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Abstract

Modern processors use two or more levels of
cache memories to bridge the rising disparity between
processor and memory speeds. Compression can
improve cache performance by increasing effective
cache capacity and eliminating misses. However,
decompressing cache lines also increases cache access
latency, potentially degrading performance.

In this paper, we develop an adaptive policy that
dynamically adapts to the costs and benefits of cache
compression. We propose a two-level cache hierarchy
where the L1 cache holds uncompressed data and the L2
cache dynamically selects between compressed and
uncompressed storage. The L2 cache is 8-way set-asso-
ciative with LRU replacement, where each set can store
up to eight compressed lines but has space for only four
uncompressed lines. On each L2 reference, the LRU
stack depth and compressed size determine whether
compression (could have) eliminated a miss or incurs an
unnecessary decompression overhead. Based on this
outcome, the adaptive policy updates a single global
saturating counter, which predicts whether to allocate
lines in compressed or uncompressed form.

We evaluate adaptive cache compression using
full-system simulation and a range of benchmarks. We
show that compression can improve performance for
memory-intensive commercial workloads by up to 17%.
However, always using compression hurts performance
for low-miss-rate benchmarks—due to unnecessary
decompression overhead—degrading performance by
up to 18%. By dynamically monitoring workload behav-
ior, the adaptive policy achieves comparable benefits
from compression, while never degrading performance
by more than 0.4%.

1  Introduction

Semiconductor technology trends and microarchitec-
tural innovations continue to exacerbate the perfor-
mance gap between processors and memory. The ITRS
Roadmap [16]—the semiconductor industry’s detailed
projection of Moore’s Law [34]—predicts that transistor
performance will improve at nearly 21% per year until
2007 while DRAM latency will improve at only 10%
per year. Coupled with the trend toward increasingly
deep pipelines [22, 23], main memory latency is
expected to grow to hundreds of cycles.

Cache memories have long been used to reduce average
memory latency and bandwidth. Current processors typ-
ically provide two levels of on-chip caches (e.g., sepa-
rate L1 instruction and data caches and a unified L2
cache), with some recent architectures having three-
level cache hierarchies [39]. Effectively organizing the
limited on-chip cache resources is particularly critical
for many memory-intensive commercial workloads [6].

Cache compression is one way to improve the effective-
ness of cache memories [9, 27, 29, 43, 44]. Storing com-
pressed lines in the cache increases the effective cache
capacity. For example, Yang, et al. propose a com-
pressed L1 cache design where each set can store either
one uncompressed line or two compressed lines [43].
Increasing the effective cache size can eliminate misses
and thereby reduce the time lost to long off-chip miss
penalties. However, compression increases the cache hit
time, since the decompression overhead lies on the criti-
cal access path. Depending upon the balance between
hits and misses, cache compression has the potential to
either greatly help or greatly hurt performance.

In this paper, we develop an adaptive cache compression
scheme to dynamically optimize on-chip cache perfor-
mance (Section 2). Our design has two major parts.
First, we use a two-level cache hierarchy where the L1
cache holds uncompressed data and the L2 cache
dynamically selects between compressed and uncom-
pressed storage. We use a simple, significance-based
compression algorithm, Frequent Pattern Compression
[4] to compress L2 lines. The L2 cache is 8-way set-
associative with LRU replacement, where each set can
store up to eight compressed lines but has space for only
four uncompressed lines. Thus compression can poten-
tially double the effective capacity of the cache. Simula-
tion results show that memory-intensive commercial
workloads achieve average effective capacities of 5-
7 MB for a 4 MB uncompressed L2 cache.

Second, our adaptive compression policy (Section 3)
uses the L2 cache’s LRU replacement state to track
whether compression would help, hurt, or make no dif-
ference to a given reference. The key insight is that the
LRU stack depth and compressed size determines
whether a given reference hits because of compression,
would have missed without compression, or would have
hit or missed regardless. The controller updates a single,
global saturating counter on each reference, increment-
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ing by the L2 miss penalty when compression could
have or did eliminate a miss and decrementing it by the
decompression latency when a reference would have hit
regardless. The controller uses the predictor when the
L2 allocates a line: storing the line uncompressed if the
counter is negative, and compressed otherwise.

This paper makes four main contributions:

• It shows that always compressing L2 cache lines
increases the effective cache capacity for commer-
cial benchmarks by 29-75%, which in turn reduces
L2 miss ratios by 9-24% and overall run-time as
much as 15% (i.e., a 17% speedup). However, the
increased L2 access latency (due to decompression
overhead), degrades performance for workloads
with low L2 miss rates by as much as 18%.

