
300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990 

Executing a Program on the MIT Tagged-Token 
Dataflow Architecture 

Abstract-The MIT Tagged-Token Dataflow project has an 
unconventional, but integrated approach to general-purpose 
high-performance parallel computing. Rather than extending 
conventional sequential languages, we use Id, a high-level 
language with fine-grained parallelism and determinacy implicit 
in its operational semantics. Id programs are compiled to 
dynamic dataflow graphs, a parallel machine language. Dataflow 
graphs are directly executed on the MIT Tagged-Token Dataflow 
Architecture (TTDA), a novel multiprocessor architecture. Da- 
taflow research has advanced significantly in the last few years; in 
this paper, we provide an overview of our current thinking, by 
describing example Id programs, their compilation to dataflow 
graphs, and their execution on the TTDA. Finally, we describe 
related work and the status of our project. 

Index Terms-Dataflow architectures, dataflow graphs, func- 
tional languages, implicit parallelism, I-structures, MIMD ma- 
chines. 

I. INTRODUCTION 

HERE are several commercial and research efforts T currently underway to build parallel computers with 
performance far beyond what is possible today. Among those 
approaches that can be classified as general-purpose, ‘ ‘multi- 
ple instruction multiple data” (MIMD) machines, most are 
evolutionary in nature. For architectures, they employ inter- 
connections of conventional von Neumann machines. For 
programming, they rely upon conventional sequential lan- 
guages (such as Fortran, C, or Lisp) extended with some 
parallel primitives, often implemented using operating system 
calls. These extensions are necessary because the automatic 
detection of adequate parallelism remains a difficult problem, 
in spite of recent advances in compiler technology [28], [2], 
[351. 

Unfortunately, a traditional von Neumann processor has 
fundamental characteristics that reduce its effectiveness in a 
parallel machine. First, its performance suffers in the presence 
of long memory and communication latencies, and these are 
unavoidable in a parallel machine. Second, they do no1 
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provide good synchronization mechanisms for frequent task 
switching between parallel activities, again inevitable in a 
parallel machine. Our detailed technical examination of these 
issues may be found in [ l l ] .  In [25], Iannucci explores 
architectural changes to remedy these problems, inspired by 
dataflow architectures. 

Furthermore, traditional programming languages are not 
easily extended to incorporate parallelism. First, loss of 
determinacy adds significant complexity to establishing cor- 
rectness (this includes debugging). Second, it is a significant 
added complication for the programmer to manage parallelism 
explicitly-to identify and schedule parallel tasks small enough 
to utilize the machine effectively but large enough to keep the 
resource-management overheads reasonable. 

In contrast, our dataflow approach is quite unconventional. 
We begin with Id, a high-level language with fine-grained 
parallelism implicit in its operational semantics. Despite this 
potential for enormous parallelism, the semantics are also 
determinate. Programs in Id are compiled into dataflow 
graphs, which constitute a parallel machine language. Finally, 
dataflow graphs are executed directly on the Tagged- Token 
Dataflow Architecture (TTDA), a machine with purely data- 
driven instruction scheduling, unlike the sequential program 
counter-based scheduling of von Neumann machines. 

Dataflow research has made great strides since the seminal 
paper on dataflow graphs by Dennis [18]. Major milestones 
have been: the U-Interpreter for dynamic dataflow graphs [9], 
the first version of Id [lo], the Manchester Dataflow machine 
[22] and, most recently, the ETL Sigma-1 in Japan [48], [23]. 
But much has happened since then at all levels-language, 
compiling, and architecture-and dataflow, not being a main- 
stream approach, requires some demystification. In this paper, 
we provide an accurate snapshot as of early 1987, by 
providing a fairly detailed explanation of the compilation and 
execution of an Id program. Because of the expanse of topics, 
our coverage of neither the language and compiler nor the 
architecture can be comprehensive; we provide pointers to 
relevant literature for the interested reader. 

In Section 11, we present example programs expressed in Id, 
our high-level parallel language. We take the opportunity to 
explain the parallelism in Id, and to state our philosophy about 
parallel languages in general. In Section 111, we explain 
dataflow graphs as a parallel machine language and show how 
to compile the example programs. In Section IV, we describe 
the MIT Tagged-Token Dataflow Architecture and show how 
to encode and execute dataflow graphs. Finally, in Section V 
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we discuss some characteristics of the machine, compare it to 
other approaches, and outline future research directions. 

