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Cortex-A15: Next Generation Leadership 

Target Markets 

 High-end wireless and 

smartphone platforms 

 tablet, large-screen mobile 

and beyond 

 Consumer electronics and 

auto-infotainment 

 Hand-held and console 

gaming 

 Networking, server,    

enterprise applications 

Cortex-A class multi-processor 

 40bit physical addressing (1TB) 

 Full hardware virtualization 

 AMBA 4 system coherency 

 ECC and parity protection for all SRAMs 
 

Advanced power management 

 Fine-grain pipeline shutdown 

 Aggressive L2 power reduction capability 

 Fast state save and restore  
 

Significant performance advancement 

 Improved single-thread and MP performance 

Targets 1.5 GHz in 32/28 nm LP process 

Targets 2.5 GHz in 32/28 nm G/HP process 
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Quad Cortex-A15 MPCore 

Cortex-A15 Multiprocessing 

 ARM introduced up to quad MP in 2004 with ARM11 MPCore 

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15 

 Cortex-A15 includes  

 Integrated L2 cache with SCU functionality 

 128-bit AMBA 4 interface with coherency extensions 

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

128-bit AMBA 4 interface 

ACP 
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Scaling Beyond Four Cores 

Introducing AMBA 4 coherency extensions 

 Coherency, Barriers and Memory management 
 

Software implications 

 Hardware managed coherency simplifies software 

 Processor spends less time managing caches 

 

Coherency types 

 I/O coherency 

 Devices snoop into processor caches (but processors do not 

snoop into the device) 

 Full cache coherency 

 Cache snooping in both directions  
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Cortex-A15 System Scalability 
Introducing CCI-400 Cache Coherent Interconnect 

 Processor to Processor Coherency and I/O coherency 

 Memory and synchronization barriers 

 TLB and cache maintenance 

128-bit AMBA 4 

Quad Cortex-A15 MPCore 

A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

A15 A15 A15 

CoreLink CCI-400 Cache Coherent Interconnect  

128-bit AMBA 4 IO
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MMU-400 

Quad Cortex-A15 MPCore 

A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

A15 A15 A15 

System MMU 
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Memory Error Detection/Correction  

Error Correction Control on all software writable memories 

 Single error correct, 2 error detect 

 Multi-bit errors rare 

 Protects 32 bits for L1, 64 bits for L2 

 Error logging at each level of memory  

 Leveraging out-of-order mechanisms for no performance impact 

 Icache and TLB RAMs protected with precise parity (no fault required) 
 

Primarily motivated by enterprise markets 

 Soft errors predominantly caused by electrical disturbances 

 Memory errors proportional to RAM and duration of operation 

 Servers: MBs of cache, GBs of RAM, 24/7 operation 

 Highly probability of error eventually happening 

 If not corrected, eventually causes computer to crash and affect network 
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Cortex-A8 (45nm) 

Cortex-A8 (32/28nm) 

Cortex-A15 (32/28nm) 

High-end Single Thread Performance 

 Both processors using 32K L1 and 1MB L2 Caches, common memory system 

 Cortex-A8 and Cortex-A15 using 128-bit AXI bus master 

Note:  Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached 

           Cortex-A8 and Cortex-A15 estimated on 32/28nm.  

Single-core 
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Performance and Energy Comparison 

Lower power on 
sustained workload 

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation 

  

Energy consumed 

(lower is better) 

Execution Time for critical task 

(lower is better) 

Time 
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A15 dual-core power at peak Much faster execution time for performance critical task 

(Compute over and above sustained workload) 

Performance at tighter 
thermal constraints 
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Where We Started: Early Goals 

Large performance boost over A9 in general purpose code 

 From combination frequency + IPC 

 Performance is more than just integer 

 Memory system performance critical in larger applications  

 Floating point/NEON for multimedia 

 MP for high performance scalability 

 

Straightforward design flow 

 Supports fully synthesized design flow with compiled RAM instances  

 Further optimization possible through advanced implementation 

 Power/area savings 

 

Minimize power/area cost for achieving performance target 
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Where to Find Performance: Frequency 
Give RAMs as much time as possible 

 Majority of cycle dedicated to RAM for access 

 Make positive edge based to ease implementation 

 

Balance timing of critical “loops” that dictate maximum frequency 

 Microarchitecture loop: 

