
APRIL: A Processor Architecture for Multiprocessing

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract
Processors in large-scale multiprocessors must be able to tol-
erate large communication latencies and synchronization de-
lays. This paper describes the architectureof a rapid-context-
switching processor called APRIL with support for fine-grain
threads and synchronization. APRIL achieves high single-
thread performance and supports virtual dynamic threads.
A commercial RISC-based implementation of APRIL and a
run-time software system that can switch contexts in about 10
cycles is described. Measurements taken for several parallel
applications on an APRIL simulator show that the overhead
for supporting parallel tasks based on futures is reduced by
a factor of two over a corresponding implementation on the
Encore Multimax. The scalability of a muItiprocessor based
on APRIL is explored using a performance model. We show
that the SPARC-based implementation of APRIL can achieve
close to 80% processor utilization with as few as three resident
threads per processor in a large-scde cache-based machine
with an average base network latency of 55 cycles.

1 Introduction

The requirements placed on a processor in a large-scale multi-
processing environment are different from those in a unipro-
cessing setting. A processor in a parallel machine must be
able to tolerate high memory latencies and handle process
synchronization efficiently [2]. This need increases as more
processors are added to the system.

Parallel applications impose processing and communica-
tion bandwidth demands on the parallel machine. An efficient
and cost-effective machine design achieves a balance between
the processing power and the communication bandwidth pro-
vided. An imbalance is created when an underutilized pro-
cessor cannot fully exploit the available network bandwidth.
When the network has bandwidth to spare, low processor

CH2887-8/90/0000/0104$01 .OO 63 1990 IEEE

utilization can result from high network latency. An efficient
processor design for multiprocessors provides a means for hid-
ing latency. When sufficient parallelism exists, a processor
that rapidly switches to an alternate thread of computation
during a remote memory request can achieve high utilization.

Processor utilization also diminishes due to synchroniz.a-
tion latency. Spin lock accesses have a low overhead of mem-
ory requests, but busy-waiting on a synchronization event
wastes processor cycles. Synchronizati.on mechanisms that
avoid busy-waiting through process blocking incur a high
overhead.

Full/empty bit synchronization [22] in a rapid context
switching processor allows efficient fine-grain synchroniza-
tion. This scheme associates synchronization information
with objects at the granularity of a data word, allowing a
low-overhead expression of maximum concurrency. Because
the processor can rapidly switch to other threads, wasteful
iterations in spin-wait loops are interleaved with useful work
from other threads. This reduces the negative effects of syn-
chronization on processor utilization.

This paper describes the architecture of APRIL, a proces-
sor designed for large-scale multiprocessing. APRIL builds
on previous research on processors for parallel architectures
such as HEP [22], MASA [8], P-RISC (1!3], [14], [15], and [18].
Most of these processors support fine-grain interleaving of in-
struction streams from multiple threads, but suffer from poor
single-thread performance. In the HEP, for example, instruc-
tions from a single thread can only be executed once every 8
cycles. Single-thread performance is important for efficiently
running sections of applications with low parallelism.

APRIL does not support cycle-by-cycle interleaving of
threads. To optimize single-thread performance, APRIL ex-
ecutes instructions from a given thread until it performs a
remote memory request or fails in a synchronization attempt.
We show that such coarse-grain multitlireading allows a sim-
ple processor design with context switch overheads of 4-10 cy-
cles, without significantly hurting overall system performance
(although the pipeline design is complicated by the need to
handle pipeline dependencies). In APRIL, thread scheduling
is done in software, and unlimited virtual dynamic threads
are supported. APRIL supports full/empty bit synchroniza-
tion, and provides tag support for futures [9]. In this paper
the terms process, thread, context, and task are used equiv-
alently.

104

By taking a systems-level design approach that considers
not only the processor, but also the compiler and run-time
system, we were able to migrate several non-critical oper-
ations into the software system, greatly simplifying proces-
sor design. APRIL’s simplicity allows an implementation
based on minor modifications to an existing RISC proces-
sor design. We describe such an implementation based on
Sun Microsystem’s SPARC processor [23]. A compiler for
APRIL, a run-time system, and an APRIL simulator are op-
erational. We present simulation results for several paral-
lel applications on APRIL’s efficiency in handling fine-grain
threads and assess the scalability of multiprocessors based on
a coarse-grain multithreaded processor using an analytical
model, Our SPARC-based processor supports four hardware
contexts and can switch contexts in about 10 cycles, which
yields roughly 80% processor utilization in a system with an
average base network latency of 55 cycles.

The rest of this paper is organized as follows. Section 2
is an overview of our multiprocessor system architecture and
the programming model. The architecture of APRIL is dis-
cussed in Section 3, and its instruction set is described in Sec-
tion 4. A SPARC-based implementation of APRIL is detailed
in Section 5. Section 6 discusses the implementation and per-
formance of the APRIL run-time system. Performance mea-
surements of APRIL based on simulations are presented in
Section 7. We evaluate the scalability of multithreaded pro-
cessors in Section 8.

2 The ALEWIFE System

APRIL is the processing element of ALEWIFE, a large-scale
multiprocessor being designed at MIT. ALEWIFE is a cache-
coherent machine with distributed, globally-shared memory.
Cache coherence is maintained using a directory-baaed proto-
col [5] over a low-dimension direct network (201. The directory
is distributed with the processing nodes.

2.1 Hardware

As shown in Figure 1, each ALEWIFE node consists of a
processing element, floating-point unit, cache, main inem-
ory, cache/directory controller and a network routing switch.
Multiple nodes are connected via a direct, packet-switched
network.

The controller synthesizes a global shared memory space
via messages to other nodes, and satisfies requests from other
nodes directed to its local memory. It maintains strong cache
coherence 171 for memory accesses. On exception conditions,
such as cache misses and failed synchronization attempts, the
controller can choose to trap the processor or to make the pro-
cessor wait. A multithreaded processor reduces the ill effects
of the long-latency acknowledgment messages resulting from
a strong cache coherence protocol. To allow experimenta-
tion with other programming models, the controller provides
special mechanisms for bypassing the coherence protocol and
facilities for preemptive interprocessor interrupts and block
transfers.