• It proposes a novel adaptive policy that dynamically
balances the benefit of compression (i.e., miss ratio
reduction) with the cost (i.e., increased L2 access
latency).

• It presents full-system simulation results showing
that adaptive cache compression can improve per-
formance of memory-intensive commercial work-
loads by up to 17%, while never degrading
performance by more than 0.4%.

•To our knowledge, it presents the first quantitative
evaluation of L2 cache compression for commercial
workloads.

2  Compressed Cache Hierarchy

We propose a two-level cache hierarchy consisting of
uncompressed L1 instruction and data caches, and an
optionally compressed L2 unified cache. While many of
the mechanisms and policies we develop could be
adapted to other cache configurations (e.g., three-level
hierarchies), we do not consider them in this study.

The goals of this design include:

•Using compression to increase effective L2 cache
capacity in order to reduce L2 misses.

•Limit the impact of cache decompression overhead
by providing a bypass path for uncompressed lines.

•Enable an adaptive policy to dynamically control
compression based on workload demands.

•Limit impact on the cache design complexity.

2.1  Overview

Figure 1 illustrates the proposed cache hierarchy. L1
instruction and data caches store uncompressed lines,
eliminating the decompression overhead from the criti-
cal L1 hit path. This design also completely isolates the
processor core from the compression hardware. The L1
data cache uses a writeback, write allocate policy to
simplify the L2 compression logic. On L1 misses, the

controller checks an uncompressed victim cache in par-
allel with the L2 access. On an L2 hit, the L2 line is
decompressed if stored in compressed form. Otherwise,
it bypasses the decompression pipeline. On an L2 miss,
the requested line is fetched from main memory. We
assume uncompressed memory, however, this is largely
an orthogonal decision. The L1 and L2 caches maintain
exclusion and lines are allocated in the L2 only when
replaced from the L1. In addition to its normal function,
the victim cache acts as a rate-matching buffer between
the L1s and the compression pipeline [29]. For design
simplicity, we assume a single line size for all caches.

2.2  Decoupled Variable-Segment Cache

To exploit compression, the L2 cache must be able to
pack more compressed cache lines than uncompressed
lines into the same space. One approach is to decouple
the cache access, adding a level of indirection between
the address tag and the data storage. Seznec’s decoupled
sector cache does this on a per-set basis to improve the
utilization of sector (or sub-block) caches [36]. Hallnor
and Reinhardt’s Indirect-Index Cache decouples
accesses across the whole cache, allowing fully-associa-
tive placement, a software managed replacement policy,
and (recently) compressed lines [20, 21]. Lee, et al.’s
selective compressed caches use this technique to allow
two compressed cache lines to occupy the space
required for one uncompressed line [29, 27, 28]. Decou-
pled access is simpler if we serially access the cache
tags before the data. Fortunately, this is becoming
increasingly necessary to limit power dissipation [25].

Our decoupled variable-segment cache builds on these
earlier concepts. As illustrated in Figure 2, each set is 8-
way set-associative, with a compression information tag
stored with each address tag. The data array is broken
into eight-byte segments, with 32 segments statically
allocated to each cache set. Thus, each set can hold no
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Figure 1. Compressed Cache Hierarchy.
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more than four uncompressed 64-byte lines, and com-
pression can at most double the effective capacity. Each
line is compressed into between one and eight segments,
with eight segments being the uncompressed form. The
compression tag indicates i) the compressed size of the
line (CSize) and ii) whether or not the line is stored in
compressed form (CStatus). A separate cache state indi-
cates the line’s coherence state, which can be M (modi-
fied), S (shared), I (invalid), or NP (not present). The NP
state differentiates between a line invalidated by a
coherence event and one invalidated due to exclusion or
L2 replacement. Note that the compression tag is main-
tained even for NP lines for use by the adaptive com-
pression policy.

Data segments are stored contiguously in address tag
order. That is, the offset for the first data segment of line
k is:

A line’s actual size is determined by the compression
tag (Figure 2) and the eight segment offsets are com-
puted in parallel with the address tag match using a 5-bit
parallel-prefix adder. On an address tag match, the seg-
ment offset and actual length are used to access the cor-
responding segments in the data array. The array is split
into banks for even and odd segments, allowing two seg-
ments (16 bytes) to be fetched per cycle regardless of
the alignment [19].

