
1

Multi-core and System

Coherence Design Challenges

2

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

3

Cortex-A15: Next Generation Leadership

Target Markets

 High-end wireless and

smartphone platforms

 tablet, large-screen mobile

and beyond

 Consumer electronics and

auto-infotainment

 Hand-held and console

gaming

 Networking, server,

enterprise applications

Cortex-A class multi-processor

 40bit physical addressing (1TB)

 Full hardware virtualization

 AMBA 4 system coherency

 ECC and parity protection for all SRAMs

Advanced power management

 Fine-grain pipeline shutdown

 Aggressive L2 power reduction capability

 Fast state save and restore

Significant performance advancement

 Improved single-thread and MP performance

Targets 1.5 GHz in 32/28 nm LP process

Targets 2.5 GHz in 32/28 nm G/HP process

4

Quad Cortex-A15 MPCore

Cortex-A15 Multiprocessing

 ARM introduced up to quad MP in 2004 with ARM11 MPCore

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15

 Cortex-A15 includes

 Integrated L2 cache with SCU functionality

 128-bit AMBA 4 interface with coherency extensions

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15

Processor Coherency (SCU)

Up to 4MB L2 cache

128-bit AMBA 4 interface

ACP

5

Scaling Beyond Four Cores

Introducing AMBA 4 coherency extensions

 Coherency, Barriers and Memory management

Software implications

 Hardware managed coherency simplifies software

 Processor spends less time managing caches

Coherency types

 I/O coherency

 Devices snoop into processor caches (but processors do not

snoop into the device)

 Full cache coherency

 Cache snooping in both directions

6

Cortex-A15 System Scalability
Introducing CCI-400 Cache Coherent Interconnect

 Processor to Processor Coherency and I/O coherency

 Memory and synchronization barriers

 TLB and cache maintenance

128-bit AMBA 4

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

CoreLink CCI-400 Cache Coherent Interconnect

128-bit AMBA 4 IO
 c

o
h
e
re

n
t

d
e
v
ic

e
s

MMU-400

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

System MMU

7

Memory Error Detection/Correction

Error Correction Control on all software writable memories

 Single error correct, 2 error detect

 Multi-bit errors rare

 Protects 32 bits for L1, 64 bits for L2

 Error logging at each level of memory

 Leveraging out-of-order mechanisms for no performance impact

 Icache and TLB RAMs protected with precise parity (no fault required)

Primarily motivated by enterprise markets

 Soft errors predominantly caused by electrical disturbances

 Memory errors proportional to RAM and duration of operation

 Servers: MBs of cache, GBs of RAM, 24/7 operation

 Highly probability of error eventually happening

 If not corrected, eventually causes computer to crash and affect network

8

0

1

2

3

4

5

6

7

8

General
Purpose
Integer

Floating Point Media Memory
Streaming

Gaming
Workloads

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Cortex-A8 (45nm)

Cortex-A8 (32/28nm)

Cortex-A15 (32/28nm)

High-end Single Thread Performance

 Both processors using 32K L1 and 1MB L2 Caches, common memory system

 Cortex-A8 and Cortex-A15 using 128-bit AXI bus master

Note: Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached

 Cortex-A8 and Cortex-A15 estimated on 32/28nm.

Single-core

9

Performance and Energy Comparison

Lower power on
sustained workload

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation

Energy consumed

(lower is better)

Execution Time for critical task

(lower is better)

Time

 I
n

s
ta

n
ta

n
e
o

u
s
 P

o
w

e
r

A15 dual-core power at peak Much faster execution time for performance critical task

(Compute over and above sustained workload)

Performance at tighter
thermal constraints

10

Where We Started: Early Goals

Large performance boost over A9 in general purpose code

 From combination frequency + IPC

 Performance is more than just integer

 Memory system performance critical in larger applications

 Floating point/NEON for multimedia

 MP for high performance scalability

Straightforward design flow

 Supports fully synthesized design flow with compiled RAM instances

 Further optimization possible through advanced implementation

 Power/area savings

Minimize power/area cost for achieving performance target

11

Where to Find Performance: Frequency
Give RAMs as much time as possible

 Majority of cycle dedicated to RAM for access

 Make positive edge based to ease implementation

Balance timing of critical “loops” that dictate maximum frequency

 Microarchitecture loop:

 Key function designed to complete in a cycle (or a set of cycles)

 cannot be further pipelined (with high performance)

 Some example loops:

 Register Rename allocation and table update

 Result data and tag forwarding (ALU->ALU, Load->ALU)

 Instruction Issue decision

 Branch prediction determination

Feasibility work showed critical loops balancing at about 15-16 gates/clk

12

Where to Find Performance: IPC

 Wider pipelines for higher instruction throughput

 Larger instruction window for out-of-order execution

 More instruction types can execute out-of-order

 Improved memory system performance

13

Cortex-A15 Pipeline Overview

Fetch

Decode

Rename

Dispatch

Simple 0 & 1

Branch

NEON/FPU

Multiply

Load/Store

5 stages 7 stages

3-12 stage

out-of-order pipeline

12 stage

in-order pipeline

 12 stage in-order fetch and decode

 3-12 stage out-of-order execute

Is
s
u

e

W
ri

te
b

a
c
k

14

Improving Branch Prediction
Similar predictor style to Cortex-A8 and Cortex-A9:

 Large target buffer for fast turn around on address

 Global history buffer for taken/not taken decision

Global history buffer enhancements

 3 arrays: Taken array, Not taken array, and Selector

Indirect predictor

 256 entry BTB indexed by XOR of history and address

 Multiple Target addresses allowed per address

Out-of-order branch resolution:

 Reduces the mispredict penalty

 Requires special handling in return stack

15

Fetch Bandwidth: More Details

Increased fetch from 64-bit to 128-bit

 Full support for unaligned fetch address

 Enables more efficient use of memory bandwidth

 Only critical words of cache line allocated

Addition of microBTB

 Reduces bubble on taken branches

 64 entry target buffer for fast turn around prediction

 Fully associative structure

 Caches taken branches only

 Overruled by main predictor when they disagree

16

Out-of-Order Execution Basics

Out-of-Order instruction execution is done to increase

available instruction parallelism

The programmer’s view of in-order execution must be

maintained

 Mechanisms for proper handling of data and control hazards

 WAR and WAW hazards removed by register renaming

 Commit queue used to ensure state is retired non-speculatively

 Early and late stages of pipeline are still executed in-order

 Execution clusters operate out-of-order

 Instructions issue when all required source operands are available

17

Register Renaming

Two main components to register renaming

 Register rename tables

 Provides current mapping from architected registers to result queue entries

 Two tables: one each for ARM and Extended (NEON) registers

 Result queue

 Queue of renamed register results pending update to the register file

 Shared for both ARM and Extended register results

18

Execution Clusters

 Simple cluster
 Single cycle integer operations

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD)

 Complex cluster
 All NEON and Floating Point data processing operations

 Pipelines are of varying length and asymmetric functions

 Capable of quad-FMAC operation

 Branch cluster
 All operations that have the PC as a destination

 Multiply and Divide cluster
 All ARM multiply and Integer divide operations

 Load/Store cluster
 All Load/Store, data transfers and cache maintenance operations

 Partially out-of-order, 1 Load and 1 Store executed per cycle

 Load cannot bypass a Store, Store cannot bypass a Store

19

Increasing Out-of-Order Execution

Out-of-order execution improves performance by

executing past hazards

 Effectiveness limited by how far you look ahead

 Window size of 40+ operations required for Cortex-A15 performance targets

 Issue queue size often frequency limited to 8 entries

Solution: multiple smaller issue queues

 Execution broken down to multiple clusters defined by instruction type

 Instructions dispatched 3 per cycle to the appropriate issue queue

 Issue queues each scanned in parallel

20

Cortex-A15 Execution Clusters

2

1

2

1

2

Instruction

Issue capability

 Each cluster can have multiple pipelines

 Clusters have separate/independent issuing capability

 Simple 0 & 1

 Branch

NEON/FPU

 Multiply

 Load/Store

3-12 stage

out-of-order pipeline

Is
s
u

e

W
ri

te
b

a
c
k
 1

1

2-10

4

4

Pipeline stages

(Total: 8)

