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Hardware Failures: Major Concern
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Tolerating Permanent Hardware Failures

Detection /\ Diagnosis

Recovery Self-repair
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Tolerating Permanent Hardware Failures

Detection

Concurrent error detection: expensive




Tolerating Permanent Hardware Failures

Detection

Online Self-Test and Diagnostics

e Non-continuous

“* Low power

e Concurrent

*+* No visible downtime Normal Operation




Tolerating Permanent Hardware Failures

Diagnosis

Online Self-Test and Diagnostics

e Localize failures

Diagnosis




Tolerating Permanent Hardware Failures

Replace / bypass faulty component(s)
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Tolerating Permanent Hardware Failures

Correction of corrupted data and states

Checkpoint Failure Failure
/ occurs detected

—>

Rollback

Recovery
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Memory Organization

rd/wr
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Memory Functional Fault Models

e Memory cell array faults

*» stuck-at, transition, coupling, etc.
e Address decode faults (AFs)

** no cell accessed, multiple cells accessed, etc.
e Read/write logic faults

*» Equivalent to memory cell array faults

Single bit / word / column / row faults dominate

[Aitken 04, Kurdahi 06, Sridharan 12]
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Spare Rows / Columns
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column
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Memory Self-Repair Using Spare Rows
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e Row decoder modified



Memory Self-Repair Using Spare Columns

— rd/v_vr L
logic
Row
decoder [ ; Self-
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e Additional multiplexers and select logic
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Spare Words
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Redundancy in Memories

® Essential to improve yield and reliability
® \Widely used in commercial RAMs
® Related topics

<+ How much redundancy?

< Bullt-in repair analysis: redundancy allocation
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How Much Redundancy?

® Yield analysis and yield learning
® Example: negative binomial memory yield model
00000= (1+00g0)
1. defect desntiy, [1: memory area
1. defect clustering coefficient (measured to be 2 or 3)

® For a memory array with N rows and 1 spare row

N0000 = 00000+0 +1)(00000)1 - 00000)
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How Much Redundancy?

® Yield analysis and yield learning

® Example: negative binomial memory yield model

D,,en = 0.002 defects/mm?2

Memory core size (mm?2)
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In Repair Analysis

® Spare rows and columns

Built

NP complete

e

*

Various algorithms and EDA tools exist

e

*

»
3

o
L
©
o

o




Special Self-Repair Techniques for Caches

® Caches: affects performance, NOT functionality

Block address Block
Tag Index | oOffset

V | Tag Data / ECC

\ 4
Decoder




Cache Line Disable/Delete

® Exist in commercial systems

< Intel [Chang 07], IBM [Sanda 08], etc.

Block address

Tag

Index

Fault-tolerance bit
Block
offset

A 4

Data/ ECC

Decoder
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Setting the FT Bit

< Cache line read _—>
v

ECC calculate and check

Correct and flag error; log faulty location (Done)

ECC error at same location already
occurred within a time threshold?

Set FT bhit
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PADded Cache

® Reconfigurable cache with programmable decoder

block 0

Conventional 1T biock 1
decoder

block 2

block 3
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PADded Cache
® Reconfigurable cache with programmable decoder

< Additional tag bits needed

Programmable
decoder

® ~ 5% area cost [Shirvani 99]

<+ 16KB, direct-mapped, 1-level programmability

<+ Reduce cost at the price of granularity
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Cache Line Delete vs. PADded Cache

Cache Size=8KB, Block Size=16bytes

—s-FTB,DM --—PAD, DM
—FTB, SA2 —— PAD, SA2
—+FTB, SA4 ----PAD, SA4

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%
Percentage of Faulty Blocks
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Core Sparing

® Utilize multi-/many-core architectures
< Core disabling also possible
® Already in commercial products
< |IBM BlueGene/Q
< Nvidia Geforce
< Cisco Metro

® Fine-grained approaches?
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Core Cannibalization

e Many-core designs with small in-order cores

s 3.5% area cost (OpenRISC 1200)

[Romanescu 08]
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Core Cannibalization: Discussion
e \What about diagnosis?
e Routing = performance impact
*» Additional wire delay pipeline stages
» Modified branch resolution, bypass logic, etc.
“» Decreased clock frequency

e Small vs. large number of faulty cores
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Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

ISsue queue

GOCNSSATIE0TG
- > .