Before we plunge in, a word about our program examples. 
First, we are not concerned here with algorithmic cleverness. 
Improving an algorithm is always a possibility, but is outside 
the scope of this paper-we concentrate here only on efficient 
execution of a given algorithm. Second, even though in our 
research we are concerned primarily with large programs, the 
examples here are necessarily small because of limitations of 
space. However, even these small examples will reveal an 
abundance of issues relating to parallelism. 

11. PROGRAMMING IN ID 

We believe that it is necessary for a parallel programming 
language to have the following characteristics. 

It must insulate the programmer from details of the 
machine such as the number and speed of processors, topology 
and speed of the communication network, etc. 

The parallelism should be implicit in the operational 
semantics, thus freeing the programmer from having to 
identify parallelism explicitly. 

It must be determinate, i.e., if an algorithm, by itself, is 
determinate, then so should its coding in the parallel language. 
The programmer should not have to establish this determinacy 
by explicit management of scheduling and synchronization. 

The last point is worth elaboration. Varying machine 
configurations and machine loads can cause the particular 
schedule for parallel activities in a program to be nondeter- 
ministic. However, the result computed should depend only on 
the program inputs and should not vary with the particular 
schedule chosen. It is a notoriously difficult task for the 
programmer to guarantee determinacy by explicitly inserting 
adequate synchronization. On the other hand, functional 
programming languages guarantee determinacy automatically, 
because of the Church-Rosser property. 

Id is a high-level language-a functional programming 
language augmented with a determinate, parallel data-structur- 
ing mechanism called &structures. I-structures are array-like 
data structures related to terms in logic programming lan- 
guages, and were developed to overcome deficiencies in the 
purely functional approach (see [12] for a detailed discussion 
of this topic). 

The exposition here relies on the intuition of the reader. The 
precise syntax and operational semantics of Id (expressed as 
rewrite rules) may be found in [34] and [13], respectively. 

A .  An Example Problem: Moving a Graphic Object 
A graphics package requires a function to move objects 

around on the screen. For example, as shown in Fig. 1 ,  we 
may want to “drag” a shape to a new position. A k-sided 
shape can be represented by a vector of k points, and a point in 
an n-dimensional space can itself be represented by a vector of 
n numbers. The distance and direction that we want the shape 
to move can also be represented as an n-dimensional vector. 
Given such a representation for a shape S and movement d ,  the 
new shape S‘ can be computed by simply adding vector d to 
each point of S .  In order to explain Id, we develop the program 
move-shape which, given an S and a d, will produce the new 

I 
Fig. 1. Moving a shape in a two-dimensional space. 

shape. Along the way, we will define some functions that are 
useful in other contexts as well. 

To simplify the exposition here, we assume that n is a 
constant, even though in Id we could discover n by querying 
the index bounds of, say, d .  Also, we use the words “array” 
and “vector” synonymously. 

B. Vector Sum 

i.e., a function that can add two vectors: 
We begin by writing a function that moves a single point, 

Def vsum A B = 
{ C = array ( 1 , n )  ; 

{For j From 1 To n Do 
C [ j l  = A [ j l  + Wl) 

In 
c > ;  

This defines a function vsum that takes two vector arguments 
A and B and returns a vector result C. The body of the 
function is a block (the outer braces). The first statement in the 
block allocates the vector C with index bounds 1 to n. The 
second statement, the For-loop, fills it with the appropriate 
contents. Finally, the block’s return expression (after the 
keyword In) indicates that the new vector is returned as the 
value of the block (which is the value of the function). 

It is, of course, obvious to the reader, and perhaps can be 
deduced by a compiler, that the iterations of the loop are 
independent of each other, and hence can be done in parallel. 
But Id’s semantics reveal much more parallelism than this. In 
any block, the return expression and the statements are all 
executed in parallel, subject only to data dependencies. Thus, 
the allocation of vector C can proceed in parallel with the 
unfolding of the loop and evaluation of all the subexpressions 
A [ j ]  + B [ j ]  . The array allocator returns a descriptor for the 
new vector (a pointer to memory). When C is finally 
available, all the pending stores C [ j ]  = 

Furthermore, the vector descriptor can be returned as the 
value of the function vsum even before the For-loop has 
terminated. This is because arrays in Id have I-structure 
semantics, eliminating read-write races. Array locations are 
initially empty, and they may be written at most once, at which 
point they become full. A reader of an array location is 

can proceed. 
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automatically deferred until it is full. In functional languages, 
a data structure whose elements can be read before all the 
elements of the data structure have been defined is called 
nonstrict. In this sense, all data structures in Id, including I- 
structures, are nonstrict. Generally, nonstrictness increases 

the names 1 and U .  The second statement allocates a new array 
Y with the same bounds. The loop fills each Y [ j ]  with the 
result of applying the function f to X [ j ] .  The value of the 
block, Y,  is also the value of the function. 