21

Floating Point and NEON Performance

Dual issue queues of 8 entries each

 Can execute two operations per cycle

 Includes support for quad FMAC per cycle

Fully integrated into main Cortex-A15 pipeline

 Decoding done upfront with other instruction types

 Shared pipeline mechanisms

 Reduces area consumed and improves interworking

Specific challenges for Out-of-order VFP/Neon

 Variable length execution pipelines

 Late accumulator source operand for MAC operations

22

Load/Store Cluster

16 entry issue queue for loads and stores

 Common queue for ARM and NEON/memory operations

 Loads issue out-of-order but cannot bypass stores

 Stores issue in order, but only require address sources to issue

4 stage load pipeline

 1st: Combined AGU/TLB structure lookup

 2nd: Address setup to Tag and data arrays

 3rd: Data/Tag access cycle

 4th: Data selection, formatting, and forwarding

Store operations are AGU/TLB look up only on first pass

 Update store buffer after PA is obtained

 Arbitrate for Tag RAM access

 Update merge buffer when non-speculative

 Arbitrate for Data RAM access from merge buffer

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU

TLB

ARB

MUX

ST

BUF

23

The Level 2 Memory System
Cache characteristics
 16 way cache with sequential TAG and Data RAM access

 Supports sizes of 512kB to 4MB

 Programmable RAM latencies

MP support
 4 independent Tag banks handle multiple requests in parallel

 Integrated Snoop Control Unit into L2 pipeline

 Direct data transfer line migration supported from cpu to cpu

External bus interfaces
 Full AMBA4 system coherency support on 128-bit master interface

 64/128 bit AXI3 slave interface for ACP

Other key features
 Full ECC capability

 Automatic data prefetching into L2 cache for load streaming

24

Other Key Cortex-A15 Design Features
Supporting fast state save for power down

 Fast cache maintenance operations

 Fast SPR writes: all register state local

Dedicated TLB and table walk machine per cpu

 4-way 512 entry per cpu

 Includes full table walk machine and cache walking structures

Active power management

 32 entry loop buffer

 Completely disables Fetch and part of the Decode stages of pipeline

ECC support in software writeable RAMs, Parity in read only RAMs

 Supports logging of error location and frequency

25

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

26

AXI Coherency Extensions

 Extends upon existing non-coherent interface by adding

support for new transactions and snoop channel

27

Coherency Model

 Multiple masters with local caches, protocol supports up to 5

state cache model

28

Domains

 Allows for course-grained filtering of snoops in a system with

partitioned memory

29

Example Transactions

30

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

31

Block diagram

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI2 SI1 SI0

+DVM +DVM +DVM

CCI-400

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

ACLK

ARESETn

Configuration Inputs

PMU Signals

nERRORIRQ

AXI Low-power Interface

Cortex-A15 or Cortex-A7 System MMU + (e.g. GPU, DMAC or LCD controller)

DRAM controllers Other peripherals

32

ACE master snooping transactions

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI2 SI1 SI0

+DVM +DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

SNOOP

SNOOP

 Transactions from ACE masters can snoop other ACE masters’ caches

 Transactions from ACE masters cannot snoop ACE-Lite masters’ caches

33

ACE-Lite master snooping transactions

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI1 SI0

+DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

SNOOP SNOOP

 Transactions from ACE-Lite masters can snoop other ACE masters’ caches

 Transactions from ACE-Lite masters cannot snoop ACE-Lite masters’ caches

SI2

+DVM

34

Distributed Virtual Memory messages

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI1 SI0

+DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

DVM

 ACE masters can accept DVM messages, per the ACE protocol

 CCI-400 DVM extensions allow ACE-Lite masters to receive DVMs messages

 ACE-Lite masters cannot generate DVM messages

SI2

+DVM

DVM DVM

35

Power Estimation

 Power estimated using Synopsys Primetime-PX using netlist

simulations under different traffic scenarios

 Conditions:

 Active power shown below:

 as mW/MHz (blue bars)

 as uJ/MB (red)

Modest idle and near idle
power demonstrates
effective clock gating

With typical high-
end scenario, 100%

shared traffic at
533MHz, CCI-400

consumes ~100mW

Energy per MB transferred is
approx 8 uJ/MB.

e.g. transferring a total of 10GB
in 1s would consume ~80mW

0

1

2

3

4

5

6

7

8

9

10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Idle Near idle Typical b/w 0%
shared