ALEWIFE MACHINE

Figure I: ALEWIFE node.

The ALEWIFE system uses a low-dimension direct net-
work. Such networks scale easily and maintain high nearest-
neighbor bandwidth. However, the longer expected latencies
of low-dimension direct networks compared to indirect mul-
tistage networks increase the need for processors that can
tolerate long latencies. Furthermore, the lower bandwidth of
direct networks over indirect networks with the same channel
width introduces interesting design tradeoffs.

In the ALEWIFE system, a context switch occurs when-
ever the network must be used to satisfy a request, or on a
failed synchronization attempt. Since caches reduce the net-
work request rate, we can employ coarse-grain multithread-
ing (context switch every 50-100 cycles) instead of fine-grain
multithreading (context switch every cycle). This simpli-
fies processor design considerably because context switches
can be more expensive (4 to 10 cycles), and functionality
such as scheduling can be migrated into run-time software.
Single-thread performance is optimized, and techniques used
in RISC processors for enhancing pipeline performance can
be applied [lo]. Custom design of a processing element is
not required in the ALEWIFE system; indeed, we are using
a modified version of a commercial RISC processor for our
first-round implementation.

2.2 Programming Model

Our experimental programming language for ALEWIFE is
M&T [16], an extended version of Scheme. Mul-T’s basic
mechanism for generating concurrent tasks is the future con-
struct. The expression (future X), where X is an arbitrary
expression, creates a task to evaluate X and also creates an
object known as a f&tire to eventually hold the value of X.
When created, the future is in an unresolved, or undeter-
mined, state. When the value of X becomes known, the fu-
ture resolves to that value, effectively mutating into the value
of X. Concurrency arises because the expression (future
X) returns the future as its value without waiting for the
future to resolve. Thus, the computation containing (future
X) can proceed concurrently with the evaluation of X. All
tasks execute in a shared address-space.

The result of supplying a future as an operand of some

105

operation depends on the nature of the operation. Non-strict
operations, such as passing a parameter to a procedure, re-
turning a result from a procedure, assigning a value to a vari-
able, and storing a value into a field of a data structure,
can treat a future just like any other kind of value. Strict
operations such as addition and comparison, if applied to an
unresolved future, are suspended until the future resolves and
then proceed, using the value to which the future resolved as
though that had been the original operand.

The act of suspending if an object is an unresolved fu-
ture and then proceeding when the future resolves is known
as touching the object. The touches that automatically oc-
cur when strict operations are attempted are referred to as
implicit touches. Mul-T also includes an ezplicit touching or
“strict” primitive (touch X> that touches the value of the
expression X and then returns that value.

Futures express control-level parallelism. In a large class
of algorithms, data parallelism is more appropriate. Barriers
are a useful means of synchronization for such applications
on MIMD machines, but force unnecessary serialization. The
same serialization occurs in SIMD machines. Implementing
data-level parallelism in a MIMD machine that allows the
expression of maximum concurrency requires cheap fine-grain
synchronization associated with each data object. We provide
this support in hardware with full/empty bits.

We are augmenting Mul-T with constructs for data-level
parallelism and primitives for placement of data and tasks.
As an example, the programmer can use future-on which
works just like a normal future but allows the specification
of the node on which to schedule the future. Extending Mul-
T in this way allows us to experiment with techniques for
enhancing locality and to research language-level issues for
programming parallel machines.

3 Processor Architecture

APRIL is a pipelined RISC processor extended with spe-
cial mechanisms for multiprocessing. This section gives an
overview of the APRIL architecture and focuses on its fea-
tures that support multithreading, fine-grain synchroniza-
tion, cheap futures, and other models of computation.

The left half of Figure 2 depicts the user-visible proces-
sor state comprising four sets of general purpose registers,
and four sets of Program Counter (PC) chains and Proces-
sor State Registers (PSR). The PC chain represents the in-
struction addresses corresponding to a thread, and the PSR
holds various pieces of process-specific state. Each register
set, together with a single PC-chain and PSR, is conceptually
grouped into a single entity called a task frame (using termi-
nology from [8]). Only one task frame is active at a given time
and is designated by a current frame pointer (FP). All register
accesses are made to the active register set and instructions
are fetched using the active PC-chain. Additionally, a set of
8 global registers that are always accessible (regardless of the
FP) is provided.

Registers are 32 bits wide. The PSR is also a 32-bit reg-
ister and can be read into and written from the general reg-

Processor State Memory

Global register
frame

Global Heap

0 Unkaded thread

Loaded thread

Figure 2: Processor State and Virtual Threads.

isters. Special instructions can read and write the FP regis-
ter. The PC-chain includes the Program Counter (PC) and
next Program Counter (nPC) which are not directly acces-
sible. This assumes a single-cycle branch delay slot. Condi-
tion codes are set as a side effect of compute instructions. A
longer branch delay might be necessary if the branch instruc-
tion itself does a compare so that condition codes need not
be saved [13]; in this case the PC chain is correspondingly
longer. Words in memory have a 32 bit data field, and have
an additional synchronization bit called the full/empty bit.

Use of multiple register sets on the processor, as in the
HEP, allows rapid context switching. A context switch is
achieved by changing the frame pointer and emptying the
pipeline. The cache controller forces a. context switch on the
processor, typically on remote network requests, and on cer-
tain unsuccessful full/empty bit synchronizations.

APRIL implements futures using the trap mechanism. For
our proposed experimental implementation based on SPARC,
which does not have four separate PC and PSR frames, con-
text switches are also caused thr0ug.h traps. Therefore, a
fast trap mechanism is essential. When a trap is signalled
in APRIL, the trap mechanism lets the pipeline empty and
passes control to the trap handler. The trap handler executes
in the same task frame as the thread that trapped so that it
can access all of the thread’s registers.

3.1 Coarse-Grain Multithreading

In most processor designs to date (e.g. [8, 22, 19, Is]), multi-
threading has involved cycle-by-cycle interleaving of threads.
Such fine-grain multithreading has been used to hide memory
latency and also to achieve high pipeline utilization. Pipeline
dependencies are avoided by maintaining instructions from
different threads in the pipeline, at the price of poor single-
thread performance.

