Self-Repair for Robust System Design

Yanjing LI
Intel Labs

Stanford University

Hardware Failures: Major Concern

COMPUTERWORLD

Update: Computer glitch causes flight delays in U.S
Numerous flights were delayec Nevember 19, 2009

BE [EES Sport Weather Travel Ft:lture) - _— .
NEWS TECHNOLOGY L'L_ @ KNOWLEDGE

13 December 2010 Last updated at 0544 ET Ld Hardware Fa]lure C'Ited 'In Paypal Outage

Amazon knocked offline by *hardware
failure'

By: Rich Miller e 0 N Tw ¥ 44
¥ Like < 0 Tweel [J +1 Share
November 4th, 2010 o - Sin

e Permanent: our focus
e Temporary

Tolerating Permanent Hardware Failures

Detection /\ Diagnosis

Recovery Self-repair

e —

Tolerating Permanent Hardware Failures

Detection

Concurrent error detection: expensive

Tolerating Permanent Hardware Failures

Detection

Online Self-Test and Diagnostics

e Non-continuous

“* Low power

e Concurrent

+ No visible downtime Normal Operation

Tolerating Permanent Hardware Failures

Diagnosis

Online Self-Test and Diagnostics

e Localize failures

Diagnosis

Tolerating Permanent Hardware Failures

Replace / bypass faulty component(s)

S T e vl i B Y 13—
i T
- ‘.
-

Self-repair

Self-repair
H%ﬁ?

Tolerating Permanent Hardware Failures

Correction of corrupted data and states

Checkpoint Failure Failure
/ occurs detected

—>

Rollback

Recovery

This Lecture

Self-repair
| —

-

F’H

Outline

e [ntroduction

e Self-repair techniques
< Memories
% Processor cores
< Uncore components

® Conclusion

10

Memory Organization

rd/wr

en —> —>

logic

Row

decoder
addr

Column

Column multiplexers

decoder _)IT

v

data_in— Data registers [¢«— Sense amplifiers

data_out

11

Memory Functional Fault Models

e Memory cell array faults

*» stuck-at, transition, coupling, etc.
e Address decode faults (AFs)

** no cell accessed, multiple cells accessed, etc.
e Read/write logic faults

*» Equivalent to memory cell array faults

Single bit / word / column / row faults dominate

[Aitken 04, Kurdahi 06, Sridharan 12]

12

Spare Rows / Columns
en | 1AM L
logic Spare
column
Row Spare
decoder /\ (OWS
addr
Column _
e Column multiplexers
1 J

data_in—{ Data registers [«— Sense amplifiers

data_out

13

Memory Self-Repair Using Spare Rows

en—| 19V L
[o]o][e!
Row
decoder_9
ada _
Column _
e Column multiplexers
1 J

data_in—{ Data registers [«— Sense amplifiers

data_out

e Row decoder modified

Memory Self-Repair Using Spare Columns

— rd/v_vr L
logic
Row
decoder [; Self-
addr Multiplexers <—| repair
Column ' control
decoder] Column multiplexers
0\ v
data_in—{ Data registers [« Sense amplifiers

datatout

e Additional multiplexers and select logic

15

Spare Words

SE(E
rd/wr Inputs as
e
eh—= logic R,i\M
R Spare
oder words
decoder
addr pool
Column
decoder _)IT Column multiplexers
!
data_in—{ Data registers [¢«— Sense amplifiers
|3 _
Self-repair
control _
[Kim 98]

data_out

16

Redundancy in Memories

® Essential to improve yield and reliability
® \Widely used in commercial RAMs
® Related topics

<+ How much redundancy?

< Bullt-in repair analysis: redundancy allocation

17

How Much Redundancy?

® Yield analysis and yield learning
® Example: negative binomial memory yield model
00000= (1+00g0)
1. defect desntiy, [1: memory area
1. defect clustering coefficient (measured to be 2 or 3)

® For a memory array with N rows and 1 spare row

N0000 = 00000+0 +1)(00000)1 - 00000)

18

How Much Redundancy?