Because the L1 and L2 caches maintain exclusion, an
L1 replacement writes back both clean and dirty lines to
the L2 cache. In many cases, the writeback finds a
matching address tag, with space allocated, in state NP.
If the compressed size is the same as before, this write-

back is trivial. However, if the address tag is not found,
or the compressed size has changed, the cache controller
must allocate space in the set. This may entail replacing
one or more L2 lines or compacting invalid/not present
lines to make space. More than one line may have to be
replaced if the newly allocated line is larger than the
LRU line plus the unused segments. In this case, we
replace at most two lines by replacing the LRU line and
searching the LRU list to find the least-recently-used
line that ensures we have enough space.

Compacting a set requires moving tags and data seg-
ments to maintain the contiguous storage invariant. This
operation can be quite expensive, because it may require
reading and writing all the set’s data segments. For this
reason, compaction is deferred as long as possible and is
never needed on a read (e.g., L1 fill) access. With a large
L1 victim cache and sufficient L2 cache banks, compac-
tion will have negligible impact on performance.

A decoupled variable-segment cache adds relatively lit-
tle storage overhead. For example, consider a 4-way,
4 MB uncompressed cache with 64-byte lines. Each set
has 2048 data bits, in addition to four tags. Each tag
includes a 24-bit address tag, a 2-bit LRU state, and a 2-
bit permission, for a total of 4*(24+2+2)=112 bits per
set. Our scheme adds four extra tags, increases the LRU
state to three bits and adds a 4-bit compression tag per
line. This adds 112+8*1+8*4=152 bits per set, which
increases the total cache storage by approximately 7%.

2.3  Frequent Pattern Compression (FPC)

L2 cache compression requires a low-latency hardware
compression algorithm. We implemented a significance-
based scheme called Frequent Pattern Compression
(FPC) [4]. Compared to the dominant dictionary-based
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Permissions: States M (modified), S (shared), I (invalid), NP (not present)
CStatus: 1 if line is compressed, 0 otherwise
CSize: Size of compressed line (in segments) if compressed
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Figure 2. A single set of the decoupled variable-segment cache.

segment_offset k( ) actual_size i( )
i 1=

k 1–

∑=

Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04) 
1063-6897/04 $ 20.00 © 2004 IEEE 



approaches [17, 26], FPC has a lower decompression
latency and comparable compression ratios. FPC
decompresses a 64-byte line in five cycles, assuming 12
FO4 gate delays per cycle. The 64-byte L2 cache lines
are compressed into one to eight 8-byte segments. Simu-
lation results show compression ratios (i.e., original size
divided by compressed size) of 1.3-2.4 for selected SPE-
Cint benchmarks and commercial workloads, but only
1.0–1.3 for selected SPECfp benchmarks.

3  Adaptive Cache Compression

While compression helps eliminate long-latency L2
misses, it increases the latency of the (usually more fre-
quent) L2 hits. Thus, some benchmarks (or benchmark
phases) will benefit from compression, but others will
suffer. For a simple, in-order blocking processor, L2
cache compression will help if:

Where penalized L2 hits are those that unnecessarily
incur the decompression penalty. Rearranging terms
yields:

For a 5 cycle decompression penalty and 400 cycle L2
miss penalty, compression wins if it eliminates at least
one L2 miss for every 400/5=80 penalized L2 hits.
While this may be easily achieved for memory-intensive
commercial workloads, smaller workloads—that fit in a
large L2 cache—may suffer degraded performance.

Ideally, a compression scheme should compress data
when the benefit (i.e., avoided misses) outweighs the
cost (i.e., penalized L2 hits). This section describes the
central innovation in this paper: an adaptive predictor
that monitors the actual effectiveness of compression
and uses this feedback to dynamically determine
whether to store a line in a compressed or uncompressed
form. Simulation results (Section 5) show that this adap-
tive policy obtains most of the benefit of compression
when it helps, while never performing much worse than
not compressing.

3.1  Classification of Cache References

The key insight underlying our adaptive compression
policy is that the LRU stack depth and compressed size
determine whether compression helps or hurts a given
reference. The example in Figure 3 illustrates the differ-
ent cases using the LRU stack of a single cache set.

Classification of hits:

•A reference to Address A hits at stack depth 1.
Because the set can hold four uncompressed lines
and the LRU stack depth is less than or equal to
four, compression provides no benefit. Conversely,

since the data is stored uncompressed, the reference
incurs no decompression penalty. We call this case
an unpenalized hit.