In the ALEWIFE machine, we are primarily concerned

106

with the large latencies associated with cache misses that
require a network access. Good single thread performance
is also important,. Therefore APRIL continues executing a
single thread until a memory operation involving a remote
request (or an unsuccessful synchronization attempt,) is en-
countered. The controller forces the processor to switch to
another thread, while it services the request. This approach
is called coarse-grain m&threading. Processors in message
passing multicomputers [21, 27,6,4] have traditionally taken
this approach to allow overlapping of communication with
computation.

Context switching in APRIL is achieved by changing the
frame pointer. Since APRIL has four task frames, it can
have up to four threads loaded. The thread that is being
executed resides in the task frame pointed to by the FP. A
context switch simply involves letting the processor pipeline
empty while saving the PC-chain and then changing the FP
to point to another task frame.

Threads in ALEWIFE are virtual. Only a small subset of
all threads can be physically resident on the processors; these
threads are called loaded threads. The remaining threads are
referred to as unloaded threads and live on various queues in
memory, waiting their turn to be loaded. In a sense, the set
of task frames acts like a cache on the virtual threads. This
organization is illustrated in Figure 2. The scheduler tries
to choose threads from the set of loaded threads for execu-
tion to minimize the overhead of saving and restoring threads
to and from memory. When control eventually passes back
to the thread that suffered a remote request., the controller
shouId have completed servicing the request, provided the
other threads ran for enough cycles. By maximizing local
cache and memory accesses, the need for context switching
reduces to once every 50 or 100 cycles, which allows us to toI-
erate latencies in the range of 150 to 300 cycles with 4 task
frames (.&e Section 8).

Rapid context switching is used to hide the latency en-
countered in several other trap events, such as synchroniza-
tion faults (or attempts to load from “empty” locations).
These events can either cause’the processor to suspend execu-
tion (wait) or to take a trap. In the former case, the controller
holds the processor until the request is satisfied. This typi-
cally happens on local memory cache misses, and on certain
full/empty bit tests. If a trap is taken, the trap handling
routine can respond by:

1. spinning - immediately return from the trap and retry
the trapping instruction.

2. suritch spinning - context switch without unloading the
trapped thread.

3. blocking - unload the thread.

The above alternatives must be considered with care be-
cause incorrect choices can create or exacerbate starvation
and thrashing problems. An extreme example of starvation
is this: all loaded threads are spinning or switch spinning on

an exception condition that an unloaded thread is responsi-
ble for fulfilling. We are investigating several possible mecha-
nisms to handle such problems, including a special controller
‘initiated trap on certain failed synchronization tests, whose
handler unloads the thread.

An important aspect of the ALEWIFE system is its com-
bination of caches and multithreading. While this combina-
tion is advantageous, it also creates a unique class of thrash-
ing and starvation problems. For example, forward progress
can be halted if a context, executing on one processor is writ-
ing to a location while a context on another processor is read-
ing from it. These two contexts can easily play “cache tag”,
since writes to a location force a context switch and inval-
idation of other cached copies, while reads force a context
switch and transform read-write copies into read-only copies.
Another problem involves thrashing between an instruction
and its data; a context will be blocked if it has a load in-
struction mapped to the same cache line as the target of the
load. ,These and related problems have been addressed with
appropriate hardware interlock mechanisms.

3.2 Support for Futures

Executing a Mul-T program with futures incurs two types
of overhead not present in sequential programs. First, strict
operations must check their operands for availability before
using them. Second, there is a cost associated with creating
new threads.

Detection of Futures Operand checks for futures done in
software imply wasted cycles on every strict operation. Our
measurements with Mul-T running on an Encore Multimax
show that this is expensive. Even with clever compiler opti-
mizations, there is close to a factor of two loss in performance
over a purely sequential implementation (see Table 3). Our
solution employs a tagging scheme with hardware-generated
traps if an operand to a strict operator is a future. We be-
lieve that this hardware support is necessary to make futures
a viable construct for expressing parallelism. From an archi-
tectural perspective, this mechanism is similar to dynamic
type checking in Lisp. However, this mechanism is necessary
even in a statically typed language in the presence of dynamic
futures.

APRIL uses a simple data type encoding scheme for auto-
matically generating a trap when operands to strict operators
are futures. This implementation (discussed in Section 5) ob-
viates the need to explicitly inspect in software the operands
to every compute instruction. This is important because we
do not want to hurt the efficiency of all compute instructions
because of the possibility an operand is a future.

Lazy Task Creation Little can be done to reduce the cost,
of task creation if future is taken as a command to create
a new task. In many programs the possibility of creating an
excessive number of fine-grain tasks exists. Our solution to
this problem is called lazy task creation [17]. With lazy task
creation a future expression does not create a new task, but

107

computes the expression as a local procedure call, leaving
behind a marker indicating that a new task could have been
created. The new task is created only when some processor
becomes idle and looks for work, stealing the continuation of
that procedure call. Thus, the user can specify the maximum
p.ossible parallelism without the overhead of creating a large
number of tasks. The race conditions are resolved using the
fine-grain locking provided by the full/empty bits.

3.3 Fine-grain synchronization

Besides support for lazy task creation, efficient fine-grain syn-
chronization is essential for large-scale parallel computing.
Both the dataflow and data-parallel models of computation
rely heavily on the availability of cheap fine-grain synchro-
nization. The unnecessary serialization imposed by barri-
ers in MIMD implementations of data-parallellism can be
avoided by allowing fine-grain word-level synchronization in
data structures. The traditional test&set based synchro-
nization requires extra memory operations and separate data
storage for the lock and for the associated data. Busy-waiting
or blocking in conventional processors waste additional pro-
cessor cycles.

APRIL adopts the full/empty bit approach used in the
HEP to reduce both the storage requirements and the num-
ber of memory accesses. A bit associated with each memory
word indicates the state of the word: full or empty. The
load of an empty location or the store into a full location
can trap the processor causing a context switch, which helps
hide synchronization delay. Traps also obviate the additional
software tests of the lock in test&set operations. A similar
mechanism is used to implement I-structures in dataflow ma-
chines (31, however APRIL is different in that it implements
such synchronizations through software trap handlers.