® Yield analysis and yield learning

® Example: negative binomial memory yield model

D,,en = 0.002 defects/mm?2

Memory core size (mm?2)

19

In Repair Analysis

® Spare rows and columns

Built

NP complete

e

*

Various algorithms and EDA tools exist

e

*

»
3

o
L
©
o

o

Special Self-Repair Techniques for Caches

® Caches: affects performance, NOT functionality

Block address Block
Tag Index | oOffset

V | Tag Data / ECC

\ 4
Decoder

Cache Line Disable/Delete

® Exist in commercial systems

< Intel [Chang 07], IBM [Sanda 08], etc.

Block address

Tag

Index

Fault-tolerance bit
Block
offset

A 4

Data/ ECC

Decoder

22

Setting the FT Bit

< Cache line read _—>
v

ECC calculate and check

Correct and flag error; log faulty location (Done)

ECC error at same location already
occurred within a time threshold?

Set FT bhit

23

PADded Cache

® Reconfigurable cache with programmable decoder

block 0

Conventional 1T biock 1
decoder

block 2

block 3

24

PADded Cache
® Reconfigurable cache with programmable decoder

< Additional tag bits needed

Programmable
decoder

® ~ 5% area cost [Shirvani 99]

<+ 16KB, direct-mapped, 1-level programmability

<+ Reduce cost at the price of granularity

25

Cache Line Delete vs. PADded Cache

Cache Size=8KB, Block Size=16bytes

—s-FTB,DM --—PAD, DM
—FTB, SA2 —— PAD, SA2
—+FTB, SA4 ----PAD, SA4

12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%
Percentage of Faulty Blocks

Outline

e [ntroduction

e Self-repair techniques
< Memories
% Processor cores
< Uncore components

® Conclusion

27

Core Sparing

® Utilize multi-/many-core architectures
< Core disabling also possible
® Already in commercial products
< |IBM BlueGene/Q
< Nvidia Geforce
< Cisco Metro

® Fine-grained approaches?

28

Core Cannibalization

e Many-core designs with small in-order cores

s 3.5% area cost (OpenRISC 1200)

[Romanescu 08]
29

Core Cannibalization: Discussion
e \What about diagnosis?
e Routing = performance impact
*» Additional wire delay pipeline stages
» Modified branch resolution, bypass logic, etc.
“» Decreased clock frequency

e Small vs. large number of faulty cores

30

Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

ISsue queue

GOCNSSATIE0TG
- > .

EO® | RIEWWO

[Schuchman 05]

31

Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

EOG®

ISsue queue

—>

EOC®

O(Ra) m(@(@

‘;CI:B:

" *modified
. stages

SRIEMWS

[Schuchman 05]

2 shift stages (S) added and lots design modifications

32

Microarchitectural Block Disabling

e Disable “half pipeline way” in superscalar designs

*» 12% area cost (includes diagnosis)

Issue queue, old half

@@@-ﬂf‘ 1ORIEMWUWNS

: Ci? " *modified

EOCE qu(_ 1 ORIEMWWNS

Issue queue, new half [Schuchman 05]
Split issue queue (same for store buffer, not shown)

33

Microarchitectural Block Disabling: Discussion

e Expensive, complex, intrusive
*» Diagnosis logic
*+ Reconfiguration logic

e Coverage Issues

*» E.g., fetch stage not covered

34

Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @Iicati@

v v

Advanced ISA /¢ Advanced ISA
Basic ISA =/ BasicISA
Core 1 / Core n /

[Powell 09]

35

Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @alicati@

Basic?uops v Basicéuops v
¥ :

A 4

Advanced ISA

Basic ISA - Basic ISA

Core n /

[Powell 09]

36

Architectural Core Salvaging

e Many-core CISC processor designs

@plicati@ @alicati@

Advancedéuops X Basicéuops v

A 4

Advanced ISA

- Basic ISA

Core n /

[Powell 09]

37

Architectural Core Salvaging

e Many-core CISC processor designs

Thread N
<p||catl@< Swap AppllCétl@

Advancediuops X Basiciuops v~
v

_ Advanced ISA
- Basic ISA
Core n /

[Powell 09]

38

Architectural Core Salvaging

e Many-core CISC processor designs

- Thread —
@pll(iatl@‘ Swap Appllcatl@

Basicéuops v Advancedé uops v
¥ :

A 4

Ach ~"W _ Advanced ISA
Basic ISA - Basic ISA

Core n /

[Powell 09]

39

Architectural Core Salvaging: Discussion

e \What about diagnosis
e Applicability
*» CISC-like architectures
e Performance
*» Depends
e Coverage Iissues

** ~50% coverage of execution

40

Self-Repair for Processor Cores

e \Which technique to choose?

e Software-assisted techniques?