•A reference to Address C hits at stack depth 3.
Compression does not help, since the line would be
present even if all lines were uncompressed. Unfor-
tunately, since the block is stored in compressed
form, the reference incurs an unnecessary decom-
pression penalty. We call this case a penalized hit.

•A reference to Address E hits at stack depth 5. In
this case, compression has eliminated a miss that
would otherwise have occurred. We call this case an
avoided miss.

Classification of misses:

•A reference to Address G misses in the cache, but
matches the address tag at LRU stack depth 7. The
sum of the compressed sizes at stack depths 1
through 7 totals 29. Because this is less than 32 (the
number of data segments per set), this reference
misses only because one or more lines at stack
depths less than 7 are stored uncompressed (i.e.,
Address A could have been stored in two seg-
ments). We call this case an avoidable miss.

•A reference to Address H misses in the cache, but
matches the address tag at LRU stack depth 8.
However, this miss cannot be avoided because the
sum of compressed sizes exceeds the total number
of segments (i.e., 35 > 32). Similarly, a reference to
Address I does not match any tag in the stack. We
call each of these cases an unavoidable miss.

The cache controller uses the LRU state and compres-
sion tags to determine the class of each L2 reference.
The avoidable miss calculation is implemented using a
five-bit parallel-prefix adder with 8:1 multiplexors on
the inputs to select compressed sizes in LRU order. Note

avoided L2 misses L2 miss penalty×( )
penalized L2 hits decompression penalty×( )>

avoided L2 misses penalized L2 hits⁄( )
decompression penalty L2 miss penalty⁄( )>

Stack
Depth

Address
Tag

CStatus
CSize

(Segments)
Perm.

1 A Uncompr. 2 M

2 B Uncompr. 8 M

3 C Compr. 4 M

4 D Compr. 3 M

5 E Compr. 2 M

6 F Compr. 7 M

7 G Uncompr. 5 NP

8 H Uncompr. 6 NP

Figure 3. A cache set example.

Address tags are shown in LRU order (Address A is the most
recent). The first six tags corresponds to lines in the cache,
while the last two correspond to evicted lines (Permissions =
NP). Addresses C, D, E and F are stored in compressed form.
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that this parallel-prefix add uses the compressed sizes,
whereas the parallel-prefix add discussed in Section 2.2
uses the actual sizes. To save hardware, a single parallel-
prefix adder can be time-multiplexed, since gathering
compression information is not time critical, and the
data array access takes longer than the tag access.

3.2  Global Compression Predictor

Like many predictors, the adaptive compression policy
uses past behavior to predict the future. Specifically, the
controller uses the classification above to update a glo-
bal saturating counter—called the Global Compression
Predictor (GCP)—to estimate the recent cost or benefit
of compression. On a penalized hit, the controller biases
against compression by subtracting the decompression
penalty. On an avoided or avoidable miss, the controller
increments the counter by the (unloaded) L2 miss pen-
alty. To reduce the counter size, we normalize these val-
ues to the decompression latency, subtracting one and
adding the miss penalty divided by decompression
latency (e.g., 400 cycles / 5 cycles = 80).

The controller uses the GCP when allocating a line in
the L2 cache. Positive values mean compression has
been helping eliminate misses, so we store the line in
compressed form. Negative values mean compression
has been penalizing hits, so we store the line uncom-
pressed. All allocated lines—even those stored uncom-
pressed—must run through the compression pipeline to
calculate their compressed size, which is used to deter-
mine avoidable misses.

The size of the saturating counter determines how
quickly the predictor adapts to workload phase changes.
The results in this paper use a single global 19-bit
counter that saturates at 262,143 or -262,144 (approxi-
mately 3300 avoided or avoidable misses). Using a large
counter means the predictor adapts slowly to phase
changes, preventing short bursts from degrading long-
run behavior. Section 6.4 examines the impact of work-
load phase behavior on compression.

While we assume LRU replacement in this paper, any
stack algorithm—including random [32]—will suffice.
Moreover, the stack property only needs to hold for lines
that either do or might have fit due to compression (e.g.,
LRU stack depths 5–8 in our design). We can use any
arbitrary replacement policy for the top four elements in
the “stack.”

4  Evaluation Methodology

We present an evaluation of adaptive compression on a
dynamically-scheduled out-of-order processor using
full-system simulation of commercial workloads and a
subset of the SPECcpu2000 benchmarks.