3.4 Multimode1 Support Mechanisms

APRIL is designed primarily for a shared-memory multi-
processor with strongly coherent caches. However, we are
considering several additional mechanisms which will permit
explicit management of caches and efficient use of network
bandwidth. These mechanisms present different computa-
tional models to the programmer.

To allow software-enforced cache coherence, we have loads
and stores that bypass the hardware coherence mechanism,
and a flush operation that permits software writeback and
invalidation of cache lines. A loaded context has a fence
counter that is incremented for each dirty cache line that
is flushed and decremented for each acknowledgement from
memory. This fence counter may be examined to determine
if all writebacks have completed. We are proposing a block-
transfer mechanism for efficient transfer of large blocks of
data. Finally, we are considering an interprocessor-interrupt
mechanism (IPI) which permits preemptive messages to be
sent to specific processors. IPIs offer reasonable alternatives
to polling and, in conjunction with block-transfers, form a
primitive for the message-passing computational model.

Type Format
Compute op si 82 d
Memory Id type a d

st type d 8
Branch jcond offset

I I I 1 PC+offset I

1 imnl offset d f d + PC --l

Table 1: Basic instruction set summary.

Fixnum

Other

Cons

Future

Figure 3: Data Type Encodings.

Although each of these mechanisms adds complexity to
our cache controller, they are easily implemented in the pro-
cessor through “out-of-band” instructions as discussed in Sec-
tion 5.

4 Instruction Set

APRIL has a basic RISC instruction set augmented with spe-
cial memory instructions for full/empty bit operations, mul-
tithreading, and cache support. The attraction of an imple-
mentation based on simple SPARC processor modifications
has resulted in a basic SPARC-like design. All registers are
addressed relative to a current frame pointer. Compute in-
structions are 3-address register-to-register arithmetic/logic
operations. Conditional branch instructions take an immedi-
ate operand and may increment the I?C by the value of the
immediate operand depending on the condition codes set by
the arithmetic/logic operations. Memory instructions move
data between memory and the registers, and also interact
with the cache and the full/empty bits. The basic instruc-
tion categories are summarized in Table 1. The remainder of
this section describes features of APRIL instructions used for
supporting multiprocessing.

Data Type Formats APRIL supports tagged pointers for
Mul-T, as in the Berkeley SPUR processor [12], by encod-
ing the pointer type in the low order bits of a data word.
Associating the type with the pointer has the advantage of
saving an additional memory reference when accessing type
information. Figure 3 lists the different type encodings. An
important purpose of this type encoding scheme is to support
hardware detection of futures.

108

Name Type Reset f/e bit EL’ trap CMa response
ldtt 1 No Yes Trap
ldett 2 Yes Yes Trap
1dnt 3 No No Trap
ldent 4 Yes No Trap
1ChlW 5 No No wait
ldenw 6 Yes No wait
ldtw 7 No Yes wait
ldetw 8 Yes Yes wait
‘Empty location. %ache miss.

Table 2: Load Instructions.

Future Detection and Compute Instructions Since a
compute instruction is a strict operation, special action has to
be taken if either of its operands is a future. APRIL generates
a trap if a future is encountered by a compute instruction.
Future pointers are easily detected by their non-zero least
significant bit.

Memory Instructions Memory instructions are complex
because they interact with the full/empty bits and the cache
controller. On a memory access, two data exceptions can
occur: the accessed location may not be in the cache (a cache
miss), and the accessed location may be empty on a load or
full on a store (a full/empty exception). On a cache miss,
the cache/directory controller can trap the processor or make
the processor wait until the data is available. On full/empty
exceptions, the controller can trap the processor, or allow
the processor to continue execution. Load instructions also
have the option of setting the full/empty bit of the accessed
location to empty while store instructions have the option of
setting the bit to full. These options give rise to 8 kinds of
loads and 8 kinds of stores. The load instructions are listed
in Table 2. Store instructions are similar except that they
trap on full locations instead of empty locations.

A memory instruction also shares responsibility for detect-
ing futures in either of its address operands. Like compute
instructions, memory instructions also trap if the least sig-
nificant bit of either of their address operands are non-zero.
This introduces the restriction that objects in memory can-
not be allocated at byte boundaries. This, however, is not a
problem because object allocation at word boundaries is fa-
vored for other reasons [ll]. This trap provides support for
implicit future touches in oper*ators that dereference pointers,
e.g., car in LISP.

Full/Empty Bit Conditional Branch Instructions
Non-trapping memory instructions allow testing of the
full/empty bit by setting a condition bit indicating the state
of the memory word’s full/empty bit. APRIL provides condi-
tional branch instructions, Jfull and Jempty, that-dispatch
on this condition bit. This provides a mechanism to explicitly
control the action taken following a memory iristruction that
would normally trap on a full/empty exception.

F’rame Pointer Instructions Instructions are provided
for manipulating the register frame pointer (FP). FP points
to the register frame on which the currently executing thread
resides. An INCFP instruction increments the FP to point
to the next task frame while a DECFP instruction decrements
it. The incrementing and decrementing is done modulo the
number of task frames. RDFP reads the value of the FP into
a register and STFP writes the contents of a register into the
FP.

Instructions for Other Mechanisms The special mech-
anisms discussed in Section 3.4, such as FLUSH are made
available through “out-of-band” instructions. Interprocessor-
interrupts, block-transfers, and FENCE operations are initiated
via memory-mapped I/O instructions (LDIO, STIO).

5 An Implementation of APRIL

An ALEWIFE node consists of several interacting subsys-
tems: processor, floating-point unit, cache, memory, cache
and directory controller, and network controller. For the hrst
round implementation of the ALEWIFE system, we plan to
use a modified SPARC processor and an unmodified SPARC
floating-point unit.’ There are several reasons for this choice.
First, we have chosen to devote our limited resource% to the
design of a custom ALEWIFE cache and directory controller,
rather than to processor design. Second, the register windows
in the SPARC processor permit a simple implementation of
coarse-grain multithreading. Third, most of the instructions
envisioned for the original APRIL processor map directly to
single or double instruction sequences on the SPARC. Soft-
ware compatibility with a commercial processor allows easy
access to a large body of software. Furthermore, use of a
standard processor permits us to ride the technology curve;
we can take advantage of new technology as it is developed.