 Key function designed to complete in a cycle (or a set of cycles)  

 cannot be further pipelined (with high performance) 

 Some example loops:  

 Register Rename allocation and table update 

 Result data and tag forwarding (ALU->ALU, Load->ALU) 

 Instruction Issue decision 

 Branch prediction determination 

 

Feasibility work showed critical loops balancing at about 15-16 gates/clk 
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Where to Find Performance: IPC  

 

 Wider pipelines for higher instruction throughput 

 

 Larger instruction window for out-of-order execution 

 

 More instruction types can execute out-of-order 

 

 Improved memory system performance 
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Cortex-A15 Pipeline Overview 

Fetch 

Decode 

Rename 

Dispatch 

Simple 0 & 1 

Branch 

NEON/FPU 

Multiply 

Load/Store 

5 stages 7 stages 

3-12 stage 

out-of-order pipeline 

12 stage  

in-order pipeline 

 12 stage in-order fetch and decode 

 3-12 stage out-of-order execute  
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Improving Branch Prediction 
Similar predictor style to Cortex-A8 and Cortex-A9: 

 Large target buffer for fast turn around on address 

 Global history buffer for taken/not taken decision 

 

Global history buffer enhancements 

 3 arrays: Taken array, Not taken array, and Selector 

 

Indirect predictor 

 256 entry BTB indexed by XOR of history and address 

 Multiple Target addresses allowed per address 

 

Out-of-order branch resolution: 

 Reduces the mispredict penalty 

 Requires special handling in return stack  
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Fetch Bandwidth: More Details 

Increased fetch from 64-bit to 128-bit 

 Full support for unaligned fetch address 

 Enables more efficient use of memory bandwidth 

 Only critical words of cache line allocated 

 

Addition of microBTB  

 Reduces bubble on taken branches 

 64 entry target buffer for fast turn around prediction 

 Fully associative structure 

 Caches taken branches only 

 Overruled by main predictor when they disagree 
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Out-of-Order Execution Basics 

Out-of-Order instruction execution is done to increase 

available instruction parallelism 

 

The programmer’s view of in-order execution must be 

maintained 

 Mechanisms for proper handling of data and control hazards 

 WAR and WAW hazards removed by register renaming 

 Commit queue used to ensure state is retired non-speculatively 

 Early and late stages of pipeline are still executed in-order 

 Execution clusters operate out-of-order 

 Instructions issue when all required source operands are available 
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Register Renaming 

Two main components to register renaming 

 Register rename tables 

 Provides current mapping from architected registers to result queue entries 

 Two tables: one each for ARM and Extended (NEON) registers 

 Result queue 

 Queue of renamed register results pending update to the register file 

 Shared for both ARM and Extended register results 
 

 



18 

Execution Clusters 

 Simple cluster  
 Single cycle integer operations 

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD) 
 

 Complex cluster 
 All NEON and Floating Point data processing operations 

 Pipelines are of varying length and asymmetric functions 

 Capable of quad-FMAC operation 
 

 Branch cluster 
 All operations that have the PC as a destination 

 

 Multiply and Divide cluster 
 All ARM multiply and Integer divide operations 

 

 Load/Store cluster 
 All Load/Store, data transfers and cache maintenance operations 

 Partially out-of-order, 1 Load and 1 Store executed per cycle 

 Load cannot bypass a Store, Store cannot bypass a Store 

 
 



19 

Increasing Out-of-Order Execution 

Out-of-order execution improves performance by 

executing past hazards 

 Effectiveness limited by how far you look ahead 

 Window size of 40+ operations required for Cortex-A15 performance targets 

 Issue queue size often frequency limited to 8 entries 

 

Solution: multiple smaller issue queues 

 Execution broken down to multiple clusters defined by instruction type 

 Instructions dispatched 3 per cycle to the appropriate issue queue 

 Issue queues each scanned in parallel  
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Cortex-A15 Execution Clusters 
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Instruction 

Issue capability 

 Each cluster can have multiple pipelines 

 Clusters have separate/independent issuing capability 

                                  Simple 0 & 1 

                        Branch 

NEON/FPU 

                             Multiply 
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3-12 stage 

out-of-order pipeline 
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Floating Point and NEON Performance  