4.1  System Configuration

We evaluated the performance of our compressed cache
designs on a dynamically-scheduled SPARC V9 unipro-
cessor using the Simics full-system simulator [30],
extended with a detailed processor simulator (TFSim
[33]), and a detailed memory system timing simulator
[31]. Our target system is a superscalar processor with
out-of-order execution. Table 1 presents our basic simu-
lation parameters.

4.2  Workloads

To evaluate our design against alternative schemes, we
used several multi-threaded commercial workloads from
the Wisconsin Commercial Workload Suite [2]. We also
used eight of the SPECcpu2000 [38] benchmarks: four
from the integer suite and four from the floating point
suite. All of these workloads run under the Solaris 9
operating system. These workloads are briefly described
in Table 2. We selected these workloads to cover a wide
range of compressibility properties, miss rates and
working set sizes. For each data point in our results, we
present the average and the 95% confidence interval of
multiple simulations to account for space or time vari-
ability [3]. Our runtime results for commercial work-
loads represent the average number of cycles per
transaction (or request), whereas runtime results for
SPEC benchmarks represent the average number of
cycles per instruction (CPI).

Table 1. Simulation Parameters

L1 Cache
Configuration

Split I & D, each 64 KB (unless other-
wise specified) 2-way set associative
with LRU replacement, 64-byte line, 2-
cycle access time

L2 Cache
Configuration

Unified 4 MB (unless otherwise speci-
fied), 8-way set associative with LRU
replacement, 64-byte line

L2 Cache Hit
Latency

Uncompressed: 20 cycles, Compressed:
25 cycles (20 + 5 decompression cycles)

Memory
Configuration

4 GB of DRAM, 400 cycles access time
(unless otherwise specified) with infinite
chip-to-memory bandwidth

Processor
Pipeline

4-wide superscalar, 11-stage pipeline—
Pipeline stages: fetch (3), decode (3),
schedule (1), execute (1 or more), retire
(3)

Reorder
Buffer

64-entry ROB

Branch
Predictors

1 KB YAGS direct branch predictor
[14], a 64-entry cascaded indirect branch
predictor [13], and a 64-entry return
address stack predictor [24]
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5  Evaluation of Adaptive Compression

To understand the utility of adaptive compression, we
compare it with two extreme policies: Never and
Always. Never models a standard 8-way set associative
L2 cache design, where data is never stored compressed.
Always models a decoupled variable-segment cache
(Section 2.2), but always stores compressible data in
compressed form. Thus Never strives to reduce hit
latency, while Always strives to reduce miss rate. Adap-
tive uses the policy described in Section 3 to utilize
compression only when it predicts that the benefits out-
weigh the overheads.

5.1  Effective Cache Capacity

This section examines the compression ratio achieved in
the decoupled variable-segment L2 cache. Figure 4 pre-
sents the average effective cache capacity (and 95%

confidence intervals). Effective cache capacity is com-
puted by counting the valid cache lines in samples taken
every 100 million cycles. These benchmark runs use the
baseline configuration of a 128 KB split L1 cache and a
4 MB unified L2 cache.

Without compression, the maximum cache size is 4 MB.
Under the Never policy, most workloads approach this
maximum, although maintaining exclusion between L1
and L2 caches prevents them from quite reaching it. The
twolf benchmark illustrates that some workloads do not
fully utilize large L2 caches, and hence are unlikely to
benefit much from cache compression. The Always and
Adaptive results show that many workloads can poten-
tially benefit significantly from cache compression. The
memory-intensive commercial workloads achieve effec-
tive cache capacities of 5–7 MB, a 25–75% increase.

Table 2. Workload Descriptions

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models the database
activity of a wholesale supplier, with many concurrent users performing transactions. Our OLTP workload is based on the
TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system. We use a 5 GB database with 25,000
warehouses stored on eight raw disks and an additional dedicated database log disk. We reduced the number of districts per
warehouse, items per warehouse, and customers per district to allow more concurrency provided by a larger number of
warehouses. There are 16 simulated users, and the database is warmed up for 100,000 transactions before taking measurements
for 300 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier system, focusing on the
middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experiments use two threads and two
warehouses, a data size of ~44 MB, a warmup interval of 200,000 transactions, and a measurement interval of 20,000
transactions.

Static Web Serving: Apache. We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks and minimal log-
ging as the web server. We use SURGE [5] to generate web requests. We use a repository of 20,000 files (totalling ~500 MB),
and disable Apache logging for high performance. We simulate 400 clients, each with 25 ms think time between requests, and
warm up for 50,000 requests before taking measurements for 3000 requests.