Rapid Context Switching on SPARC SPARC proces-
sors contain an implementation-dependent number of over-
lapping register windows for speeding up procedure calls.
The current register window is altered via SPARC instruc-
tions (SAVE and RESTORE) that modify the Current Window
Pointer (CWP). Traps increment the CWP, while the trap
return instruction (RETT) decrements it. SPARC’s register
windows are suited for rapid context switching and rapid trap
handling because most of the state of a process (i.e., its 24
local registers) can be switched with a single-cycle instruc-
tion. Although we are not using multiple register windows
for procedure calls within a single thread, this should not
significantly hurt performance [25, 241.

To implement coarse-grain multithreading, we use two
register windows per task frame - a user window and a trap
window. The SPARC processor chosen for our implementa-
tion has eight register windows, allowing a maximum of four

‘The SPARGbased implementation effort is in collaboration with
LSI Logic Corporation.

109

hardware task frames. Since the SPARC does not have mul-
tiple program counter (PC) chains and processor status regis-
ters (PSR), our trap code must explicitly save and restore the
PSRs during context switches (the PC chain is saved by the
trap itself). These values are saved in the trap window. Be-
cause the SPARC has a minimum trap overhead of five cycles
(for squashing the pipeline and computing the trap vector),
context switches will take at least this long. See Section 6.1
for further information.

The SPARC floating-point unit does not support register
windows, but has a single, 32-word register file. To retain
rapid context switching ability for applications that require
efficient floating point performance, we have divided the float-
ing point register file into four sets of eight registers. This is
achieved by modifying floating-point instructions in a context
dependent fashion as they are loaded into the FPU and by
maintaining four different sets of condition bits. A modifica-
tion of the SPARC processor will make the CWP available
externally to allow insertion into the FPU instruction.

Support for Futures We detect futures on the SPARC
via two separate mechanisms. Future pointers are tagged
with their lowest bit set. Thus, direct use of a future pointer
is flagged with a word-alignment trap. Furthermore, a strict
operation, such as subtraction, applied to one or more future
pointers is flagged with a modified non-/hum trap, that is
triggered if a.n operand has its lowest bit set (as opposed to
either one of the lowest two bits, in the SPARC specification).

Implementation of Loads and Stores The SPARC def-
inition includes the Alternate Space Indicator (ASI) fea-
ture that permits a simple implementation of APRIL’s many
load and store instructions (described in Section 4). The
ASI is available externally as an eight-bit field. Normal
memory accesses use four of the 256 AS1 values to indi-
cate user/supervisor and instruction/data accesses. Special
SPARC load and store instructions (LDASI and STASI) permit
use of the other 252 AS1 values. Our first-round implementa-
tion uses different AS1 values to distinguish between flavors
of load and store instructions, special mechanisms, and I/O
instructions.

Interaction with the Cache Controller The Cache con-
troller in the ALEWIFE system maintains strong cache co-
herence, performs full/empty bit synchronization, and im-
plements special mechanisms. By examining the processor’s
AS1 bits during memory accesses, it can select between dif-
ferent load/store and synchronization behavior, and can de-
termine if special mechanisms should be employed. Through
use of the Memoiy Exception (MEXC) line on SPARC, it
can invoke synchronous traps corresponding to cache misses
and synchronization (full/empty) mismatches. The controller
can suspend processor execution using the MHOLD line. It
passes condition information to the processor through the Co-
processor Condition bits (CCCs), permitting the full/empty
conditional branch instructions (Jfull and Jempty) to be im-
plemented as coprocessor branch instructions. Asynchronous

traps (IPI’s) are delivered via the SP.4RC’s asynchronous
trap lines.

6 Compiler and Run-Time System

The compiler and run-time system are integral parts of the
processor design effort. A Mul-T compiler for APRIL and
a run-time system written partly in APRIL assembly code
and partly in T have been implemented. Constructs for user-
directed placement of data and processes have also been im-
plemented. The run-time system includes the trap and sys-
tem routines, Mul-T run-time support, a scheduler, and a
system boot routine.

Since a large portion of the support for multithreading,
synchronization and futures is provided in software through
traps and run-time routines, trap handling must be fast. Be-
low, we describe the implementation and performance of the
routines used for trap handling and context switching.

6.1 Cache Miss and FW/Elmpty Traps

Cache miss traps occur on cache misses that require a net-
work request and cause the processor to context switch.
Full/empty synchronization exceptions can occur on certain
memory instructions described in Section 4. The processor
can respond to these exceptions by spinning, switch spinning,
or blocking the thread. In our current implementation, traps
handle these exceptions by switch spinning, which involves a
context switch to the next task frame.

In our SPARC-based design of APRIL, we implement con-
text switching through the trap mechanism using instructions
that change the CWP. The following is a trap routine that
context switches to the thread in the next task frame.

rdpsr psrreg ; save PSR into a reserved reg.
save ; increment the vindov pointer
save ; by 2
urpsr psrreg ; restore PSR for the nev contht
jmpl r17 ; return from trap and
rett r18 ; reexecute trapping instruction

We count 5 cycles for the trap mechanism to allow the
pipeline to empty and save relevant processor state before
passing control to the trap handler. The above trap handler
takes an additional 6 cycles for a total of 11 cycles to effect
the context switch. In a custom APRIL implementation, the
cycles lost due to PC saves in the hardware trap sequence, and
those in calling the trap handler for the PSR saves/restores
and double incrementing the frame pointer could be avoided,
allowing a four-cycle context switch.

6.2 Future Touch Trap

When a future touch trap is signalled, the future that caused
the trap will be in a register. The trap handler has to decode
the trapping instruction to find that register. The future is
resolved if the fuIl/empty bit of the future’s value slot is set

110

to full. If it is resolved, the future in the register is replaced
with the resolved value; otherwise the trap routine can decide
to switch spin or block the thread that trapped. Our future
touch trap handler takes 23 cycles to execute if the future is
resolved.

