
1

Self-Repair for Robust System Design

Yanjing Li

Intel Labs

Stanford University

Hardware Failures: Major Concern

2

 Permanent: our focus

 Temporary

Tolerating Permanent Hardware Failures

3

Detection Diagnosis

Self-repairRecovery

4

Detection Diagnosis

Self-repairRecoveryConcurrent error detection: expensive

Tolerating Permanent Hardware Failures

5

Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Non-continuous

 Low power

 Concurrent

 No visible downtime

Tolerating Permanent Hardware Failures

6

Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Localize failures

Tolerating Permanent Hardware Failures

Diagnosis

7

Detection Diagnosis

Self-repairRecovery

Self-repair

Replace / bypass faulty component(s)

Tolerating Permanent Hardware Failures

8

Detection Diagnosis

Self-repairRecovery

Correction of corrupted data and states

Failure

occurs

Rollback

Checkpoint Failure

detected

Tolerating Permanent Hardware Failures

9

Detection Diagnosis

Self-repairRecovery

This Lecture

Outline

10

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Memory Organization

11

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Functional Fault Models

12

 Memory cell array faults

 stuck-at, transition, coupling, etc.

 Address decode faults (AFs)

 no cell accessed, multiple cells accessed, etc.

 Read/write logic faults

 Equivalent to memory cell array faults

Single bit / word / column / row faults dominate

[Aitken 04, Kurdahi 06, Sridharan 12]

Spare Rows / Columns

13

Spare

column

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Spare

rows

Column multiplexers

14

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Rows

 Row decoder modified

15

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Columns

 Additional multiplexers and select logic

Multiplexers

Self-

repair

control

Spare Words

16

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Spare

words

pool

Same

inputs as

RAM

Self-repair

control
[Kim 98]

Redundancy in Memories

17

 Essential to improve yield and reliability

 Widely used in commercial RAMs

 Related topics

 How much redundancy?

 Built-in repair analysis: redundancy allocation

18

 Yield analysis and yield learning

 Example: negative binomial memory yield model

𝑌𝑌𝑌𝑌𝑌 = (1 + 𝑌𝑌 𝑌)

𝑌:defect desntiy,𝑌: memory area

𝑌: defect clustering coefficient (measured to be 2 or 3)

 For a memory array with N rows and 1 spare row

𝑌𝑌𝑌𝑌𝑌 = 𝑌𝑌𝑌𝑌𝑌+(𝑌 + 1)(𝑌𝑌𝑌𝑌𝑌)(1 − 𝑌𝑌𝑌𝑌𝑌)

How Much Redundancy?

19

 Yield analysis and yield learning

 Example: negative binomial memory yield model

How Much Redundancy?

20

 Spare rows and columns

 NP complete

 Various algorithms and EDA tools exist

Built-In Repair Analysis

Special Self-Repair Techniques for Caches

21

 Caches: affects performance, NOT functionality

Block address

Tag Index

Block

offset

Decoder

V Tag Data / ECC

...
...

...

=?

Hit/miss Data out

Cache Line Disable/Delete

22

 Exist in commercial systems

 Intel [Chang 07], IBM [Sanda 08], etc.

Block address

Tag Index

Block

offset

Decoder

V Tag Data / ECC

...

...

...

=?

Hit/miss Data out

FT

Fault-tolerance bit

Setting the FT Bit

23

Cache line read

ECC calculate and check

ECC error?

Correct and flag error; log faulty location

ECC error at same location already

occurred within a time threshold?

Set FT bit

Yes

Yes

Done

No

No

PADded Cache

24

 Reconfigurable cache with programmable decoder

Conventional

decoder

PADded Cache

25

 Reconfigurable cache with programmable decoder

 Additional tag bits needed

Programmable

decoder

 ~ 5% area cost

 16KB, direct-mapped, 1-level programmability

 Reduce cost at the price of granularity

[Shirvani 99]

Cache Line Delete vs. PADded Cache

26

Outline

27

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Core Sparing

28

 Utilize multi-/many-core architectures

 Core disabling also possible

 Already in commercial products

 IBM BlueGene/Q

 Nvidia Geforce

 Cisco Metro

 Fine-grained approaches?