41

Outline

e [ntroduction

e Self-repair techniques
< Memories
% Processor cores
< Uncore components

® Conclusion

42

Uncore Prevalent in SoCs

e Uncore examples

% Cache / DRAM controller

+» Accelerators

* |/O Interfaces

NVIDIA Tegra

r ~N
—
ARM11 GeForce
CPU GPU

IBM Power 7 |

43

Uncore Self-Repair Essential

OpenSPARC T2 Processor cores
e | 12%
=]l i == Uncore <
m—— R 12%
EDI 1 - 1 ‘ 1 | 5)
[D||$Iu_l
m— =I: : —_—

Memories
76%

e Cores, memories, networks-on-chip

“* Many existing technigues

44

Key Message [LI ITC13]

20

Chip area
Impact (%)

EXxisting sparing techniques

Self-repair coverage (%)

98

45

Key Message [LI ITC13]

20

Chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Our techniques

Self-repair coverage (%)

/5

98

46

Key Message [LI ITC13]

20

Chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Performance: 0% (fault-free)
0.3% - 5% (faulty)
Power: 3%

Our techniques

75 08
Self-repair coverage (%)

47

Existing Techniques Inadequate
OpenSPARC T2

e s i
S i ,g;.;.ﬂL ,‘.,L,-‘,-J.., ‘»‘!‘””rﬂ‘l‘:“‘ 1 S 1

| ¥ | G=ERSREeSan K

48

Existing Techniques Inadequate

OpenSPARC T2
> >
> >
> Original - >
> > >
> >
> >
> >
> Spare - >
> - >

49

Existing Techniques Inadequate

OpenSPARC T2
~ Steering
4 logic
> Original _I_
) [
%

— :
> Spare . —:D_)

Existing Techniques Inadequate

OpenSPARC T2
g Y Steering
> : logic
> .. T
> Original —E
>
__Power gating_ __

LL 2
)

@ 20% chip area cost

51

New Uncore Self-Repair Techniques

ERRS: Enhanced Resource Reallocation and Sharing

[J SHE: Sparing through Hierarchical Exploration

;'
OpenSPARC T2 l | l

8 cores, 64 threads 'E. g
500M transistors B o

@ 7.5% chip area cost

52

Outline

e Introduction

e Self-repair for uncore
<+ ERRS
<+ SHE

® Conclusion

53

Basic Resource Reallocation & Sharing (RRS)
e Already-existing “similar” components

© No spares
e R Self-repairE
| 4cores | ccibntrol
3. Reroute i L2 mem Oleq| 1. Fault detected
1 L2 bank 8 cycle overhead
ek, N egntroia [T (faulty case only)
Crosshigh S at
block}§ s e = L2 bank 2. Resource sharing
- >
;1 s 0 | control 1
__ 4 cores ¢
il ot L2 mem 1

54

Basic RRS Performance Impact

Fault-free scenario

»»»»»»

~ |L2mem 0

== o & : Y
| !
; mem pVex -’_1‘; = .‘!'t‘x_r:—t j'f__“ e
. ‘ -”l
=1 | MISS!
» f 14 ',

ST [Selfrepair] |

control

—> || MISS! H_

L2 mem 1

¢

Fill buffer

29 99

9 99

55

Basic RRS Performance Impact

Single faulty component: 70% impact

it § Self—repair|:|
control
L2 mem Ole-

‘ 3 - - W 2 e (L2 b?f”.k
000

i, | rgntror0 Fill buffer
Crossiiar s e ni s

oS

e 4coreS] ¢

2

' ki ad 1i B L2 mem 1

Enhanced RRS (ERRS) Idea

ldentify |—>|

Mitigate

Desirable tradeoff?

Analyze

(Done)

57

ERRS Mitigates RRS Performance Impact

Single faulty component: 3% impact

T e ﬁ,-.ﬁf»;—SeIé{)- repair|:|

olglife]

S Fill buffer

i >

A egntrord

V.