Static Web Serving: Zeus. Zeus is another static web serving workload driven by SURGE. Zeus uses an event-driving server
model. Each processor of the system is bound by a Zeus process, which is waiting for web serving event (e.g., open socket,
read file, send file, close socket, etc.). The rest of the configuration is the same as Apache (20,000 files of ~500 MB total size,
400 clients, 25 ms think time, 50,000 requests for warmup, 3000 requests for measurements).

SPEC. We use four integer benchmarks (bzip, gcc, mcf and twolf) and four floating point benchmarks (ammp, applu, equake,
and swim) from the SPECcpu2000 set to cover a wide range of compressibility properties and working set sizes. We use the
first reference input for each benchmark. We fast forward each benchmark for 1 billion instructions, and simulate the next 1 bil-
lion instructions.
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Figure 4. Average cache capacity during benchmark runs (4 MB uncompressed size).
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5.2  Miss Rates for Compressed Caches

Using compression to increase effective cache capacity
should tend to decrease the L2 miss rate. Figure 5 pre-
sents the average miss rates for our benchmarks. The
results are normalized to Never to focus on the benefit of
compression, but the absolute misses per 1000 instruc-
tions for Never are included at the bottom. Both Always
and Adaptive have lower or equal miss rates when com-
pared to Never, with two exceptions. The slight increase
in the miss rate for Adaptive when compared to Never in
twolf and ammp is due to the difference in associativity.
Since we predict no compression in both of these bench-
marks, the L2 caches are 4MB, 8-way for Never and
4 MB, 4-way for Adaptive.

Not surprisingly, the commercial benchmarks achieve
substantial benefits from compression, reducing the
miss rates by 9–24%. More striking are the results for
mcf. Always reduces the miss rate by over half, despite
increasing the effective capacity by only 25%. This sug-
gests that compression increases effective cache size
sufficiently for a critical working set to fit in the L2
cache. Benchmarks with small working sets (e.g., twolf)
get little or no miss rate reduction from compression.
The four floating-point benchmarks, despite very large
working sets, do not benefit from compression (except
for ~4% for equake) due to the poor compression ratios
our compression algorithm achieves for floating-point
data.

5.3  Performance

The ultimate objective of adaptive cache compression is
to achieve performance comparable to the best of
Always or Never. Reducing the cache miss rate, as
Always does for some benchmarks, may be outweighed
by the increase in hit latency. Figure 6 presents the sim-
ulated runtime of our twelve benchmarks, normalized to
the Never case. Most of the benchmarks that have sub-
stantial miss rate reductions under Always also improve
runtime performance (e.g., a speedup of 17% for
apache, 7% for zeus, and 35% for mcf). However, the
magnitude of this improvement depends upon the abso-
lute frequency of misses. For example, jbb and zeus
have similar relative miss rate improvements, but since
zeus has more than four times as many misses per
instruction, its performance improvement is greater. On
the other hand, benchmarks with smaller working sets
(e.g., gcc, twolf, ammp) do not benefit from greater
cache capacity. Ammp is the extreme example in our
benchmark set, with Always’s performance degrading
by roughly 18% compared to Never.

Figure 6 also shows that Adaptive achieves most of the
benefit of Always for benchmarks that benefit from com-
pression. In addition, for benchmarks that do not benefit
from compression, it degrades performance by less than
0.4% compared to Never. Mcf is the one benchmark
where Adaptive performs substantially less well than
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Figure 5. L2 cache miss rate for the three compression alternatives (128K/4MB configuration),
normalized to the “Never” miss rate, shown at the bottom.

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

Never
Always
Adaptive

bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

Figure 6. Runtime for the three compression alternatives, normalized to the “Never” runtime.
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Always (26% vs. 35%) due to the benchmark’s phase
behavior, as explained in Section 6.4.

5.4  Summary

The results in this section show that while some mem-
ory-intensive benchmarks benefit significantly from
compression, other benchmarks receive little benefit or
even degrade significantly. For our benchmarks, Adap-
tive achieves the best of both worlds, improving perfor-
mance by using compression when it helps, while not
hurting performance when compression does not help.

6  Sensitivity of Adaptive Compression

The effectiveness of cache compression depends upon
the interaction between a workload’s working-set size
and the caches’ sizes and latencies. Adaptive cache
compression is designed to dynamically adjust its com-
pression decisions to approach the performance of the
better of the two static policies Always and Never. In this
section, we investigate how well Adaptive adjusts to
changes in L1 and L2 cache sizes, decompression
latency, and benchmark phases. We focus on four
benchmarks that represent opposite sides of the spec-
trum: mcf and apache that are helped by compression;
and ammp and gcc that are hurt by compression.