If the trap handler decides to block the thread on an unre-
solved future, the thread must be unloaded from the hardware
task frame, and an alternate thread may be loaded. Loading
a thread involves writing the state of the thread, including its
general registers, its PC chain, and its PSR, into a hardware
task frame on the processor, and unloading a thread involves
saving the state of a thread out to memory. Loading and un-
loading threads are expensive operations unless there is spe-
cial hardware support for block movement of data between
registers and memory. Since the scheduling mechanism favers
processor-resident threads, loading and unloading of threads
should be infrequent. However, this is an issue that is under
investigation,

7 Performance Measurements

This section presents some results on APRIL’s performance in
handling fine-grain tasks. We have implemented a simulator
for the ALEWIFE system written in C and T. Figure 4 illus-
trates the organization of the simulator. The Mul-T compiler
produces APRIL code, which gets linked with the run-time
system to yield an executable program. The instruction-level
APRIL processor simulator interprets APRIL instructions.
It is written in T and simulates 40,000 APRIL instructions
per second when run on a SPARCServer 330. The processor
simulator interacts with the cache and directory simulator
(written in C) on memory instructions. The cache simula-
tor,+ turn interacts with the network simulator (also written
in C)’ when making remote memory operations. The simula-
tor has proved to be a useful tool in evaluating system-wide
architectural tradeoffs as it provides more accurate results
than a trace driven simulation. The speed of the simulator
has allowed US to execute lengthy parallel programs. As an
example, in a run of speech (described below), the simulated
program ran for 100 million simulated cycles before complet-
ing.

Evaluation of the ALEWIFE architecture through simu-
lations is in progress. A sampling of our results on the perfor-
mance of APRIL running parallel programs is presented here.
Table 3 lists the execution times of four programs written in
M&T: fib, factor, queens and speech. fib is the ubiq-
uitous doubly recursive Fibonacci program with ‘future’s
around each of its recursive calls, factor finds the largest
prime factor of each number in a range of numbers and sums
them up, queens finds all solutions to the n-queens chess
problem for n = 8 and speech is a modified Viterbi graph
search algorithm used in a connected speech recognition sys-
tem called SUMMIT, developed by the Spoken Language Sys-
tems Group at MIT. We ran each program on the Encore Mul-
timax, on APRIL using normal task creation, and on APRIL
using lazy task creation. For purposes of comparison, execu-
tion time has been normalized to the time taken to execute a

Single-processor
Other parallel tracers: execution trace of
trap bit, ATUMP M&T program parallel program

Multima; program APRIL mach,ine language program

I I I 1

Parad traces
t

Memory requests/ads

11 I

Memo
z reques acks

I

1 Cache I

Figure 4: Simulator Organization.

sequential version of each program, i.e., with no futures and
compiled with an optimizing T-compiler.

The difference between running the same sequential code
on T and on Mul-T on the Encore Multimax (columns “T
seq” and “Mu1-T seq”) is due to the overhead of future detec-
tion. Since the Encore does not support hardware detection
of futures, an overhead of a factor of 2 is introduced, even
though no futures are actually created. There is no overhead
on APRIL, which demonstrates the advantage of tag support
for futures.

The difference between running sequential code on Mul-
T and running pamlIe code on ML&T with one processor
(“Mu1-T seq” and 1) is due to the overhead of thread creation
and synchronization in a parallel program. This overhead is
very large for the fib benchmark ‘on both the Encore and
APRIL using normal task creation because of very fine-grain
thread creation. This overhead accounts for approximately
a factor of 28 in execution time. For APRIL with normal
futures, this overhead accounts for a factor of 14. Lazy task
creation on APRIL creates threads only when the machine
has the resources to execute them, and performs much better
because it has the effect of dynamically partitioning the pro-
gram into coarser-grain threads and creating fewer futures.
The overhead introduced is only a factor of 1.5. In all of the
programs, APRIL consistently demonstrates lower overhead
due to support for thread creation and synchronization over
the Encore.

Measurements for multiple processor executions on
APRIL (2 - 16) used the processor simulator without the
cache and network simulators, in effect simulating a shared-
memory machine with no memory latency. The numbers
demonstrate that APRIL and its run-time system allow par-

111

T Mul-T
Program I Svstem seq sep 1 11 21 41 81 16

we 1.0 1.8 1 28.9 1 16.3 I 9.2 I 5.1 I Enn
flb APRIL 1.0 1.0 14.2 7.1 3.6 1.8 0.97

Apr-lazy 1.0 1.0 1.5 0.78 0.44 0.29 0.19

Encore 1.0 1.4 1.9 0.96 0.50 0.26
factor APRIL 1.0 1.0 1.8 0.90 0.45 0.23 0.12

Apr-lazy 1.0 1.0 1.0 0.52 0.26 0.14 0.09
Encore

1

1.0 1.8 2.1 ,, 1.0 0.54 0.31 .
.IL - 1.0 1.0 1.4 0.67 0.33 0.18 0.10

Apr-lazy 1.0 1.0 1.0 0.51 0.26 0.13 0.07
Encore 1.0 2.0 2.3 1.2 0.62 0.36

speech APRIL 1.0 1.0 1.2 0.60 0.31 0.17 0.10
Aor-lazv 1.0 1.0 1.0 0.52 0.27 0.16 0.09

I queens lAPR

Table 3: E xecution time for M&T benchmarks. “T seq” is T
running sequential code, “Mu]-T seq” is Mul-T running sequential
code, 1 to 16 denote number of processors running parallel code.

allel program performance to scale when synchronization and
task creation overheads are taken into account, but when
memory latency is ignored. The effect of communication
in large-scale machines depends on several factors such as
scheduling, which are active areas of investigation.

8 Scalability of Multi t hreaded
Processor Systems

Multithreading enhances processor efficiency by allowing ex-
ecution to proceed on alternate threads while the memory
requests of other threads are being satisfied. However, any
new mechanism is useful only if it enhances overall system
performance. This section analyzes the system performance
of multithreaded processors.

A multithreaded processor design must address the trade-
off between reduced processor idle time and increased cache
miss rates, network contention, and context management
overhead. The private working sets of multiple contexta in-
terfere in the cache. The added interference misses coupled
with the higher average traffic generated by a higher utilized
processor impose greater bandwidth demands on the inter-
connection network. Context management instructions re-
quired to switch the processor between threads also add to
the overhead. Furthermore, the application must display suf-
ficient parallelism to allow multiple thread assignment to each
processor.