P
<
*

blockE =5+ = =l-L2bank
==L F={"Heohtrolrl
| 4cores | $

= ~ f'_-r\',- ;;:g_ .
| .l-~.~m:4!iﬂ_l’§.—'&‘7~:r:%.*:%—?t. : L2 mem 1

ERRS on OpenSPARC T2

DRAMdata = | DI?AM bank
return: control FSM:
duplicated =~ | entries doubled
aan’ ' e

o 0o 0D oD
SB[O00m OO0 O0m OOm S S

O0E Oo0®E ool oo

s

LZ At) > miss fill buffer:
Processing. * | “entries doubled
duplicated

© 3.2% area, 2.7% power

59

Performance Evaluation Setup

Simulators GEMS

64 single-issue in-order processor cores
Simulated 1KB private L1 data and instruction caches
CMP

4MByte shared L2 cache (8 banks)
4 DRAM controllers

60

ERRS vs. Basic RRS: Performance Impact

ERRS: 3% performance impact

3%

Average
CPI
overhead

0%

1 faulty L2 controller

7
7

Basic RRS ERRS

1 faulty DRAM controller

0.7%

0.0%

64-core CMP
PARSEC benchmark programs

Basic RRS ERRS

61

ERRS vs. Basic RRS: Performance Impact

ERRS: 5% performance impact

1 faulty L2 controller 1 faulty DRAM controller
18% - 25% A
Average
CPI
overhead
0% 0%
Basic RRS ERRS Basic RRS ERRS
64-core CMP

Stressed programs
62

ERRS for Multiple Faulty Components

ASHE

Average
CPI
Impact
(%)

Graceful performance degradation

4 L2 bank
controllers

4 L2 bank controllers +
2 DRAM controllers

2 L2 bank
controllers

2 DRAM
controllers

>
Faulty components

64-core CMP
PARSEC benchmark programs

63

Which Faults Repairable?

© All faults inside a component

64

Which Faults Not Repairable?
e Single points of failure

“* Primary inputs

“* Primary outputs

s Steering logic
e Metric: self-repair coverage

“* % non-single points of failure

65

ERRS Component Self-Repair Coverage

.-L .a ax " ,.a. .: \....

...l sl

,...... z .‘..._._...

_..Jé“ | b

E:..
& HIF N

- S SNV

s VY/ N

Y b

f.vJ

AN AL
.l-

, nes
Ay ue

66

ERRS Chip Area/Power Impact & Coverage

EXxisting sparing techniques

20

Post-layout
chip area
Impact (%)

Power: 3%

3.2

0 75 98

Self-repair coverage (%)
67

Outline

e Introduction

e Self-repair for uncore
% ERRS
<+ SHE

® Conclusion

68

SHE: Sparing through Hierarchical Exploration

4)
Component
RTL
- /

e Minimize area cost

e Balanced coverage vs. area

o

SHE

»

*» ldentical blocks = spare shared

4 h

Sparing for
component

_ v

69

he Design Hierarchy

= | =
‘ = Network controller
g‘l:h —
)
I:l | | pIO YY)
Level 1 rdmc chnl_16

chnl_15
Level 2 R
chnl_1

Level 3 \

ok

L owest level

70

Sparing in Different Levels: Coarse-Grained

Network controller plo
pio XX rdmc -
rdmc ‘ e B D
Level 2

Original
Spare / steering logic

Sparing in Different Levels: Mixed Levels

Network controller

pio

pio

rdmc

pio

in

5

chnl_16

_I:[]—

chnl_15

-

chnl 1

chnl

Original

Level 2/ Level 3

Spare / steering logic

72

Sparing in Different Levels: Fine-Grained

P10 oo

Network controller —Iﬁi]:)]‘-j? %
Iy
. J

rdmc

5

‘L'[%f“ L-f”:) _

| owest level

Original
Spare / steering logic

73

How to Obtain “Sweet-Spot”?

