
1

Self-Repair for Robust System Design

Yanjing Li

Intel Labs

Stanford University

Hardware Failures: Major Concern

2

 Permanent: our focus

 Temporary

Tolerating Permanent Hardware Failures

3

Detection Diagnosis

Self-repairRecovery

4

Detection Diagnosis

Self-repairRecoveryConcurrent error detection: expensive

Tolerating Permanent Hardware Failures

5

Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Non-continuous

 Low power

 Concurrent

 No visible downtime

Tolerating Permanent Hardware Failures

6

Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Localize failures

Tolerating Permanent Hardware Failures

Diagnosis

7

Detection Diagnosis

Self-repairRecovery

Self-repair

Replace / bypass faulty component(s)

Tolerating Permanent Hardware Failures

8

Detection Diagnosis

Self-repairRecovery

Correction of corrupted data and states

Failure

occurs

Rollback

Checkpoint Failure

detected

Tolerating Permanent Hardware Failures

9

Detection Diagnosis

Self-repairRecovery

This Lecture

Outline

10

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Memory Organization

11

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Functional Fault Models

12

 Memory cell array faults

 stuck-at, transition, coupling, etc.

 Address decode faults (AFs)

 no cell accessed, multiple cells accessed, etc.

 Read/write logic faults

 Equivalent to memory cell array faults

Single bit / word / column / row faults dominate

[Aitken 04, Kurdahi 06, Sridharan 12]

Spare Rows / Columns

13

Spare

column

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Spare

rows

Column multiplexers

14

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Rows

 Row decoder modified

15

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Columns

 Additional multiplexers and select logic

Multiplexers

Self-

repair

control

Spare Words

16

Sense amplifiers

Row

decoder

Column

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Spare

words

pool

Same

inputs as

RAM

Self-repair

control
[Kim 98]

Redundancy in Memories

17

 Essential to improve yield and reliability

 Widely used in commercial RAMs

 Related topics

 How much redundancy?

 Built-in repair analysis: redundancy allocation

18

 Yield analysis and yield learning

 Example: negative binomial memory yield model

𝑌𝑌𝑌𝑌𝑌 = (1 + 𝑌𝑌 𝑌)

𝑌:defect desntiy,𝑌: memory area

𝑌: defect clustering coefficient (measured to be 2 or 3)

 For a memory array with N rows and 1 spare row

𝑌𝑌𝑌𝑌𝑌 = 𝑌𝑌𝑌𝑌𝑌+(𝑌 + 1)(𝑌𝑌𝑌𝑌𝑌)(1 − 𝑌𝑌𝑌𝑌𝑌)

How Much Redundancy?

19

 Yield analysis and yield learning

 Example: negative binomial memory yield model

How Much Redundancy?

20

 Spare rows and columns

 NP complete

 Various algorithms and EDA tools exist

Built-In Repair Analysis

Special Self-Repair Techniques for Caches

21

 Caches: affects performance, NOT functionality

Block address

Tag Index

Block

offset

Decoder

V Tag Data / ECC

...
...

...

=?

Hit/miss Data out

Cache Line Disable/Delete

22

 Exist in commercial systems

 Intel [Chang 07], IBM [Sanda 08], etc.

Block address

Tag Index

Block

offset

Decoder

V Tag Data / ECC

...

...

...

=?

Hit/miss Data out

FT

Fault-tolerance bit

Setting the FT Bit

23

Cache line read

ECC calculate and check

ECC error?

Correct and flag error; log faulty location

ECC error at same location already

occurred within a time threshold?

Set FT bit

Yes

Yes

Done

No

No

PADded Cache

24

 Reconfigurable cache with programmable decoder

Conventional

decoder

PADded Cache

25

 Reconfigurable cache with programmable decoder

 Additional tag bits needed

Programmable

decoder

 ~ 5% area cost

 16KB, direct-mapped, 1-level programmability

 Reduce cost at the price of granularity

[Shirvani 99]

Cache Line Delete vs. PADded Cache

26

Outline

27

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Core Sparing

28

 Utilize multi-/many-core architectures

 Core disabling also possible

 Already in commercial products

 IBM BlueGene/Q

 Nvidia Geforce

 Cisco Metro

 Fine-grained approaches?