EO® | RIEWWO

[Schuchman 05]
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Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

EOG®

ISsue queue

—>

EOC®

O(Ra) m(@(@

‘;CI:B:

" *modified
. stages

SRIEMWS

[Schuchman 05]

2 shift stages (S) added and lots design modifications
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Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

Issue queue, old half

@@@-ﬂf‘ 1ORIEMWUWNS

: Ci? " *modified

EOCE qu(_ 1 ORIEMWWNS

Issue queue, new half [Schuchman 05]
Split issue queue (same for store buffer, not shown)
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Microarchitectural Block Disabling: Discussion

e Expensive, complex, intrusive
*» Diagnosis logic
*+ Reconfiguration logic

e Coverage Issues

*» E.g., fetch stage not covered
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Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @Iicati@

v v

Advanced ISA /¢ Advanced ISA
Basic ISA =/ BasicISA
Core 1 / Core n /

[Powell 09]
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Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @alicati@

Basic?uops v Basicéuops v
¥ :

A 4

Advanced ISA

Basic ISA - Basic ISA

Core n /

[Powell 09]
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Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @alicati@

Advancedéuops X Basicéuops v

A 4

Advanced ISA

- Basic ISA

Core n /

[Powell 09]
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Architectural Core Salvaging

e Many-core CISC processor designs

Thread N
<p||catl@< Swap AppllCétl@

Advancediuops X Basiciuops v~
v

_ Advanced ISA
- Basic ISA
Core n /

[Powell 09]
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Architectural Core Salvaging

e Many-core CISC processor designs

- Thread —
@pll(iatl@‘ Swap Appllcatl@

Basicéuops v Advancedé uops v
¥ :

A 4

Ach ~"W _ Advanced ISA
Basic ISA - Basic ISA

Core n /

[Powell 09]
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Architectural Core Salvaging: Discussion

e \What about diagnosis
e Applicability
*» CISC-like architectures
e Performance
*» Depends
e Coverage Iissues

** ~50% coverage of execution
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Self-Repair for Processor Cores

e \Which technique to choose?

e Software-assisted techniques?
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Uncore Prevalent in SoCs

e Uncore examples

% Cache / DRAM controller

+» Accelerators

* |/O Interfaces

NVIDIA Tegra

r ~N
—
ARM11 GeForce
CPU GPU

IBM Power 7 |
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Uncore Self-Repair Essential

OpenSPARC T2 Processor cores
e | 12%
= ]l i == Uncore <
m—— R 12%
EDI 1 - 1 ‘ 1 | 5 )
[ D||$Iu_l
m— =I: : —_—

Memories
76%

e Cores, memories, networks-on-chip

“* Many existing technigues
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Key Message [LI ITC13]

20

Chip area
Impact (%)

EXxisting sparing techniques

Self-repair coverage (%)

98
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Key Message [LI ITC13]

20

Chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Our techniques

Self-repair coverage (%)

/5

98
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Key Message [LI ITC13]

20

Chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Performance: 0% (fault-free)
0.3% - 5% (faulty)
Power: 3%

Our techniques

75 08
Self-repair coverage (%)
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Existing Techniques Inadequate
OpenSPARC T2

e s i
S i ,g;.;.ﬂL ,‘.,L,-‘,-J.., ‘»‘!‘””rﬂ‘l‘:“‘ 1 S 1

| ¥ | G=ERSREeSan K
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Existing Techniques Inadequate

OpenSPARC T2
> >
> >
> Original - >
> > >
> >
> >
> >
> Spare - >
> - >
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Existing Techniques Inadequate

OpenSPARC T2
~ Steering
4 logic
> Original _I_
) [
%

— :
> Spare . —:D_)




Existing Techniques Inadequate

OpenSPARC T2
g Y Steering
> : logic
> .. T
> Original —E
>
__Power gating_ __

LL 2
)

@ 20% chip area cost
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New Uncore Self-Repair Techniques

ERRS: Enhanced Resource Reallocation and Sharing

[J SHE: Sparing through Hierarchical Exploration

;'
OpenSPARC T2 l | l

8 cores, 64 threads 'E. g
500M transistors B o

@ 7.5% chip area cost
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Basic Resource Reallocation & Sharing (RRS)
e Already-existing “similar” components

© No spares
e R Self-repairE
| 4cores | ccibntrol
3. Reroute i L2 mem Oleq| 1. Fault detected
1 L2 bank 8 cycle overhead
ek, N egntroia [T (faulty case only)
Crosshigh S at
block}§ s e = L2 bank 2. Resource sharing
- >
;1 s 0 | control 1
__ 4 cores ¢
il ot L2 mem 1
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Basic RRS Performance Impact

Fault-free scenario

»»»»»»

~ |L2mem 0

== o & : Y
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29 99
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Basic RRS Performance Impact

Single faulty component: 70% impact

it § Self—repair|:|
control
L2 mem Ole-

‘ 3 - - W 2 e ( L2 b?f”.k
000

i, | rgntror0 Fill buffer
Crossiiar s e ni s

oS

e 4coreS ] ¢

2

' ki ad 1i B L2 mem 1




Enhanced RRS (ERRS) Idea

ldentify |—>|

Mitigate

Desirable tradeoff?

Analyze

(Done )

57



ERRS Mitigates RRS Performance Impact

Single faulty component: 3% impact

T e ﬁ,-.ﬁf»;—SeIé{)- repair|:|

olglife]

S Fill buffer

i >

A egntrord

V.