Typical b/w
100% shared

Energy

uJ/MB

Power

mW/
MHz

36

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

37

 Uses the right processor for the right job

 Up to 70% energy savings on common workloads

 Flexible and transparent to apps – seamless software handover

 Best of both worlds solution for high performance and low power

Introducing big.LITTLE Processing

Cortex-A15

MPCore

L2 Cache

CPU

Cortex-A7

MPCore

L2 Cache

CCI-400 Coherent Interconnect

CPU
CPU CPU

Interrupt Control

big

“Demanding tasks”

LITTLE

“Always on, always
connected tasks”

38

Performance and Energy-Efficiency

 Simple, in-order, 8 stage pipeline

 Performance better than today’s

mainstream, high-volume smartphones

Most energy-efficient applications processor from ARM

 Complex, out-of-order, multi-issue pipeline

 Up to 5x the performance of today’s
mainstream, high-volume smartphones

Highest performance in mobile power envelope

Cortex-A7

Cortex-A15

L
IT

T
L

E

b
ig

Q
u
e
u
e

I
s
s
u
e

I
n
t
e
g
e
r

39

Power Analysis: Setting Up big.LITTLE

CPU RUN
at various

DVFS
operating

points

WFI

OFF

CPU0 CPU1

Android app used to gather CPU Activity information from a device

(DVFS states and per-CPU RUN / WFI / OFF)

Note: Cortex-A7 should handle all except the red workloads (we expect it will even be able to
handle a portion of today’s red workloads)

Y-Axis is the % of the total runtime for the

use case

Blue areas represent ‘idle’ states:

WFI, OFF, and Cluster OFF

All other colors represent CPU RUN, at

some DVFS OPP

Red is ‘hottest’ OPP

Per-CPU Data collected on MP systems

40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
cp

u
0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

30 min voice call Camorder-1080p Facebook 20min File Download
Wifi

Newsrob RSS Sync
30min

Basic Workloads Today
All data from Cortex-A9

based mobile handset

 Basic activity (phone calls, etc.) can be handled almost entirely in

“LITTLE” core

41

CPU Migration

 Per-Core Granularity

 Each CPU software context can switch to big or LITTLE

 Each CPU context switches independently of other CPU’s context

 CPU migration is driven by OS power management

 DVFS algorithm monitors per CPU load

 Operating point selection is done independently per CPU

 When a LITTLE CPU cannot service the incumbent load a switch to

an available big CPU is performed

 The LITTLE processor within the cluster is switched off

 When a lower performance is required, the software context will

switch back to the LITTLE CPU

 If no CPUs are active within a cluster, then its L2 can also be

powered off

42

Cluster Migration

 Only one cluster is ever active

 End-to-end “Interrupt off” switch time ~30K cycles

 Cluster selection driven by OS power management

 DVFS algorithm selects a suitable operating point

 A switch from the Cortex-A7 cluster to Cortex-A15 cluster is an

extension of the DVFS strategy

 Load monitoring is done at the cluster level

 Linux cpufreq samples load across all CPU in cluster

 Selects a cluster operating point using the most loaded CPU

 Switches cluster at an appropriate point on the DVFS curve

43

big.LITTLE Cluster Migration Mechanics

Migration Stimulus Received

Save State

Normal Operation

Snooping Allowed

Outbound Processor

Cache Invalidate

Ready for Task Migration

Migrate State (Snoop Outbound Processor)

Inbound Processor

Outbound Processor OFF

Stimulus from OS/Virtualizer

via system firmware interface

Enable Snooping

Restore State

Normal Operation

Power Down

Power On & Reset

Disable Snooping

Clean Cache

Less than 100-cycles

~30k cycles

This is the “critical period” where no
work is being done on either cluster

Cycle count is OS

dependent

• State transfer is fast and atomic

• The mechanism is invisible to the payload software

44

Summary

 The combination of Cortex A15, ACE and CCI-400 offers

customers a complete system coherent solution for the first

time in ARM’s history

 Adding the low power Cortex A7 enables the big.LITTLE

ecosystem to handle dynamic power/performance demands

 Many tradeoffs were necessary to achieve this while

maintaining low power leadership with decent performance

45

Some Light Reading

 ARM Architecture Reference Manual ARMv7-A and ARMv7-R Edition

 http://infocenter.arm.com

 ARM Architecture Reference Manuals

 DesignStart IP

 http://www.arm.com/support/university/ip/index.php

 Careers

 http://www.arm.com/about/careers/students/student-vacancies.php

 http://www.arm.com/about/careers/graduates/vacancies.php

46

Q & A