6.1  Sensitivity to L2 Cache Size

Cache compression works best when it can increase the
effective L2 size enough to hold a workload’s critical
working set. Conversely, compression provides little or
no benefit when the working set is either much larger, or
much smaller, than the L2 cache size. Figure 7 illus-
trates this by presenting normalized runtime for various
L2 cache sizes, assuming a fixed L2 access latency. For
ammp and gcc, compression helps performance for
smaller cache sizes, since compression allows the L2
cache to hold more data (e.g., compression allows
ammp to hold an average of ~1.2 MB in a 1 MB L2,
resulting in a 49% speedup). However, compression
hurts performance for larger cache sizes, since compres-
sion increases the hit latency but doesn’t significantly
increase the effective cache size. At the other extreme,
mcf and apache only benefit from compression for
larger caches (4 and 16 MB), since the working set is
too large to fit in the smaller cache sizes, even with com-
pression. For all cases, Adaptive adapts its behavior to
match the better of Always and Never.

6.2  Sensitivity to L1 Cache Size

The effectiveness of L2 cache compression depends on
the overhead incurred decompressing lines on L2 hits.
Since the L1 filters requests to the L2, the L1 size
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impacts this overhead. As the L1 cache size increases,
references that would have hit in the L2 are now satis-
fied in the L1. Thus the decompression overhead tends
to decrease. Conversely, as the L1 size decreases, the L2
incurs more penalized hits due to the increased number
of L1 misses. Figure 8 illustrates this tradeoff for a
4 MB L2 cache, assuming a fixed L1 access latency. For
these benchmarks and parameters, increasing L1 size
has very little impact on the relative benefit of compres-
sion.

6.3  Adapting to Decompression Latency

All cache compression schemes are highly sensitive to
the decompression latency. Larger decompression laten-
cies decrease the appeal of cache compression by
increasing the effective access latency. Figure 9 presents
normalized runtime for four benchmarks as the decom-
pression latency varies from 0 to 25 cycles. These
results show that Adaptive adjusts to changes in decom-
pression latency, and usually achieves performance
comparable to the better of Always and Never. Mcf is the
notable exception, where Adaptive degrades to Never for
large decompression latencies. This behavior is due to
rapid phase changes in the benchmark and their impact
on the global predictor. We examine this further in the
next section.

6.4  Adapting to Benchmark Phases

Many benchmarks exhibit phase behavior [37], and a
benchmark’s working set size may change between dif-
ferent phases. These changes can disrupt the Adaptive
policy, since the past (the previous phase) may not be a
good predictor of the future (the next phase). However,

even an ideal predictor—one which instantaneously
detects phase changes and accurately predicts future
behavior—cannot adapt immediately. This is because
the cache state (i.e., which lines are currently com-
pressed) depends upon the predictions made during the
previous phase. Thus the adaptive policy may incur
many avoidable misses or penalized hits before it adapts
to the new phase.

Figure 10 illustrates the phase behavior exhibited during
our simulation runs. The top graphs show changes in the
global predictor (GCP) value over time, while the lower
graphs show the effective cache size over time. Two
benchmarks, ammp and apache, exhibit no phase
changes during these relatively short simulation runs.
Thus, the global predictor and cache size remain
roughly constant. For ammp, GCP is negative and the
effective cache sizes holds steady at 4 MB. For apache,
GCP stays positive and the effective cache size fluctu-
ates around 7 MB.

The other two benchmarks exhibit distinct working set
phases. Gcc’s working set changes slowly from a size
that fits in less than 4 MB for the first 1.5 billion cycles
to a size that benefits from compression for the remain-
der of the run. Adaptive compression adjusts to this
change and compresses lines to increase the effective
cache size. For mcf, however, the phase changes are
much more frequent. In this case, the adaptive policy
alternates between predicting for and against compres-
sion. Thus, Adaptive only compresses some cache lines,
resulting in worse performance than the Always policy
(as shown in Section 5.3). Using a larger counter as our
predictor reduces this effect by increasing the hysteresis,
thus increasing the fraction of compressed lines. How-
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ever, a larger predictor also delays the response to more
well-behaved phase changes, such as the change exhib-
ited by gcc.

7  Related Work

Hardware-based compression has been used to increase
effective memory size, reduce memory address and data
bandwidth, and increase effective cache size. Although
adaptive compression has been previously applied in
software to virtual memory systems, this paper presents
the first adaptive scheme for hardware caches.