Balanced tradeoff

High

Low

Area overhead

Self-repair coverage

Deeper in hierarchy

Algorithm detalls in paper

74

SHE Results

20

Post-layout
chip area
Impact (%)

3.2

EXxisting sparing techniques

ERRS

Self-repair coverage (%)

/5

98

75

SHE Results

EXxisting sparing techniques

20

Post-layout
chip area
Impact (%)

SHE power impact: 0.2%
SHE performance impact: 0%

75 ERRS + SHE

Self-repair coverage (%)
76

What About Diagnosis?

e Traditional fault diagnosis difficult
e Effect-cause: infeasible
“* RTL unavailable
e Cause-effect: impractical
¢ 7 petabyte fault dictionary
> [Beckler ITC12]

77

Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

/8

Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

Blocks = self-repair granularity

Block 1 Block n

79

Fault Diagnosis Simplified
e CASP [Li DATEOQS, VTS10]

«» Concurrent, Autonomous, Stored test Patterns

Pass/fall Pass/fail n
) 1
| Local test logic |
Z Z
| I— | I—
/ \ / \ . .
T 3 T 3 Fail > self-repair needed
et Diagnosis = detection
¥ 3 ¥ 3
Block 1 Block n

= self-repair granularity 80

Summary: Self-Repair of Uncore Components

20

Post-layout
chip area
Impact (%)

7.5

3.2

EXxisting sparing techniques

Performance: 0% (fault-free)
0.3% - 5% (faulty)
Power: 3%

ERRS + SHE

0 75 98

Self-repair coverage (%)
81

References

[Aitken 04] Aitken, R., “A Modular Wrapper Enabling High Speed
BIST and Repair for Small Wide Memories,” Proc. Intl. Test
Conf., pp. 997-1005, 2004.

[Chang 07] Chang, J., et al., “The 65-nm 16-MB Shared On-Die
L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 846-852,
2007.

[Kurdahi 06] Kurdahi, F.J., et al., “System-Level SRAM Yield
Enhancement,” Proc. Intl. Symp. Quality Electronic Design,
2006

82

References

[Li VTS10] Li, Y., et al., “Concurrent Autonomous Self-Test for
Uncore Components in System-on-Chips,” Proc. VLSI Test
Symposium, 2010.

[Li DATEOS] Li, Y., S. Makar, and S. Mitra, “CASP: Concurrent
Autonomous Chip Self-Test using Stored Test Patterns,” Proc.
Design, Automation, and Test in Europe, pp. 885-890, 2008.

[Li ITC 13] LI, Y., et al., “Self-Repair of Uncore Components in
Robust System-on-Chips: An OpenSPARC T2 Case Study,”
Proc. IEEE Intl. Test Conf., pp. 1-10, 2013.

83

References

[Powell 09] Powell, M.D., et al., “Architectural Core Salvaging
In a Multi-Core Processor for Hard-Error Tolerance,” Proc. Intl.
Symp. on Computer Architecture, pp. 93-104, 2009.

[Romanescu 08] Romanescu, B.F., and D.J. Sorin, “Core
Cannibalization Architecture: Improving Lifetime Chip
Performance for Multicore Processors in the Presence of Hard
Faults,” Proc. Intl. Conf. on Parallel Architectures and
Compilation Techniques, pp. 43-51, 2008.

84

References

[Sanda 08] Sanda, P.N, et al., “Fault-Tolerant Design of the
IBM Power6 Microprocessor,” IEEE Micro, vol. 28, no. 2, pp.
30-38, 2008.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumatrr,
“Rescue: A Microarchitecture for Testability and Defect
Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.
160-171, 2005.

[Shirvani 99] Shirvani, P.P., and E.J. McCluskey, “PADded
Cache: A New Fault-Tolerance Technique for Cache
Memories,” Proc. VLSI Test Symp., pp. 440-445, 1999.

85

References

[Shivakumar 03] Shivakumar, P., et al., “Exploiting
Microarchitectural Redundancy for Defect Tolerance,” Proc.
Intl. Conf. on Computer Design, pp. 481-488, 2003.

[Sridharan 12] Sridharan, V., et al., “A Study of DRAM Failures
in the Field,” Proc. Intl. Conf. High Performance Computing,
Networking, Storage and Analysis, pp. 1-11, 2012.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumar,
“Rescue: A Microarchitecture for Testability and Defect
Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.
160-171, 2005.

86