Core Cannibalization

29

 Many-core designs with small in-order cores

 3.5% area cost (OpenRISC 1200)

[Romanescu 08]

Core Cannibalization: Discussion

30

 What about diagnosis?

 Routing  performance impact

 Additional wire delay pipeline stages

 Modified branch resolution, bypass logic, etc.

 Decreased clock frequency

 Small vs. large number of faulty cores

Microarchitectural Block Disabling

31

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W C

F D R Rd E M W C

...

...
Issue queue

[Schuchman 05]

32

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

...

...
Issue queue

Microarchitectural Block Disabling

*modified

stages

2 shift stages (S) added and lots design modifications

[Schuchman 05]

33

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

Issue queue, old half

Issue queue, new half

...

...

Microarchitectural Block Disabling

*modified

stages

Split issue queue (same for store buffer, not shown)

[Schuchman 05]

Microarchitectural Block Disabling: Discussion

34

 Expensive, complex, intrusive

 Diagnosis logic

 Reconfiguration logic

 Coverage issues

 E.g., fetch stage not covered

Architectural Core Salvaging

35

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

36

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Basic uops Basic uops

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

37

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

38

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

Thread

swap

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

39

Basic ISA

Advanced ISA

Core 1

Application n

Basic ISA

Advanced ISA

Core n

Application 1

...

Basic uops Advanced uops

Thread

swap



 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging: Discussion

40

 What about diagnosis

 Applicability

 CISC-like architectures

 Performance

 Depends

 Coverage issues

 ~50% coverage of execution

Self-Repair for Processor Cores

41

 Which technique to choose?

 Software-assisted techniques?

Outline

42

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Cisco Network Processor
NVIDIA Tegra

IBM Power 7

43

Uncore Prevalent in SoCs

 Uncore examples

 Cache / DRAM controller

 Accelerators

 I/O interfaces

44

Uncore

12%

Processor cores

12%

Memories

76%

OpenSPARC T2

 Cores, memories, networks-on-chip

 Many existing techniques

Uncore Self-Repair Essential

4545

Self-repair coverage (%)
0

20

98

Chip area

impact (%)

Key Message [Li ITC13]

Existing sparing techniques

4646

Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Key Message [Li ITC13]

Chip area

impact (%)

Existing sparing techniques

4747

Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Power: 3%

Performance: 0% (fault-free)

0.3% - 5% (faulty)

Key Message [Li ITC13]

Chip area

impact (%)

Existing sparing techniques

48

OpenSPARC T2

Uncore

Existing Techniques Inadequate

49

OpenSPARC T2

Uncore

Spare

…
…

…
…

Original

Existing Techniques Inadequate

50

OpenSPARC T2

Steering

logic

Spare

…
…

…

…
…

Original

Existing Techniques Inadequate

51

OpenSPARC T2

Spare

…
…

…

…
…

Original

Power gating

 20% chip area cost

Steering

logic

Existing Techniques Inadequate

 7.5% chip area cost

ERRS: Enhanced Resource Reallocation and Sharing

SHE: Sparing through Hierarchical Exploration

52

OpenSPARC T2

8 cores, 64 threads

500M transistors

New Uncore Self-Repair Techniques

Outline

53

 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion

54

4 cores

3. Reroute

4 cores

2. Resource sharing

1. Fault detected

L2 bank

control 0

L2 bank

control 1

8 cycle overhead

(faulty case only)

Self-repair

control

 Already-existing “similar” components

 No spares

…

L2 mem 1

L2 mem 0

Basic Resource Reallocation & Sharing (RRS)

Crossbar

blocks

Basic RRS Performance Impact

55

Fill buffer

Fault-free scenario

4 cores

Crossbar

blocks

4 cores

L2 bank

control 0

L2 bank

control 1

…

L2 mem 1

L2 mem 0

MISS!