Hardware Memory Compression Designs. IBM’s
MXT technology [40] employs real-time main-memory
compression that can effectively double the main mem-
ory capacity. MXT compresses main memory data using
a parallel algorithm, Parallel Block-Referential Com-
pression with Directory Sharing, which divides each
input data block into sub-blocks, and constructs a dictio-
nary while compressing all sub-blocks in parallel [17].

Kjelso, et al. [26] use the X-Match hardware compres-
sion algorithm that maintains a dictionary and replaces
each input data element with a shorter code in case of a
total or partial match with a dictionary entry. Such com-
pression reduces communication bandwidth by com-
pacting cache-to-memory address streams [15] or data
streams [10]. Benini, et al. [8] propose a data compres-
sion/decompression scheme to reduce memory traffic in
general-purpose processor systems. They store uncom-
pressed data in the cache, and compress/decompress on
the fly when data is transferred to/from memory. They
use a differential compression scheme based on the
assumption that it is likely for data words in the same
cache line to have some bits in common [7].

Cache Compression and Related Designs. Lee, et al.
[27, 28, 29] propose a compressed memory hierarchy
model that selectively compresses L2 cache and mem-
ory blocks that can be reduced to half their original size.
Their Selective Compressed Memory System (SCMS)
uses a hardware implementation of the X-RL compres-
sion algorithm [26], a variant of the X-Match algorithm
that gives a special treatment for runs of zeros. Ahn, et
al. [1] propose several improvements on the X-RL tech-
nique that capture common values. Chen, et al. [9] pro-
pose a scheme that dynamically partitions the cache into
sections of different compressibility. Hallnor and Rein-
hardt [21] modify their indirect-index cache design to
allocate variable amounts of storage to different cache
lines based on their compressibility. Pomerene, et al.
[35] use a shadow directory scheme with more address
tags than data lines to improve upon LRU replacement.

Yang and Gupta show that a small number of distinct
values occupy a large fraction of memory access values
in the SPECint95 benchmarks [42]. This value locality
motivates their “Compression Cache” design [43].
Zhang, et al., design a value-centric data cache design
called the frequent value cache (FVC) [44], which is a
small direct-mapped cache dedicated to holding fre-
quent benchmark values. They show that augmenting a
direct mapped cache with a small FVC can greatly
reduce the cache miss rate.

Adaptive Compression in Virtual Memory Systems.
Adaptive compression has been used in virtual memory
management schemes to compress portions of main
memory (called compression caches) to avoid I/O oper-
ations caused by page faults. Douglis observes that dif-
ferent programs need compressed caches of different
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sizes [12]. He implements a simple adaptive scheme that
dynamically split main memory pages between uncom-
pressed and compressed portions. Both portions com-
pete for the LRU page in memory, and allocating a new
page is biased towards the compression cache. Cortes, et
al. [11] classify reads to the compression cache accord-
ing to whether they were caused by swapping or
prefetching, and propose optimized mechanisms to
swap pages in/out. Wilson, et al. [41] propose dynami-
cally adjusting the compressed cache size using a
cost/benefit analysis that compares various target sizes,
and takes into account the compression cost vs. the ben-
efit of avoiding I/Os. Their system uses LRU statistics of
touched pages to compare the costs and benefits of tar-
get sizes, and adjusts the compression cache size on sub-
sequent page accesses. Freedman [18] optimizes the
compression cache size for handheld devices according
to the energy costs of decompression vs. disk accesses.

8  Conclusions

In this paper, we propose an adaptive compression pol-
icy to improve the performance of high-performance
processors running memory-intensive workloads. We
use a two-level cache hierarchy where the L1 holds
uncompressed data while the L2 can optionally store
data in compressed form. Our adaptive policy dynami-
cally adjusts to the costs and benefits of compression. A
single global saturating counter predicts whether the L2
cache should store a line in compressed or uncom-
pressed form. The L2 controller updates the counter
based on whether compression could (or did) eliminate
a (potential) miss or incurs an unnecessary decompres-
sion overhead.

We show that compressing all compressible cache lines
can improve performance for some memory-intensive
workloads, while hurting the performance of other
applications that have low miss rates or low compress-
ibility. Our adaptive scheme successfully predicts work-
load behavior, thus providing a performance speedup of
up to 26% over an uncompressed cache design for
benchmarks that benefit from compression, while limit-
ing the performance degradation of other benchmarks to
less than 0.4%.
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