Core Cannibalization

29

 Many-core designs with small in-order cores

 3.5% area cost (OpenRISC 1200)

[Romanescu 08]

Core Cannibalization: Discussion

30

 What about diagnosis?

 Routing performance impact

 Additional wire delay pipeline stages

 Modified branch resolution, bypass logic, etc.

 Decreased clock frequency

 Small vs. large number of faulty cores

Microarchitectural Block Disabling

31

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W C

F D R Rd E M W C

...

...
Issue queue

[Schuchman 05]

32

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

...

...
Issue queue

Microarchitectural Block Disabling

*modified

stages

2 shift stages (S) added and lots design modifications

[Schuchman 05]

33

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

Issue queue, old half

Issue queue, new half

...

...

Microarchitectural Block Disabling

*modified

stages

Split issue queue (same for store buffer, not shown)

[Schuchman 05]

Microarchitectural Block Disabling: Discussion

34

 Expensive, complex, intrusive

 Diagnosis logic

 Reconfiguration logic

 Coverage issues

 E.g., fetch stage not covered

Architectural Core Salvaging

35

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

36

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Basic uops Basic uops

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

37

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

38

Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

Thread

swap

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging

39

Basic ISA

Advanced ISA

Core 1

Application n

Basic ISA

Advanced ISA

Core n

Application 1

...

Basic uops Advanced uops

Thread

swap

 Many-core CISC processor designs

[Powell 09]

Architectural Core Salvaging: Discussion

40

 What about diagnosis

 Applicability

 CISC-like architectures

 Performance

 Depends

 Coverage issues

 ~50% coverage of execution

Self-Repair for Processor Cores

41

 Which technique to choose?

 Software-assisted techniques?

Outline

42

 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion

Cisco Network Processor
NVIDIA Tegra

IBM Power 7

43

Uncore Prevalent in SoCs

 Uncore examples

 Cache / DRAM controller

 Accelerators

 I/O interfaces

44

Uncore

12%

Processor cores

12%

Memories

76%

OpenSPARC T2

 Cores, memories, networks-on-chip

 Many existing techniques

Uncore Self-Repair Essential

4545

Self-repair coverage (%)
0

20

98

Chip area

impact (%)

Key Message [Li ITC13]

Existing sparing techniques

4646

Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Key Message [Li ITC13]

Chip area

impact (%)

Existing sparing techniques

4747

Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Power: 3%

Performance: 0% (fault-free)

0.3% - 5% (faulty)

Key Message [Li ITC13]

Chip area

impact (%)

Existing sparing techniques

48

OpenSPARC T2

Uncore

Existing Techniques Inadequate

49

OpenSPARC T2

Uncore

Spare

…
…

…
…

Original

Existing Techniques Inadequate

50

OpenSPARC T2

Steering

logic

Spare

…
…

…

…
…

Original

Existing Techniques Inadequate

51

OpenSPARC T2

Spare

…
…

…

…
…

Original

Power gating

 20% chip area cost

Steering

logic

Existing Techniques Inadequate

 7.5% chip area cost

ERRS: Enhanced Resource Reallocation and Sharing

SHE: Sparing through Hierarchical Exploration

52

OpenSPARC T2

8 cores, 64 threads

500M transistors

New Uncore Self-Repair Techniques

Outline

53

 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion

54

4 cores

3. Reroute

4 cores

2. Resource sharing

1. Fault detected

L2 bank

control 0

L2 bank

control 1

8 cycle overhead

(faulty case only)

Self-repair

control

 Already-existing “similar” components

 No spares

…

L2 mem 1

L2 mem 0

Basic Resource Reallocation & Sharing (RRS)

Crossbar

blocks

Basic RRS Performance Impact

55

Fill buffer

Fault-free scenario

4 cores

Crossbar

blocks

4 cores

L2 bank

control 0

L2 bank

control 1

…

L2 mem 1

L2 mem 0

MISS!