So, to move a shape, we simply say _ _  - 
the opportunity for parallelism, in addition to increasing the 
expressive power of functional languages. Def move-shape S d = map-array (vsum d )  S ; 

Functions can be called merely by juxtaposing them with 

vsum el e2 

their arguments. The expression 

represents the application of vsum to two arguments, the 
values of the expressions e 1 and e2. 

Functions are nonstrict in the same sense as data structures. 
When evaluating the function-call expression (vsum el e2), 
the output vector C can be allocated and returned, and the loop 
unfolded, even before el and e2 have produced vsum’s input 
vectors A and B. The expressions A [ j ]  and B [ j ]  simply 
suspend until descriptors for A and B arrive. Because of this 
nonstrict behavior, Id can dynamically adjust to, and exploit, 
variations in producer-consumer (or ‘‘pipelined”) parallel- 

i.e., to each point in the shape S ,  we apply vsum d ,  thus 
computing a corresponding point displaced by d ,  and we 
collect the resulting points into an array (the result shape). 

Of course, we could have written moveshape as a loop 
iterating over S and doing a vsum with d in each iteration. 
However, the recommended style for programming in Id is to 
use abstractions like make-array [ 8 ] .  The abstractions are 
inexpensive-our compiler is sophisticated enough to produce 
code for the above program that is as efficient as one written 
directly using nested loops. In fact, with a handful of generally 
useful abstractions like map-array, one rarely needs to write 
loops explicitly at all. However, in this paper we use loops to 
minimize the gap between the source program and dataflow 
graphs, so that the translation is easier to understand. 

. _  

ism, even if it depends on the inputs of the program. 
D. Another Example: Inner Product We reassure the reader that the above informal exdanations 

of the parallelism in Id will be made more precise in Sections 
III and IV. follows: 

C. Higher Order Functions: map-array 

The inner product of two vectors may be written in Id as 

D e f i p A B  = { s  = 0 

A very interesting and useful feature of functional languages 
like Id is currying, which allows us to give meaning to 
expressions like (vsum A ) .  Such expressions are called partial 
applications. Suppose we write 

move-point = vsumA ; 

Then, the application (move-point p )  is equivalent to the 
expression (vsum A p ) ,  and will compute a new point which is 
a distance A away from p .  In other words, move-point is itself 
a legitimate unary function that adds vector A to its argument. 
Functions viewed in this higher order sense are said to be 
curried they can be partially applied to their arguments, one 
at a time, to produce successively more specialized functions. 

In order to move each point of a shape, we will first write a 
function for the following general paradigm: 

“Do something (f) to each element of an array ( X )  and 
return an array ( Y )  containing the results.” 

This can be expressed in Id as follows: 

Def map-array f X = { I,u = bounds X ; 
Y = array (1,u) ; 
{ F o r j  From 1 To U Do 

Y [ j l  = f X [ j l l  
In 

YI ; 

Note that one of the arguments (f) is itself a function. The 
first statement queries the index bounds of X and binds them to 

In 
{For j From 1 To n Do 

Next s = s + A [ j ]  * B [ j ]  
Finally s } }  ; 

In the first statement of the block, the value of a running sum s 
is bound to zero for the first iteration of the loop. During the 
jth iteration of the loop, the s for the next (i.e., j +  1st) 
iteration is bound to the sum of s for the current iteration and 
the product of the jth elements of the vectors. The value of s 
after the nth iteration is returned as the value of the loop, 
block, and function. 

Id loops differ radically from loops in conventional lan- 
guages like Pascal. All iterations execute in parallel (after 
some initial unfolding), except where constrained by data 
dependencies. In ip, all 2n array selections and n multiplica- 
tions may proceed in parallel, but the n additions are 
sequentialized.* The variables j and s do not refer to single 
locations which are updated on each iteration (as in Pascal); 
rather, every iteration has its own copy of j and S .  

