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Hardware Failures: Major Concern
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 Permanent: our focus

 Temporary



Tolerating Permanent Hardware Failures
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Detection Diagnosis

Self-repairRecovery
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Detection Diagnosis

Self-repairRecoveryConcurrent error detection: expensive

Tolerating Permanent Hardware Failures
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Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Non-continuous

 Low power

 Concurrent

 No visible downtime

Tolerating Permanent Hardware Failures
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Detection Diagnosis

Self-repairRecovery

Online Self-Test and Diagnostics

 Localize failures

Tolerating Permanent Hardware Failures

Diagnosis
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Detection Diagnosis

Self-repairRecovery

Self-repair

Replace / bypass faulty component(s)

Tolerating Permanent Hardware Failures
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Detection Diagnosis

Self-repairRecovery

Correction of corrupted data and states 

Failure 

occurs

Rollback

Checkpoint Failure 

detected

Tolerating Permanent Hardware Failures
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Detection Diagnosis

Self-repairRecovery

This Lecture



Outline
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 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion



Memory Organization
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Sense amplifiers
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decoder
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rd/wr

logic

addr

en

data_in

data_out

Column multiplexers



Memory Functional Fault Models
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 Memory cell array faults

 stuck-at, transition, coupling, etc.

 Address decode faults (AFs)

 no cell accessed, multiple cells accessed, etc.

 Read/write logic faults

 Equivalent to memory cell array faults

Single bit / word / column / row faults dominate

[Aitken 04, Kurdahi 06, Sridharan 12] 



Spare Rows / Columns
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Spare 

column

Sense amplifiers
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Sense amplifiers

Row 

decoder

Column 

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Rows

 Row decoder modified
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Sense amplifiers

Row 

decoder

Column 

decoder

Data registers

rd/wr

logic

addr

en

data_in

data_out

Column multiplexers

Memory Self-Repair Using Spare Columns

 Additional multiplexers and select logic 

Multiplexers

Self-

repair 

control



Spare Words
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Sense amplifiers

Row 

decoder

Column 

decoder

Data registers

rd/wr
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en

data_in

data_out

Column multiplexers

Spare 

words 

pool

Same 

inputs as 

RAM

Self-repair 

control
[Kim 98]



Redundancy in Memories
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 Essential to improve yield and reliability 

 Widely used in commercial RAMs 

 Related topics

 How much redundancy?

 Built-in repair analysis: redundancy allocation
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 Yield analysis and yield learning 

 Example: negative binomial memory yield model

𝑌𝑌𝑌𝑌𝑌 = (1 +  𝑌𝑌 𝑌)

𝑌:defect desntiy,𝑌: memory area

𝑌:  defect clustering coefficient (measured to be 2 or 3)

 For a memory array with N rows and 1 spare row

𝑌𝑌𝑌𝑌𝑌 = 𝑌𝑌𝑌𝑌𝑌+(𝑌 + 1)(𝑌𝑌𝑌𝑌𝑌)(1 − 𝑌𝑌𝑌𝑌𝑌)

How Much Redundancy?
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 Yield analysis and yield learning 

 Example: negative binomial memory yield model  

How Much Redundancy?



20

 Spare rows and columns

 NP complete

 Various algorithms and EDA tools exist

Built-In Repair Analysis



Special Self-Repair Techniques for Caches

21

 Caches: affects performance, NOT functionality

Block address

Tag Index

Block 

offset

Decoder

V Tag Data / ECC

...
...

...

=?

Hit/miss Data out



Cache Line Disable/Delete
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 Exist in commercial systems

 Intel [Chang 07], IBM [Sanda 08], etc.

Block address

Tag Index

Block 

offset

Decoder

V Tag Data / ECC

...

...

...

=?

Hit/miss Data out

FT

Fault-tolerance bit



Setting the FT Bit
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Cache line read

ECC calculate and check

ECC error?

Correct and flag error; log faulty location

ECC error at same location already 

occurred within a time threshold? 

Set FT bit 

Yes

Yes

Done

No

No



PADded Cache
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 Reconfigurable cache with programmable decoder

Conventional 

decoder



PADded Cache
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 Reconfigurable cache with programmable decoder

 Additional tag bits needed

Programmable 

decoder

 ~ 5% area cost

 16KB, direct-mapped, 1-level programmability

 Reduce cost at the price of granularity

[Shirvani 99]



Cache Line Delete vs. PADded Cache
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Outline
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 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion



Core Sparing
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 Utilize multi-/many-core architectures

 Core disabling also possible

 Already in commercial products

 IBM BlueGene/Q

 Nvidia Geforce

 Cisco Metro

 Fine-grained approaches?



Core Cannibalization
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 Many-core designs with small in-order cores

 3.5% area cost (OpenRISC 1200)

[Romanescu 08]



Core Cannibalization: Discussion
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 What about diagnosis?