P
<
*

blockE =5+ = =l-L2bank
==L F={"Heohtrolrl
| 4cores | $

= ~ f'_-r\',- ;;:g_ .
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ERRS on OpenSPARC T2

DRAMdata = | DI?AM bank
return: control FSM:
duplicated =~ | entries doubled
aan’ ' e

o 0o 0D oD
SB[ O00m OO0 O0m OOm S S

O0E Oo0®E ool oo

s

LZ At ) > miss fill buffer:
Processing. * | “entries doubled
duplicated

© 3.2% area, 2.7% power
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Performance Evaluation Setup

Simulators GEMS

64 single-issue in-order processor cores
Simulated 1KB private L1 data and instruction caches
CMP

4MByte shared L2 cache (8 banks)
4 DRAM controllers
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ERRS vs. Basic RRS: Performance Impact

ERRS: 3% performance impact

3%

Average
CPI
overhead

0%

1 faulty L2 controller

7
7

Basic RRS ERRS

1 faulty DRAM controller

0.7%

0.0%

64-core CMP
PARSEC benchmark programs

Basic RRS ERRS
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ERRS vs. Basic RRS: Performance Impact

ERRS: 5% performance impact

1 faulty L2 controller 1 faulty DRAM controller
18% - 25% A
Average
CPI
overhead
0% 0%
Basic RRS ERRS Basic RRS ERRS
64-core CMP

Stressed programs
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ERRS for Multiple Faulty Components

ASHE

Average
CPI
Impact
(%)

Graceful performance degradation

4 L2 bank
controllers

4 L2 bank controllers +
2 DRAM controllers

2 L2 bank
controllers

2 DRAM
controllers

>
Faulty components

64-core CMP
PARSEC benchmark programs
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Which Faults Repairable?

© All faults inside a component
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Which Faults Not Repairable?
e Single points of failure

“* Primary inputs

“* Primary outputs

s Steering logic
e Metric: self-repair coverage

“* % non-single points of failure
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ERRS Component Self-Repair Coverage
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ERRS Chip Area/Power Impact & Coverage

EXxisting sparing techniques

20

Post-layout
chip area
Impact (%)

Power: 3%

3.2

0 75 98

Self-repair coverage (%)
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<+ SHE

® Conclusion
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SHE: Sparing through Hierarchical Exploration

4 )
Component
RTL
- /

e Minimize area cost

e Balanced coverage vs. area

o

SHE

»

*» ldentical blocks = spare shared

4 h

Sparing for
component

\_ v
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he Design Hierarchy

= | =
‘ = Network controller
g‘l:h —
)
I:l | | pIO YY)
Level 1 rdmc chnl_16

chnl_15
Level 2 R
chnl_1

Level 3 \

ok

L owest level
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Sparing in Different Levels: Coarse-Grained

Network controller plo
pio XX rdmc -
rdmc ‘ e B D
Level 2

Original
Spare / steering logic




Sparing in Different Levels: Mixed Levels

Network controller

pio

pio

rdmc

pio

in

5

chnl_16

_I:[]—

chnl_15

-

chnl 1

chnl

Original

Level 2/ Level 3

Spare / steering logic
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Sparing in Different Levels: Fine-Grained

P10 oo

Network controller —Iﬁi ]:)]‘-j? %
Iy
. J

rdmc

5

‘L'[%f“ L-f”:) _

| owest level

Original
Spare / steering logic
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How to Obtain “Sweet-Spot”?

Balanced tradeoff

High

Low

Area overhead

Self-repair coverage

Deeper in hierarchy

Algorithm detalls in paper
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SHE Results

20

Post-layout
chip area
Impact (%)

3.2

EXxisting sparing techniques

ERRS

Self-repair coverage (%)

/5

98
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SHE Results

EXxisting sparing techniques

20

Post-layout
chip area
Impact (%)

SHE power impact: 0.2%
SHE performance impact: 0%

75 ERRS + SHE

Self-repair coverage (%)
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What About Diagnosis?

e Traditional fault diagnosis difficult
e Effect-cause: infeasible
“* RTL unavailable
e Cause-effect: impractical
¢ 7 petabyte fault dictionary
> [Beckler ITC12]
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Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

/8



Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

Blocks = self-repair granularity

Block 1 Block n
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Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

Pass/fall  Pass/fail n
) 1
| Local test logic |
Z Z
| I— | I—
/ \ / \ . .
T 3 T 3 Fail > self-repair needed
et Diagnosis = detection
¥ 3 ¥ 3
Block 1 Block n

= self-repair granularity 80



Summary: Self-Repair of Uncore Components

20

Post-layout
chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Performance: 0% (fault-free)
0.3% - 5% (faulty)
Power: 3%

ERRS + SHE

0 75 98

Self-repair coverage (%)
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