MISS!

Self-repair

control

Single faulty component: 70% impact

56

4 cores

4 cores

L2 bank

control 0

L2 bank

control 1

…

L2 mem 1

L2 mem 0

L2 bank

control 0 Fill buffer

DATADATA

Crossbar

blocks

Basic RRS Performance Impact

Self-repair

control

Enhanced RRS (ERRS) Idea

57

Identify Mitigate

AnalyzeDesirable tradeoff?

No

Done

Yes

58

4 cores

4 cores

L2 bank

control 0

L2 bank

control 1

Self-repair

control

…

L2 mem 1

L2 mem 0

L2 bank

control 0 Fill buffer

Fill buffer

Single faulty component: 3% impact

ERRS Mitigates RRS Performance Impact

Crossbar

blocks

59

L2 hit

processing:

duplicated

L2 miss fill buffer:

entries doubled

DRAM bank

control FSM:

entries doubled

DRAM data

return:

duplicated

ERRS on OpenSPARC T2

 3.2% area, 2.7% power

Performance Evaluation Setup

60

Simulators GEM5

Simulated

CMP

64 single-issue in-order processor cores

1KB private L1 data and instruction caches

4MByte shared L2 cache (8 banks)

4 DRAM controllers

61

64-core CMP

PARSEC benchmark programs

ERRS: 3% performance impact

ERRS vs. Basic RRS: Performance Impact

1 faulty L2 controller 1 faulty DRAM controller

0%

3%

RRS ERRS

0.0%

0.7%

RRS ERRS

Average

CPI

overhead

Basic RRS Basic RRS

62

64-core CMP

Stressed programs

ERRS: 5% performance impact

ERRS vs. Basic RRS: Performance Impact

0%

18%

RRS ERRS

0%

25%

RRS ERRS

1 faulty L2 controller 1 faulty DRAM controller

Average

CPI

overhead

Basic RRS Basic RRS

63

ERRS for Multiple Faulty Components

0

25

2 DRAM

controllers

2 L2 bank

controllers

4 L2 bank

controllers 4 L2 bank controllers +

2 DRAM controllers

Faulty components

Graceful performance degradation

64-core CMP

PARSEC benchmark programs

Average

CPI

impact

(%)

64

stuckat

bridgingdelay

 All faults inside a component

Which Faults Repairable?

65

 Single points of failure

 Primary inputs

 Primary outputs

 Steering logic

 Metric: self-repair coverage

 % non-single points of failure

Which Faults Not Repairable?

66

ERRS Component Self-Repair Coverage

98%

96%

97%

97%

97%

97%

97%

97%

97%

97%

97%

97%

98%

97% 97%

67

Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area

impact (%)

Power: 3%

ERRS Chip Area/Power Impact & Coverage

Existing sparing techniques

Outline

68

 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion

69

Component

RTL
SHE

Sparing for

component

 Minimize area cost

 Identical blocks  spare shared

 Balanced coverage vs. area

SHE: Sparing through Hierarchical Exploration

70

rdmc

pio

chnl_16

chnl_15

chnl_1

Level 1

Level 2

Level 3

Lowest level

Network controller

The Design Hierarchy

71

Original

Spare / steering logic

Network controller

rdmc

pio

pio

pio

rdmc

rdmc

Sparing in Different Levels: Coarse-Grained

Level 2

72

chnl_16

chnl_15

chnl_1

chnl

pio

pio

Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Mixed Levels

Level 2 / Level 3

73

Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Fine-Grained

Lowest level

Deeper in hierarchy

High

Low

Area overhead

Self-repair coverage

Balanced tradeoff

74

How to Obtain “Sweet-Spot”?