 Routing  performance impact

 Additional wire delay pipeline stages

 Modified branch resolution, bypass logic, etc.  

 Decreased clock frequency

 Small vs. large number of faulty cores



Microarchitectural Block Disabling 
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 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W C

F D R Rd E M W C

...

...
Issue queue

[Schuchman 05]



32

 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

...

...
Issue queue

Microarchitectural Block Disabling 

*modified        

stages

2 shift stages (S) added and lots design modifications

[Schuchman 05]
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 Disable “half pipeline way” in superscalar designs

 12% area cost (includes diagnosis)

F D R Rd E M W CS S

F D R Rd E M W CS S

* * * * * * *

* * * * * * *

Issue queue, old half

Issue queue, new half

...

...

Microarchitectural Block Disabling 

*modified        

stages

Split issue queue (same for store buffer, not shown)

[Schuchman 05]



Microarchitectural Block Disabling: Discussion
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 Expensive, complex, intrusive

 Diagnosis logic 

 Reconfiguration logic

 Coverage issues

 E.g., fetch stage not covered



Architectural Core Salvaging
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Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Many-core CISC processor designs

[Powell 09]



Architectural Core Salvaging
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Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Basic uops Basic uops

 Many-core CISC processor designs

[Powell 09]



Architectural Core Salvaging
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Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

 Many-core CISC processor designs

[Powell 09]



Architectural Core Salvaging
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Basic ISA

Advanced ISA

Core 1

Application 1

Basic ISA

Advanced ISA

Core n

Application n

...

 Advanced uops Basic uops

Thread

swap

 Many-core CISC processor designs

[Powell 09]



Architectural Core Salvaging
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Basic ISA

Advanced ISA

Core 1

Application n

Basic ISA

Advanced ISA

Core n

Application 1

...

Basic uops Advanced uops

Thread

swap



 Many-core CISC processor designs

[Powell 09]



Architectural Core Salvaging: Discussion
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 What about diagnosis

 Applicability

 CISC-like architectures

 Performance

 Depends

 Coverage issues 

 ~50% coverage of execution



Self-Repair for Processor Cores
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 Which technique to choose?

 Software-assisted techniques?



Outline
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 Introduction

 Self-repair techniques

 Memories

 Processor cores

 Uncore components

 Conclusion



Cisco Network Processor
NVIDIA Tegra

IBM Power 7 
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Uncore Prevalent in SoCs

 Uncore examples

 Cache / DRAM controller

 Accelerators

 I/O interfaces
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Uncore

12%

Processor cores

12%

Memories

76%

OpenSPARC T2

 Cores, memories, networks-on-chip

 Many existing techniques

Uncore Self-Repair Essential
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Self-repair coverage (%)
0

20

98

Chip area 

impact (%)

Key Message [Li ITC13]

Existing sparing techniques
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Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Key Message [Li ITC13]

Chip area 

impact (%)

Existing sparing techniques
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Self-repair coverage (%)
0 75

3.2

7.5

20

Our techniques

98

Power:             3%

Performance:  0% (fault-free)

0.3% - 5% (faulty)

Key Message [Li ITC13]

Chip area 

impact (%)

Existing sparing techniques
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OpenSPARC T2

Uncore

Existing Techniques Inadequate
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OpenSPARC T2

Uncore

Spare

…
…

…
…

Original

Existing Techniques Inadequate
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OpenSPARC T2

Steering 

logic

Spare

…
…

…

…
…

Original

Existing Techniques Inadequate
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OpenSPARC T2

Spare

…
…

…

…
…

Original

Power gating

 20% chip area cost

Steering 

logic

Existing Techniques Inadequate



 7.5% chip area cost

ERRS: Enhanced Resource Reallocation and Sharing

SHE: Sparing through Hierarchical Exploration
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OpenSPARC T2

8 cores, 64 threads

500M transistors

New Uncore Self-Repair Techniques



Outline
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 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion
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4 cores

3. Reroute

4 cores

2. Resource sharing

1. Fault detected

L2 bank 

control 0

L2 bank 

control 1

8 cycle overhead

(faulty case only)

Self-repair 

control

 Already-existing “similar” components

 No spares

…

L2 mem 1

L2 mem 0

Basic Resource Reallocation & Sharing (RRS)

Crossbar  

blocks



Basic RRS Performance Impact
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Fill buffer

Fault-free scenario

4 cores

Crossbar  

blocks

4 cores

L2 bank 

control 0

L2 bank 

control 1

…

L2 mem 1

L2 mem 0

MISS!

MISS!

Self-repair 

control



Single faulty component: 70% impact
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4 cores

4 cores

L2 bank 

control 0

L2 bank 

control 1

…

L2 mem 1

L2 mem 0

L2 bank 

control 0 Fill buffer

DATADATA

Crossbar  

blocks

Basic RRS Performance Impact

Self-repair 

control



Enhanced RRS (ERRS) Idea
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Identify Mitigate

AnalyzeDesirable tradeoff?