Dual issue queues of 8 entries each 

 Can execute two operations per cycle  

 Includes support for quad FMAC per cycle 
 

Fully integrated into main Cortex-A15 pipeline 

 Decoding done upfront with other instruction types 

 Shared pipeline mechanisms 

 Reduces area consumed and improves interworking 
 

Specific challenges for Out-of-order VFP/Neon 

 Variable length execution pipelines 

 Late accumulator source operand for MAC operations  
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Load/Store Cluster 

16 entry issue queue for loads and stores 

 Common queue for ARM and NEON/memory operations 

 Loads issue out-of-order but cannot bypass stores 

 Stores issue in order, but only require address sources to issue 

 

4 stage load pipeline 

 1st: Combined AGU/TLB structure lookup  

 2nd: Address setup to Tag and data arrays 

 3rd: Data/Tag access cycle 

 4th: Data selection, formatting, and forwarding 

 

Store operations are AGU/TLB look up only on first pass 

 Update store buffer after PA is obtained 

 Arbitrate for Tag RAM access 

 Update merge buffer when non-speculative 

 Arbitrate for Data RAM access from merge buffer 

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU 

TLB

ARB

MUX

ST

BUF
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The Level 2 Memory System 
Cache characteristics 
 16 way cache with sequential TAG and Data RAM access 

 Supports sizes of 512kB to 4MB 

 Programmable RAM latencies 
 

MP support 
 4 independent Tag banks handle multiple requests in parallel 

 Integrated Snoop Control Unit into L2 pipeline 

 Direct data transfer line migration supported from cpu to cpu 
 

External bus interfaces 
 Full AMBA4 system coherency support on 128-bit master interface 

 64/128 bit AXI3 slave interface for ACP 
 

Other key features 
 Full ECC capability 

 Automatic data prefetching into L2 cache for load streaming  
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Other Key Cortex-A15 Design Features 
Supporting fast state save for power down 

 Fast cache maintenance operations 

 Fast SPR writes: all register state local 
 

Dedicated TLB and table walk machine per cpu 

 4-way 512 entry per cpu 

 Includes full table walk machine and cache walking structures 
 

Active power management 

 32 entry loop buffer 

 Completely disables Fetch and part of the Decode stages of pipeline 
 

ECC support in software writeable RAMs, Parity in read only RAMs 

 Supports logging of error location and frequency 
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AXI Coherency Extensions 

 Extends upon existing non-coherent interface by adding 

support for new transactions and snoop channel 
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Coherency Model 

 Multiple masters with local caches, protocol supports up to 5 

state cache model 
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Domains 

 Allows for course-grained filtering of snoops in a system with 

partitioned memory 
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Example Transactions 
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Block diagram 
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ACE-Lite 
Master 

Interface 

ACE-Lite 
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ACE master snooping transactions 
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 Transactions from ACE masters can snoop other ACE masters’ caches  

 Transactions from ACE masters cannot snoop ACE-Lite masters’ caches 
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ACE-Lite master snooping transactions 
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 Transactions from ACE-Lite masters can snoop other ACE masters’ caches  

 Transactions from ACE-Lite masters cannot snoop ACE-Lite masters’ caches 

SI2 

+DVM 
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Distributed Virtual Memory messages 
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 ACE masters can accept DVM messages, per the ACE protocol  

 CCI-400 DVM extensions allow ACE-Lite masters to receive DVMs messages 

 ACE-Lite masters cannot generate DVM messages 

SI2 

+DVM 

DVM DVM 
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Power Estimation 

 Power estimated using Synopsys Primetime-PX using netlist 

simulations under different traffic scenarios 

 Conditions:  

 Active power shown below: 

 as mW/MHz (blue bars) 

 as uJ/MB (red) 

Modest idle and near idle 
power demonstrates 
effective clock gating 

 

With typical high-
end scenario,  100% 

shared traffic at 
533MHz, CCI-400 

consumes ~100mW  

 

Energy per MB transferred is 
approx 8 uJ/MB.  

e.g. transferring a total of 10GB 
in 1s would consume ~80mW 
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 Uses the right processor for the right job 

 Up to 70% energy savings on common workloads 

 Flexible and transparent to apps – seamless software handover 

 Best of both worlds solution for high performance and low power 

 

Introducing big.LITTLE Processing 

Cortex-A15 

MPCore 

L2 Cache 

CPU 

Cortex-A7 

MPCore 

L2 Cache 

CCI-400 Coherent Interconnect 

CPU 
CPU CPU 

Interrupt Control 

big 

“Demanding tasks” 