III. DATAFLOW GRAPHS AS A TARGET FOR COMPILATION 
In this section, we describe dataflow graphs, which we 

consider to be an excellent parallel machine language and a 
suitable target for programs written in high-level languages 
like Id. This idea was first expressed by Dennis in a seminal 
paper in 1974 [ 1 8 ] .  The version we present here reflects 1) an 
augmentation from “static” to “dynamic” dataflow graphs 
that significantly increases the available parallelism [lo], [9] ,  

’ It is to support currying notationally that parentheses are optional in 
function applications. For example, the curried applicationfx y z would be 
written ( ( ( f x )  y )  z)  in Lisp. 

Of course, a different definition for ip could use a divide-and-conquer 
method to parallelize the additions. 
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emits an output token carrying the constant. We discuss trigger 
arcs in Section 111-E. 

B. Functions 

S A  

I The body of a function definition is an expression; its + dataflow graph will have 

an input arc for each formal parameter, and 
an output arc for each result. 

There are two major issues to be addressed: 1) when one 
function invokes (i.e., calls) another, how should the graph of 
the caller be linked to the graph for the body of the callee, and 

Fig. 2. Dataflow graph for s+A[J]*B[J] .  

and 2) the introduction of numerous significant details and 
optimizations developed subsequently. 

A .  Basics 
A dataflow graph consists of operators (or instructions) 

connected by directed arcs that represent data dependencies 
between the operators. Each operator may have one or more 
input and output arcs. Arcs may be named-the names 
correspond to program variables. Fig. 2 shows the graph for a 
simple subexpression of the inner product program ip. 

The fork for j at the top of the figure can be regarded as a 
separate one-input, two-output operator, but since any opera- 
tor can have more than one output, it would usually be 
incorporated as part of the preceding operator (not shown). 

Data values between operators are carried on tokens which 
are said toflow along the arcs. In a dataflow machine, this is 
represented by including a destination in the token, that is, the 
address of the instruction (operator) at the end of the arc. (So, 
except in special signal processing architectures, one should 
never think of the dataflow graph as representing physical 
wiring between function modules.) 

An operator is ready to fire, i.e., execute, when there are 
tokens on all its input arcs. Firing an operator involves 
consuming all its input tokens, performing the designated 
operation on the values carried on the tokens, and producing a 
result token on each output arc. Fig. 3 shows a possible firing 
sequence for our simple expression. 

Tokens on the A and B arcs carry only descriptors (or 
pointers) to the I-structures themselves which reside in a 
memory called I-structure storage. (We discuss this in detail 
in Section 111-C.) Note that the firing sequence is unspecified: 
operators may fire as soon as tokens arrive at their inputs; 
many operators may fire at the same time, and the execution 
times of the operators may vary. 

The compilation of constants requires some care. In most 
cases, such as the constant 1 in the expression j +  1, it is 
incorporated as an immediate operand into the + instruction 
itself, making it effectively a unary “ + 1” operator. How- 
ever, if necessary, a constant can be compiled as an operator 
with one trigger input and one output (see Fig. 4). Such a 
situation may arise, for example, if both inputs to an 
instruction are constants. The data value on a trigger token is 

2) how to handle multiple- invocations of a function that may 
overlap in time (due to recursion, calls from parallel loops, 
etc). We address the latter issue first. 

I )  Contexts and Firing Rules: Because of parallel invoca- 
tions and recursion, a function can have many simultaneous 
activations. Therefore, we need a way to distinguish tokens 
within a function’s graph that logically belong to different 
activations. One way to handle this would be to copy the entire 
graph of the function body for each activation. However, in 
the TTDA we avoid this overhead by keeping a single copy of 
the function body, and by tagging each token with a context 
identifier that specifies the activation to which it belongs. 

The reader should think of a context exactly as a “frame 
pointer,” i.e., one should regard the set of tokens correspond- 
ing to a function activation as the contents of a frame (or 
“activation record”) for that function. The dataflow graph for 
the function corresponds to its fixed code. A token carries the 
address of an instruction in this fixed code, and a dynamic 
context that specifies the frame for a particular invocation of 
the function. The format of a token can now be seen: 

(c.s,  

Here, c is the context, s is the address of the destination 
instruction, U is the datum, andp is the port identifying which 
input of the instruction this token is meant for. The value c.s is 
called the fag of the token.4 To simplify hardware implemen- 
tation, we limit the number of inputs per instruction to two 
(with no loss of expressive power). Thus, p designates the 
“left” or “right” port. We have written p as a subscript for 
convenience; we will drop it whenever it is obvious from the 
graph. 