No

Done

Yes
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4 cores

4 cores

L2 bank 

control 0

L2 bank 

control 1

Self-repair 

control

…

L2 mem 1

L2 mem 0

L2 bank 

control 0 Fill buffer

Fill buffer

Single faulty component: 3% impact

ERRS Mitigates RRS Performance Impact

Crossbar  

blocks



59

L2 hit 

processing:

duplicated

L2 miss fill buffer:

entries doubled

DRAM bank 

control FSM:

entries doubled

DRAM data 

return:

duplicated

ERRS on OpenSPARC T2

 3.2% area, 2.7% power



Performance Evaluation Setup
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Simulators GEM5

Simulated 

CMP

64 single-issue in-order processor cores

1KB private L1 data and instruction caches

4MByte shared L2 cache (8 banks) 

4 DRAM controllers
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64-core CMP

PARSEC benchmark programs

ERRS: 3% performance impact

ERRS vs. Basic RRS: Performance Impact

1 faulty L2 controller 1 faulty DRAM controller

0%

3%

RRS ERRS

0.0%

0.7%

RRS ERRS

Average 

CPI 

overhead

Basic RRS Basic RRS
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64-core CMP

Stressed programs

ERRS: 5% performance impact

ERRS vs. Basic RRS: Performance Impact

0%

18%

RRS ERRS

0%

25%

RRS ERRS

1 faulty L2 controller 1 faulty DRAM controller

Average 

CPI 

overhead

Basic RRS Basic RRS
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ERRS for Multiple Faulty Components

0

25

2 DRAM 

controllers

2 L2 bank 

controllers

4 L2 bank 

controllers 4 L2 bank controllers +

2 DRAM controllers

Faulty components

Graceful performance degradation

64-core CMP

PARSEC benchmark programs

Average 

CPI

impact 

(%)
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stuckat

bridgingdelay

 All faults inside a component

Which Faults Repairable?
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 Single points of failure

 Primary inputs

 Primary outputs

 Steering logic

 Metric: self-repair coverage

 % non-single points of failure

Which Faults Not Repairable?
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ERRS Component Self-Repair Coverage

98%

96%

97%

97%

97%

97%

97%

97%

97%

97%

97%

97%

98%

97% 97%
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Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area 

impact (%)

Power: 3%

ERRS Chip Area/Power Impact & Coverage

Existing sparing techniques



Outline
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 Introduction

 Self-repair for uncore

 ERRS

 SHE

 Conclusion
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Component 

RTL
SHE

Sparing for 

component

 Minimize area cost

 Identical blocks  spare shared

 Balanced coverage vs. area

SHE: Sparing through Hierarchical Exploration
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rdmc

pio

chnl_16

chnl_15

chnl_1

Level 1

Level 2

Level 3

Lowest level 

Network controller

The Design Hierarchy
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Original

Spare / steering logic

Network controller

rdmc

pio

pio

pio

rdmc

rdmc

Sparing in Different Levels: Coarse-Grained

Level 2
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chnl_16

chnl_15

chnl_1

chnl

pio

pio

Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Mixed Levels

Level 2 / Level 3
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Network controller

rdmc

pio

Original

Spare / steering logic

Sparing in Different Levels: Fine-Grained

Lowest level



Deeper in hierarchy

High

Low

Area overhead

Self-repair coverage

Balanced tradeoff
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How to Obtain “Sweet-Spot”?

Algorithm details in paper
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Self-repair coverage (%)
0 75

3.2

20

ERRS

98

Post-layout

chip area 

impact (%)

SHE Results

Existing sparing techniques



Self-repair coverage (%)
0

7.5

20

ERRS + SHE

98

SHE power impact: 0.2%

SHE performance impact: 0%

76

Post-layout

chip area 

impact (%)

SHE Results

Existing sparing techniques



What About Diagnosis?
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 Traditional fault diagnosis difficult

 Effect-cause: infeasible

 RTL unavailable

 Cause-effect: impractical

 7 petabyte fault dictionary

 [Beckler ITC12]
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 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

Fault Diagnosis Simplified



79

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

…

Block 1 Block n

Blocks = self-repair granularity

Fault Diagnosis Simplified
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… …

Block 1

Local test logic

Pass/fail 1 Pass/fail n

…

Block n

 CASP [Li DATE08, VTS10]

 Concurrent, Autonomous, Stored test Patterns

= self-repair granularity

Fail  self-repair needed

Diagnosis = detection

Fault Diagnosis Simplified

…
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Self-repair coverage (%)
0 75

3.2

7.5

20

ERRS

ERRS + SHE

98

Post-layout

chip area 

impact (%)

Power:             3%

Performance:  0% (fault-free)

0.3% - 5% (faulty)

Summary: Self-Repair of Uncore Components

Existing sparing techniques
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