LITTLE 

“Always on, always 
connected tasks” 
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Performance and Energy-Efficiency 

 Simple, in-order, 8 stage pipeline 

 Performance better than today’s  

mainstream, high-volume smartphones 

Most energy-efficient applications processor from ARM 

 Complex, out-of-order, multi-issue pipeline 

 Up to 5x the performance of today’s 
mainstream, high-volume smartphones 

Highest performance in mobile power envelope 

Cortex-A7 

Cortex-A15 
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Power Analysis: Setting Up big.LITTLE 

CPU RUN 
at various 

DVFS 
operating 

points 

WFI 

OFF 

CPU0 CPU1 

Android app used to gather CPU Activity information from a device 

(DVFS states and per-CPU RUN / WFI / OFF) 

Note: Cortex-A7 should handle all except the red workloads (we expect it will even be able to 
handle a portion of today’s red workloads) 

Y-Axis is the % of the total runtime for the 

use case 
 

Blue areas represent ‘idle’ states:  

WFI, OFF, and Cluster OFF 
 

All other colors represent CPU RUN, at 

some DVFS OPP 

Red is ‘hottest’ OPP 
 

Per-CPU Data collected on MP systems 
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30 min voice call Camorder-1080p Facebook 20min File Download 
Wifi 
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30min 

Basic Workloads Today 
All data from Cortex-A9 

based mobile handset 

 

 Basic activity (phone calls, etc.) can be handled almost entirely in 

“LITTLE” core 
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CPU Migration 

 Per-Core Granularity  

 Each CPU software context can switch to big or LITTLE 

 Each CPU context switches independently of other CPU’s context 
 

 CPU migration is driven by OS power management  

 DVFS algorithm monitors per CPU load 

 Operating point selection is done independently per CPU  

 When a LITTLE CPU cannot service the incumbent load a switch to 

an available big CPU is performed 

 The LITTLE processor within the cluster is switched off  

 When a lower performance is required, the software context will 

switch back to the LITTLE CPU 
 

 If no CPUs are active within a cluster, then its L2 can also be 

powered off 
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Cluster Migration 

 Only one cluster is ever active 

 End-to-end “Interrupt off” switch time ~30K cycles 

 

 Cluster selection driven by OS power management 

 DVFS algorithm selects a suitable operating point 

 A switch from the Cortex-A7 cluster to Cortex-A15 cluster is an 

extension of the DVFS strategy 

 

 Load monitoring is done at the cluster level 

 Linux cpufreq samples load across all CPU in cluster 

 Selects a cluster operating point using the most loaded CPU 

 Switches cluster at  an appropriate point on the DVFS curve 
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big.LITTLE Cluster Migration Mechanics 

Migration Stimulus Received 

Save State 

Normal Operation 

Snooping Allowed 

Outbound Processor 

Cache Invalidate 

Ready for Task Migration 

Migrate State (Snoop Outbound Processor) 

Inbound Processor 

Outbound Processor OFF 

Stimulus from OS/Virtualizer 

via system firmware interface 

Enable Snooping 

Restore State 

Normal Operation 

Power Down 

Power On & Reset 

Disable Snooping 

Clean Cache 

Less than 100-cycles 

~30k cycles 

This is the “critical period” where no 
work is being done on either cluster 

Cycle count is OS 

dependent 

• State transfer is fast and atomic 

• The mechanism is invisible to the payload software 
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Summary 
 

 The combination of Cortex A15, ACE and CCI-400 offers 

customers a complete system coherent solution for the first 

time in ARM’s history 

 Adding the low power Cortex A7 enables the big.LITTLE 

ecosystem to handle dynamic power/performance demands 

 Many tradeoffs were necessary to achieve this while 

maintaining low power leadership with decent performance 
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Some Light Reading 
 

 ARM Architecture Reference Manual ARMv7-A and ARMv7-R Edition 

 http://infocenter.arm.com 

 ARM Architecture  Reference Manuals 

 DesignStart IP 

 http://www.arm.com/support/university/ip/index.php 

 Careers 

 http://www.arm.com/about/careers/students/student-vacancies.php 

 http://www.arm.com/about/careers/graduates/vacancies.php 
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Q & A 