Tokens corresponding to many activations may flow simul- 
taneously through a graph. The normal firing rule for 
operators must therefore be changed so that tokens from 
different activations are not confused: 

An operator is ready to fire when a matched set of input 
tokens arrives, i.e., a set of tokens for all its input ports that 
have the same tag C.S.  

When the operator fires, the output value is tagged with 
c.t . ,  i.e., the instruction in the same context that is to receive 
this token. 

Of course, this does not preclude also making copies of the function body 
across processors, to avoid congestion. 

The “tag” terminology is historical. It may be more appropriate to call it 
a “continuation,” because it specifies what must be done subsequently with 

irrelevant. Whenever the trigger token arrives, the operator the value on the token. 
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Fig. 3 .  A firing sequence for “ s + A [ i ]  * B [ i ] . ”  
v- 

trigger 

JP 
Fig. 4. Dataflow graphs for constants. 

/i+:++<c.-> t: 

t: <c . t ,30> 

Fig. 5. Firing rule for “*” operator. 

2) Function Linkage: In order to handle function calls, it This is summarized using the following notation: 
is necessary 

op : (c.s, u l ) , x ( c . s ,  u 2 ) ,  3 ( C A ,  (U1 op u 2 ) ) .  

For clarity, we will consistently follow the convention that the 
operator is located at address s, and its destination is located at 
address t .  Fig. 5 shows the tag manipulation for the firing of 
the * operator. 

to allocate a new context (i.e., a new frame) for the 
cdlee, 

for the caller to send argument tokens, including a 
“return continuation,” to the new context, and 
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Fig. 6 .  Dataflow graph for function call and return linkage. 

for the callee to send result tokens back to the caller’s 
context using the return continuation. 

While reading the following description, the reader may 
want to refer to Fig. 6, where the graph for the function call, 
(ip argl arg2) is shown. It is assumed that r is the address of 
the instruction expecting the result of the function call. Thus, 
the return continuation is c.r, where c is the context of the 
caller. By convention, the return continuation implicitly 
becomes the zeroth argument. Function linkage requires 
instructions to manipulate contexts on tokens. The two key 
instructions for this purpose are extract-tag, and change-tagj. 

Extract-tag, is a family of monadic instructions parameter- 
ized by an address and is used by a caller to construct a return 
continuation for the instruction at r in the current context: 

extract-tag, : (c.s, -) * (c.t, c . ~ ) .  

It takes a trigger input (whose value is irrelevant) and uses the 
current context c to produce a tag c.r as its output datum. 

Change-tagj is a family of dyadic instructions parameter- 
ized by a small constant j ,  and is used by the caller to send 
arguments to the callee: 

change-tagj : (c.s, c’.t’),x (c.s, U), * (c‘.(t’ + j ) ,  U)[. 

Here, U is an argument value, c’ is the context of the callee, 
and t‘ + j  is the address of the instruction in the callee that is to 
receive this argument. Change-tagj is also used by the callee 
to send results back to the caller. In this case, U is a result 
value, c’ is the context of the caller, and t’ + j  is the address of 
the instruction in the caller that is to receive the result. 
Although not shown here, note that it is possible to return 
multiple results. By convention, the receiving instructions for 
multiple arguments (or results) are placed at contiguous 
addresses t ‘ ,  t’ + 1, t ’  + 2, etc. Thus, for example, to send the 
second argument, the compiler uses a change-tag2 instruction. 

It is not possible to depict the output arc of change-tag 
graphically, because the destination of its output token is not 
determined statically-it depends on the left input data value. 

We call such arcs dynamic arcs and show them in figures 
using dashed lines. 

All that remains is to allocate a new context for the callee. 
For this, we use the following “operator:” 

get-context : ( c . s , f )  * (c.t, new-cf). 

The input is a destination address f (the callee function’s entry 
point), and the output is new-c.f, where new-c is a new, 
unique context identifier. The astute reader will immediately 
realize that there is something special about the get-context 
“operator.” Whereas all operators described so far were purely 
functional (outputs depended only on the inputs), this “opera- 
tor” needs some internal state so that it can produce a new 
unique context each time it is called. The way this is achieved 
is discussed in Section 111-I-get-context is actually an 
abbreviation for a call to a special dataflow graph called a 
manager. 