MISS!

Self-repair

control

Single faulty component: 70% impact

56

4 cores

4 cores

L2 bank

control 0

L2 bank

control 1

…

L2 mem 1

L2 mem 0

L2 bank

control 0 Fill buffer

DATADATA

Crossbar

blocks

Basic RRS Performance Impact

Self-repair

control

Enhanced RRS (ERRS) Idea

57

Identify Mitigate

AnalyzeDesirable tradeoff?

No

Done

Yes

58

4 cores

4 cores

L2 bank

control 0

L2 bank

control 1

Self-repair

control

…

L2 mem 1

L2 mem 0

L2 bank

control 0 Fill buffer

Fill buffer

Single faulty component: 3% impact

ERRS Mitigates RRS Performance Impact

Crossbar

blocks

59

L2 hit

processing:

duplicated

L2 miss fill buffer:

entries doubled

DRAM bank

control FSM:

entries doubled

DRAM data

return:

duplicated

ERRS on OpenSPARC T2

 3.2% area, 2.7% power

Performance Evaluation Setup

60

Simulators GEM5

Simulated

CMP

64 single-issue in-order processor cores

1KB private L1 data and instruction caches

4MByte shared L2 cache (8 banks)

4 DRAM controllers

61

64-core CMP

PARSEC benchmark programs

ERRS: 3% performance impact

ERRS vs. Basic RRS: Performance Impact

1 faulty L2 controller 1 faulty DRAM controller

0%

3%

RRS ERRS

0.0%

0.7%

RRS ERRS

Average

CPI

overhead

Basic RRS Basic RRS

62

64-core CMP

Stressed programs

ERRS: 5% performance impact

ERRS vs. Basic RRS: Performance Impact

0%

18%

RRS ERRS

0%

25%

RRS ERRS

1 faulty L2 controller 1 faulty DRAM controller

Average

CPI

overhead

Basic RRS Basic RRS

63

ERRS for Multiple Faulty Components

0

25

2 DRAM

controllers

2 L2 bank

controllers

4 L2 bank

controllers 4 L2 bank controllers +

2 DRAM controllers

Faulty components

Graceful performance degradation

64-core CMP

PARSEC benchmark programs

Average

CPI

impact

(%)

64

stuckat

bridgingdelay

 All faults inside a component

Which Faults Repairable?

65

 Single points of failure

 Primary inputs

 Primary outputs

 Steering logic

 Metric: self-repair coverage

 % non-single points of failure

Which Faults Not Repairable?

66

ERRS Component Self-Repair Coverage

98%

96%

97%

97%

97%

97%

97%

97%

97%

97%

97%

97%

98%

97% 97%

67

Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area

impact (%)

Power: 3%

ERRS Chip Area/Power Impact & Coverage

Existing sparing techniques

Outline

68

 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion

69

Component

RTL
SHE

Sparing for

component

 Minimize area cost

 Identical blocks spare shared

 Balanced coverage vs. area

SHE: Sparing through Hierarchical Exploration

70

rdmc

pio

chnl_16

chnl_15

chnl_1

Level 1

Level 2

Level 3

Lowest level

Network controller

The Design Hierarchy

71

Original

Spare / steering logic

Network controller

rdmc

pio

pio

pio

rdmc

rdmc

Sparing in Different Levels: Coarse-Grained

Level 2

72

chnl_16

chnl_15

chnl_1

chnl

pio

pio

Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Mixed Levels

Level 2 / Level 3

73

Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Fine-Grained

Lowest level

Deeper in hierarchy

High

Low

Area overhead

Self-repair coverage

Balanced tradeoff

74

How to Obtain “Sweet-Spot”?

Algorithm details in paper

75

Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area

impact (%)

SHE Results

Existing sparing techniques

Self-repair coverage (%)
0

7.5

20

ERRS + SHE

98

SHE power impact: 0.2%

SHE performance impact: 0%

76

Post-layout

chip area

impact (%)

SHE Results

Existing sparing techniques

What About Diagnosis?