What is a good performance metric to evaluate multi-
threading? A good measure of system performance is system
power, which is the product of the number of processors and
the average processor utilization. Provided the computation
of processor utilization takes into account the deleterious ef-
fects of cache, network, and context-switching overhead, the
proc&sor utilization is itself a good measure.

We have developed a model for multithreaded processor
utilization that includes the cache, network, and switching

overhead effects. A detailed analysis is presented in [l]. This
section will summarize the model and our chief results. Pro-
cessor utilization U as a function of the number of threads
resident on a processor p is derived as a function of the cache
miss rate m(p), the network latency T(p), and the context
switching overhead C:

When the number of threads is small, complete overlap-
ping of network latency is not possible. Processor utilization
with one thread is l/(1 + m(l)T(l)). Ideally, with p threads
available to overlap network delays, the utilization would in-
crease p-fold. In practice, because the miss rate and network
latency increase to m(p) and T(p), the utilization becomes

P/(1 + 4P)W).
When it is possible to completety overlap network latency,

processor utilization is limited only by the context switching
overhead paid on every miss (assuming a context switch hap-
pens on a cache miss), and is given by l/(1 + n(p)C).

The models for the cache and network terms have been
validated through simulations. Both these terms are shown to
be the sum of two components: one component independent
of the number of threads p and the other linearly related to
p (to fist order). Multithreading is shown to be useful when
p is small enough that the fixed components dominate.

Let us look at some results for the default set of system
parameters given in Table 4. The analysis assumes 8000 pro-
cessors arranged in a three dimensional array. In such a sys-
tem, the average number of hbps between a random pair of
nodes is nkJ3 = 20, where n denotes network dimension and
k its radix. This yields an average round trip network la-
tency of 55 cycles for an unloaded network, when memory
latency and average packet size are taken into account. The
fixed miss rate comprises first-time fetches of blocks into the
cache, and the interference due to multiprocessor coherence
invalidations.

Parameter Value
Memorv latencv 1 10 cycles

Network dimension n - 3
Network radix k 20
Fixed miss rate 2%

Average packet size 4
Cache block size 16 bytes

Thread working set size 250 blocks
64 Kbytes

Table 4: Default system parameters.

ii

Figure 5 displays processor utilifzation as a function of
the number of threads resident on the processor when con-
text switching overhead is 10 cycles. The degree to which

112

- Ideal

Bz Network Effects
I Cache and Network Effects

ii

CS Overhead
Useful Work

2 1.0-
3

s
0.9 - . - . .

1

.
0.8, -

$ 0.7, -

t
0.6 -

g OS-
Q

0.4 -

0.3. -

0.2, -

0.1, -

o.o- 11111111, I
0 1 2 3 4 5 8 7 8

Processes p

Figure 5: Relative sizes of the cache, network and overhead com-
ponents that affect processor utilization.

the cache, network, and overhead components impact overall
processor utilization is also shown. The ideal curve shows the
increase in processor utilization when both the cache miss rate
and network contention correspond to that of a single process,
and do not increase with the degree of multithreading p.

We see that as few as three processes yield close to
80% utilization for a ten-cycle context-switch overhead which
corresponds to our initial SPARC-based implementation of
APRIL. This result is similar to that reported by Weber and
Gupta [26] for coarse-grain multithreaded processors. The
main reason a low degree of multithreading is sufficient is
that context switches are forced only on cache misses, which
are expected to happen infrequently. The marginal benefits
of additional processes is seen to decrease due to network and
cache interference.

Why is utilization limited to a maximum of about 0.80
despite an ample supply of threads? The reason is that avail-
able network bandwidth limits the mazimum rate at which
computation can proceed. When available network bandwidth
is used up, adding more processes will not improve processor
utilization. On the contrary, more processes will degrade per-
formance due to increased cache interference. In such a sit-
uation, for better system performance, effort is best spent in
increasing the network bandwidth, or in reducing the band-
width requirement of each thread.

The relatively large ten-cycle context switch overhead
does not significantly impact performance for the default set

of parameters because utilization depends on the product of
context switching frequency and switching overhead, and the
switching frequency is expected to be small in a cache-based
system, This observation is important because it allows a
simpler processor implementation, and is exploited in the de-
sign of APRIL.

A multithreaded processor requires larger caches to sus-
tain the working sets of multiple processes, although cache
interference is mitigated if the processes share code and data.
For the default parameter set, we found that caches greater
than 64 Kbytes comfortably sustain the working sets of four
processes. Smaller caches suffer more interference and reduce
the benefits of multithreading.

9 Conclusions

We described the architecture of APRIL - a coarse-grain mul-
tithreaded processor to be used in a cache-coherent multipro-
cessor called ALEWIFE. By rapidly switching to an alternate
task, APRIL can hide communication and synchronization
delays and achieve high processor utilization. The processor
makes effective use of available network bandwidth because
it is rarely idle. APRIL provides support for fine-gram task-
ing and detection of futures. It achieves high single-thread
performance by executing instructions from a given task until
an exception condition like a synchronization fault or remote
memory operation occurs. Coherent caches reduce the con-
text switch rate to approximately once every 50-106 cycles.
Therefore context switch overheads in the 4-10 cycle range
are tolerable, significantly simplifying processor design. By
providing hardware support only for performance-critical op-
erations and migrating other functionality into the compiler
and run-time system, we were able to simplify the processor
design even further.

We described a SPARC-based implementation of APRIL
that uses the register windows of SPARC as task frames for
multiple threads. A processor simulator and an APRIL com-
piler and run-time system have been written. The SPARC-
based implementation of APRIL switches contexts in 11 cy-

cles. APRIL and its associated run-time system practically
eliminate the overhead of fine-grain task creation and detec-
tion of futures. For Mul-T, the overhead reduces from 100%
on an Encore Multimax-based implementation to under 5%
on APRIL. We evaluated the scalability of multithreaded
processors in large-scale parallel machines using an analyt-
ical model. For typical system parameters and a 10 cycle
context-switch overhead, the processor can achieve close to
80% utilization with 3 processor resident threads.

