably high performance.
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Figure 12. Results on a 16-core CPU system for 4 workload categories.

7 Related Work
Memory Scheduling: We have already compared SMS to
state-of-the-art memory schedulers designed for CPU-only sys-
tems (FR-FCFS [31, 37], ATLAS [14], PAR-BS [25], and
TCM [15]). SMS outperforms these schedulers in terms of both
system performance and fairness as explained in Sections 4.5
and 6. Other memory schedulers (e.g., [11, 19, 21, 22, 24, 26,
30, 35, 36]) that are either aware or unaware of applications have
been proposed for CPU-only systems. However, none of these
works has been shown to provide better performance and fair-
ness than TCM, which SMS outperforms across a wide range of
workloads. Furthermore, previous works [2, 3, 35] have also
explored memory scheduling for GPUs/GPGPUs. However,
these works are not targeted toward integrated CPU-GPU sys-
tems and are application-unaware. On the other hand, SMS is
a new application-aware memory scheduler that mitigates inter-
ference between CPU and GPU applications in heterogeneous
CPU-GPU systems.
Parallel Application Memory Scheduling: Ebrahimi et al. [7]
propose a memory scheduler to explicitly manage inter-thread
memory interference in parallel applications. However, the pro-
posed memory scheduler is not designed to mitigate interfer-
ence between heterogeneous applications in CPU-GPU systems.
Their proposed principles can be combined with our work to
prioritize limiter threads in CPU-GPU systems. We aim to in-
vestigate the interaction between parallel CPU applications and
GPU applications as part of future work.
QoS for CPU-GPU heterogeneous systems: A concurrent
work by Jeong et al. proposes a QoS-aware memory controller
that has the explicit goal of providing QoS for the GPU by ad-
justing the priority of the CPU and the GPU based on whether
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the GPU meets its target frame rate [12]. Our goal, in contrast, is
to provide high system performance and fairness, which makes
our approach complementary. Principles from [12] can be ap-
plied to SMS to dynamically adjust the priority of the GPU (p
value), which can provide QoS to the GPU and further improve
system performance.
Sub-row Interleaving: In order to preserve row-buffer local-
ity and prevent applications from monopolizing the row buffer
when an open-page policy is used, Kaseridis et al. [13] propose
a scheme that interleaves data at a sub-row granularity across
channels and banks. Our batch formation process provides sim-
ilar qualitative benefits to the sub-row interleaving approach of
limiting row-buffer hit streaks. However, their proposal still
needs a large centralized scheduler that requires complex logic
to support the memory access demands of the vastly different
CPU and GPU applications.
Memory Channel Partitioning: Instead of mitigating mem-
ory interference between applications by intelligently prioritiz-
ing requests at the memory controller, Muralidhara et al. [23]
propose memory channel partitioning (MCP) to map the data
of badly interfering applications to different channels. Our ap-
proach is complementary to MCP, as it has been shown that
MCP can be integrated with different memory schedulers to fur-
ther improve system throughput and fairness [23].
Source Throttling: Ebrahimi et al. [6] mitigate inter-
application interference in a shared-memory system by throt-
tling the request injection rates of interference-causing appli-
cations at the source. This approach is complementary to
SMS which reduces inter-application interference via memory
scheduling. Note that, the staged nature of SMS allows throt-
tling of sources at the source FIFOs.

8 Conclusion
While many advances in memory scheduling policies have been
made to deal with multi-core processors, the integration of
GPUs on the same chip as CPUs has created new system de-
sign challenges. We demonstrate how the inclusion of GPU
memory traffic can cause severe difficulties for existing memory
controller designs in terms of performance, fairness and design
complexity. To solve this problem, we propose a fundamentally
new approach to memory scheduler design, the Staged Memory
Scheduler (SMS). The key idea of SMS is to decouple the pri-
mary functions of an application-aware memory controller into
three stages: (1) per-source FIFO queues that group requests to
the same row into batches for each source/application, to im-
prove row-buffer locality, (2) the batch scheduler that prioritizes
between the batches of different sources, to maximize perfor-
mance and fairness and (3) the DRAM command scheduler that
simply issues requests to DRAM in the order it receives them
(as the previous stages have already made application-aware
and row-buffer locality aware batch scheduling decisions). This
staged design provides two benefits. First, it is simpler and
more scalable than previous application-aware memory sched-
ulers with large monolithic request buffers. Second, it provides
a new memory scheduling algorithm by composing these three
separate stages. Our evaluations show that SMS delivers better
performance and fairness compared to state-of-the-art memory
schedulers, while providing a design that is significantly sim-
pler to implement. We conclude that the new staged approach to
memory scheduling can provide a scalable substrate for memory
controller design for future heterogeneous systems.
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