77

 Traditional fault diagnosis difficult

 Effect-cause: infeasible

 RTL unavailable

 Cause-effect: impractical

 7 petabyte fault dictionary

 [Beckler ITC12]

78

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

Fault Diagnosis Simplified

79

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

…

Block 1 Block n

Blocks = self-repair granularity

Fault Diagnosis Simplified

80

… …

Block 1

Local test logic

Pass/fail 1 Pass/fail n

…

Block n

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

= self-repair granularity

Fail self-repair needed

Diagnosis = detection

Fault Diagnosis Simplified

…

8181

Self-repair coverage (%)
0 75

3.2

7.5

20

ERRS

ERRS + SHE

98

Post-layout

chip area

impact (%)

Power: 3%

Performance: 0% (fault-free)

0.3% - 5% (faulty)

Summary: Self-Repair of Uncore Components

Existing sparing techniques

References

82

[Aitken 04] Aitken, R., “A Modular Wrapper Enabling High Speed

BIST and Repair for Small Wide Memories,” Proc. Intl. Test

Conf., pp. 997-1005, 2004.

[Chang 07] Chang, J., et al., “The 65-nm 16-MB Shared On-Die

L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series,”

IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 846-852,

2007.

[Kurdahi 06] Kurdahi, F.J., et al., “System-Level SRAM Yield

Enhancement,” Proc. Intl. Symp. Quality Electronic Design,

2006

References

83

[Li VTS10] Li, Y., et al., “Concurrent Autonomous Self-Test for

Uncore Components in System-on-Chips,” Proc. VLSI Test

Symposium, 2010.

[Li DATE08] Li, Y., S. Makar, and S. Mitra, “CASP: Concurrent

Autonomous Chip Self-Test using Stored Test Patterns,” Proc.

Design, Automation, and Test in Europe, pp. 885-890, 2008.

[Li ITC 13] Li, Y., et al., “Self-Repair of Uncore Components in

Robust System-on-Chips: An OpenSPARC T2 Case Study,”

Proc. IEEE Intl. Test Conf., pp. 1-10, 2013.

References

84

[Powell 09] Powell, M.D., et al., “Architectural Core Salvaging

in a Multi-Core Processor for Hard-Error Tolerance,” Proc. Intl.

Symp. on Computer Architecture, pp. 93-104, 2009.

[Romanescu 08] Romanescu, B.F., and D.J. Sorin, “Core

Cannibalization Architecture: Improving Lifetime Chip

Performance for Multicore Processors in the Presence of Hard

Faults,” Proc. Intl. Conf. on Parallel Architectures and

Compilation Techniques, pp. 43-51, 2008.

References

85

[Sanda 08] Sanda, P.N, et al., “Fault-Tolerant Design of the

IBM Power6 Microprocessor,” IEEE Micro, vol. 28, no. 2, pp.

30-38, 2008.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumar,

“Rescue: A Microarchitecture for Testability and Defect

Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.

160-171, 2005.

[Shirvani 99] Shirvani, P.P., and E.J. McCluskey, “PADded

Cache: A New Fault-Tolerance Technique for Cache

Memories,” Proc. VLSI Test Symp., pp. 440-445, 1999.

References

86

[Shivakumar 03] Shivakumar, P., et al., “Exploiting

Microarchitectural Redundancy for Defect Tolerance,” Proc.

Intl. Conf. on Computer Design, pp. 481-488, 2003.

[Sridharan 12] Sridharan, V., et al., “A Study of DRAM Failures

in the Field,” Proc. Intl. Conf. High Performance Computing,

Networking, Storage and Analysis, pp. 1-11, 2012.

[Schuchman 05] Schuchman, E., and T.N. Vijaykumar,

“Rescue: A Microarchitecture for Testability and Defect

Tolerance,” Proc. Intl. Symp. on Computer Architecture, pp.

160-171, 2005.