Algorithm details in paper

75

Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area

impact (%)

SHE Results

Existing sparing techniques

Self-repair coverage (%)
0

7.5

20

ERRS + SHE

98

SHE power impact: 0.2%

SHE performance impact: 0%

76

Post-layout

chip area

impact (%)

SHE Results

Existing sparing techniques

What About Diagnosis?

77

 Traditional fault diagnosis difficult

 Effect-cause: infeasible

 RTL unavailable

 Cause-effect: impractical

 7 petabyte fault dictionary

 [Beckler ITC12]

78

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

Fault Diagnosis Simplified

79

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

…

Block 1 Block n

Blocks = self-repair granularity

Fault Diagnosis Simplified

80

… …

Block 1

Local test logic

Pass/fail 1 Pass/fail n

…

Block n

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

= self-repair granularity

Fail  self-repair needed

Diagnosis = detection

Fault Diagnosis Simplified

…

8181

Self-repair coverage (%)
0 75

3.2

7.5

20

ERRS

ERRS + SHE

98

Post-layout

chip area

impact (%)

Power: 3%

Performance: 0% (fault-free)

0.3% - 5% (faulty)

Summary: Self-Repair of Uncore Components

Existing sparing techniques

References

82

[Aitken 04] Aitken, R., “A Modular Wrapper Enabling High Speed

BIST and Repair for Small Wide Memories,” Proc. Intl. Test

Conf., pp. 997-1005, 2004.

[Chang 07] Chang, J., et al., “The 65-nm 16-MB Shared On-Die

L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series,”

IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 846-852,

2007.

[Kurdahi 06] Kurdahi, F.J., et al., “System-Level SRAM Yield

Enhancement,” Proc. Intl. Symp. Quality Electronic Design,

2006

References

83

[Li VTS10] Li, Y., et al., “Concurrent Autonomous Self-Test for

Uncore Components in System-on-Chips,” Proc. VLSI Test

Symposium, 2010.

[Li DATE08] Li, Y., S. Makar, and S. Mitra, “CASP: Concurrent

Autonomous Chip Self-Test using Stored Test Patterns,” Proc.

Design, Automation, and Test in Europe, pp. 885-890, 2008.

[Li ITC 13] Li, Y., et al., “Self-Repair of Uncore Components in

Robust System-on-Chips: An OpenSPARC T2 Case Study,”

Proc. IEEE Intl. Test Conf., pp. 1-10, 2013.

References

84

[Powell 09] Powell, M.D., et al., “Architectural Core Salvaging

in a Multi-Core Processor for Hard-Error Tolerance,” Proc. Intl.

Symp. on Computer Architecture, pp. 93-104, 2009.

[Romanescu 08] Romanescu, B.F., and D.J. Sorin, “Core

Cannibalization Architecture: Improving Lifetime Chip

Performance for Multicore Processors in the Presence of Hard

Faults,” Proc. Intl. Conf. on Parallel Architectures and

Compilation Techniques, pp. 43-51, 2008.

References

85

[Sanda 08] Sanda, P.N, et al., “Fault-Tolerant Design of the

IBM Power6 Microprocessor,” IEEE Micro, vol. 28, no. 2, pp.

30-38, 2008.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumar,

“Rescue: A Microarchitecture for Testability and Defect

Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.

160-171, 2005.

[Shirvani 99] Shirvani, P.P., and E.J. McCluskey, “PADded

Cache: A New Fault-Tolerance Technique for Cache

Memories,” Proc. VLSI Test Symp., pp. 440-445, 1999.

References

86

[Shivakumar 03] Shivakumar, P., et al., “Exploiting

Microarchitectural Redundancy for Defect Tolerance,” Proc.

Intl. Conf. on Computer Design, pp. 481-488, 2003.

[Sridharan 12] Sridharan, V., et al., “A Study of DRAM Failures

in the Field,” Proc. Intl. Conf. High Performance Computing,

Networking, Storage and Analysis, pp. 1-11, 2012.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumar,

“Rescue: A Microarchitecture for Testability and Defect

Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.

160-171, 2005.