10 Acknowledgements

We would like to acknowledge the contributions of the mem-
bers the ALEWIFE research group. In particular, Dan Nuss-
baum was partly responsible for the processor simulator and
run-time system and was the source of a gamut of ideas,
David Chaiken wrote the cache simulator, Kirk Johnson sup-

113

plied the benchmarks, and Gino Maa and Sue Lee wrote
the network simulator. We appreciate help from Gene Hill,
Mark Perry, and Jim Pena from LSI Logic Corporation for
the SPARC-based implementation effort. Our design was in-
fluenced by Bert Halstead’s work on multithreaded proces-
sors. Our research benefited significantly from discussions
with Bert Halstead, Tom Knight, Greg Papadopoulos, Juan
Loaiza, Bill Dally, Steve Ward, Rishiyur Nikhil, Arvind, and
John Hennessy. Beng-Hong Lim is partly supported by an
Analog Devices Fellowship. The research reported in this pa-
per is funded by DARPA contract # N00014-87-K-0825 and
by grants from the Sloan Foundation and IBM.

References

PI

[31

141

[51

PI

PI

PI

PI

PO1

WI

Anant Agarwal. Performance Tradeoffs in Multithreaded
Processors. September 1989. MIT VLSI Memo 89-566, Lab-
oratory for Computer Science.

Arvind and Robert A. Iannucci. Two Fundamental Issues in
Multiprocessing. Technical Report TM 330, MIT, Laboratory
for Computer Science, October 1987.

Arvind, R. S. Nikhil, and K. K. Pin@. I-Structures:
Data Structures for Parallel Computing. In Proceedings of
the Workshop on Graph Reduction, (Springer-Verlag Lecture
Notes in Computer Science 879), September/October 1986.

Wiiam C. Athas and Charles L. Seitz. Multicomputers:
Message-Passing Concurrent Computers. Computer, 21(8):9-
24, August 1988.

David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant
Agarwal. Directory-Based Cache-Coherence in Large-Scale
Multiprocessors. June 1990. To appear in IEEE Computer.

W. J. Dally et al. Architecture of a Message-Driven Proces-
sor. In Proceedings of the 14tk Annual Symposium on Com-
puter Arckiteclure, pages 189-196, IEEE, New York, June
1987.

Michel Dubois, Christoph Scheurich, and Faye A. Briggs.
Synchronization, coherence, and event ordering in multipro-
cessors. IEEE Computer, 9-21, February 1988.

R.H. Halstead and T. Fujita. MASA: A Multithreaded Pro-
ceesor Architecture for Parallel Symbolic Computing. In
Pmceedings of the 15th Annual International Symposium on
Computer Architecture, pages 443-451, IEEE, New York,
June 1988.

Robert H. Halstead. Multilisp: A Language.for Parallel
Symbolic Computation. ACM Tmnsactions on Programming
Languages and Systems, 7(4):501-539, October 1985.

J. L. Hennessy and T. R. Gross. Postpass Code Optimization
of Pipeline Constraints. ACM Transactions on Programming
Languages and Systems, 5(3):422-448, July 1983.

J. L. Hennessy et al. Hardware/Software Tradeoffs for Jn-
creased Performance. In Proc. SIGARCH/SIGPLAN Symp.
Architectural Support for Programming Languages and Op-
erating Systems, pages 2-11, March 1982. ACM, Palo Alto,
CA.

WI

[I31

1141

1151

W31

P71

[181

1191

PO1

WI

P21

P31

1241

[251

WI

M. D. Hill et al. Design Decisions in SPUR. Computer,
19(10):8-22, November 1986.

Mark Horowitz et al. A 32-Bit Microprocessor with 2K-Byte
On-Chip Instruction Cache. IEEE Journal of Solid-Slate
Circuits, October 1987.

R.A. Iannucci. Toward a Dataflow/von Neumann Hybrid
Architecture. In Proceedings of the 15th Annual International
Symposium on Computer Architectunz, Hawaii, June 1988.

W. J. Kaminsky and E. S. Davidson. Developing a Multiple-
Instruction-Stream Single-Chip Processor. Compuler, 66-78,
December 1979.

D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-
Performance Parallel Lisp. In Proceedings of SIGPLAN ‘KS,
Symposium on Programming Languages Design and Imple-
menation, June 1989.

Eric Mohr, David A. Kranz, and Robert H. Halstead. Lazy
task creation: a technique for increasing the granularity of
parallel tasks. In Proceedings of Symposium on Lisp and
Functional Progmmming, June 1990. To appear.

Nigel P. Topham, Amos Omondi and Roland N. Ibbett. Con-
text Flow: An Alternative to Conventional Pipelined Archi-
tectures. The Journal of Supercomputing, 2(1):29-53, 1988.

Rishiyur S. Nikhiland Arvind. Can Dataflow Subsume van
Neumann Computing? In Proceedings 16th Annual Inier-
national Symposium on Computer Archileclure, IEEE, New
York, June 1989.

Charles L. Seitz. Concurrent VLSI Architectures. IEEE
Transactions on Computers, C-33(1:!), December 1984.

Charles L. Seitz. The Cosmic Cube. CACM, 28(1):22-33,
January 1985.

B.J. Smith. A Pipelined, Shared Resource MIMD Computer.
In Proceedings of the 197’8 International Conference on Par-
allel Processing, pages 6-8, 1978.

SPARC Architecture Manual. 1988. SUN Microsystems,
Mountain View, California.

P. A. Steenkiste and J. L. Hennessy. A Simple Interproce-
dural Register Allocation Algorithm and Its Effectiveness for
LISP. ACM Transactions on Progmmming Languages and
Systems, ll(l):l-32, January 1989.

David W. Wall. Global Register Allocation at Link Time. In
SIGPLAN ‘86, Conference on Compiler Construction, June
1986.

Wolf-Dietrich Weber and Anoop Gupta. Exploring the Hen-
efits of Multiple Hardware Contexts in a Multiprocessor Ar-
chitecture: Preliminary Results. In Proceedings 16tk Annual
International Symposium on Computer Architecture, IEEE,
New York, June 1989.

[27] Colin Whitby-Strevens. The Transputer. In Proceedings 12th
Annual International Symposium on Computer Architecture,
IEEE, New York, June 1985.

114