Now we have described the machinery used in Fig. 6 for 
linking function calls and returns. This linkage mechanism is 
only one of a number of possibilities that we have investigated. 

It is important to note that the callheturn scheme supports 
nonstrict functions. As suggested in Fig. 6, the zeroth 
argument (the return continuation) may be received by an 
identity instruction ( id)  that forks it and uses it as a “trigger” 
(to be described in Section 111-E) to initiate computation in the 
body of the function before any of the “normal” arguments 
arrive. Furthermore, it is even possible for the function to 
return a result before the normal arguments arrive. An 
example of such a function is the vsum program of Section II- 
B, where the allocation of the result vector c does not depend 
on the argument vectors A and B. Thus, the part of vsum that 
allocates C and returns its pointer to the caller can be triggered 
as soon as the return continuation arrives. When the normal 
arguments A and B arrive, other parts of vsum will execute 
concurrently, filling in C’s components. Our experiments 
show that this kind of overlap due to nonstrictness is a 
significant source of additional parallelism [7]. 
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,- Presence Bits (Present, Absent, Waiting) 

Data or r Deferred Read Pointer 

datum Tag Y 

n+3 : 
n+4 : Deferred Read Requests 

I I  I Possible execution sequence producing this structure: 
Attempt to READ(n+2) for instruction X 

* WRITE(n+m 
* Attem t to R!CAD(n+3) for instruction Z 
* WRIT%(n) 
* Attempt to READ(n+2) for instruction Y 

Data Storage * READ(n) 

Fig. I .  I-structure memory. 

C. I-structures value is written there, its state is changed to present, and the 
value is also sent to all the destinations queued at the location. 
If the location’s state is already present, it is an error. 

an aside, we would like to point out that dataflow 
processors with I-structure storage are able to tolerate high 
memory latencies and synchronization we have given 
extensive reasons in [ill why it is difficult to do so in a 
parallel machine based on the 

We now return to the discussion of I-structures at the Id and 
dataflow graph level. 

2) I-Structure Select Operation: The architecture takes no 
position on the representation of I-structure descriptors. One 
possible representation is simply a pointer to the base of the 
amay, with its index bounds stored just below the base. In 
order to evaluate the expression A [ j ] ,  the address a to be read 
must be computed from the descriptor A and the index j .  The 
address computation may also perform bounds checking (see 
Fig. 8). The I-fetcht operator then sends a “read token” to the 
I-structure storage controller with address a, along with the 
continuation c. t .  

At the I-structure memory, if the location a has the present 
state, i.e., it is not empty and contains a value U ,  the value is 
sent in a token (c.t,u) to the instruction at c.t. If the location is 
in the absent state, i.e., it is empty, it is changed to the waiting 
state, and the continuation c.t is simply queued at that 
location, 

Thus, all memory reads are so-called split-phase reads, 
i.e., the request and the reply are not synchronous. The 
processor is free to execute any number of other enabled 
dataflow instructions during the memory fetch. In fact, the 
destination c. t may be on an entirely different processor. 

3) I-Structure Assignment: An I-structure assignment 

In the simple model of dataflow graphs, all data are carried 
On tokens. k3trUCtUres are a Way Of introducing a limited 
notion of State daQflow graphs, Without compromising 
parallelism or determinacy. I-structures reside in a global 
memory which has atypical read-write semantics. A token 
representing an I-structure carries only a descriptor of, i.e., a 
pointer to, an I-struCtUre. When an I-StlllCtUre token ImXW 

through a fork, only the token and not the whole I-structure, is 
duplicated, so that there can be many pointers to a structure. 

A “Producer” dataflow graph writes into an z-structure 
location while several other “consumer” dataflow graphs read 
that location. However, I-structure Semantics require that 
consumers should wait Until the value becomes available- 
Furthermore, determinacy is preserved by disallowing multi- 
Ple writes Or testing for the emptiness of an I-struct~re 
location. Even though Our general discussion of TTDA 
architectures is in Section IV, we would like to shore up the 
reader’s intuition about I-structures by presenting the I- 
structure storage model here. 

1) I-Structure Storage: An I-structure store is a memow 
module With a controller that handles I-structure read and 
write requests, as well as requests to initialize the storage. The 
structure of the memory is shown in Fig. 7. In the data storage 
area, each location has some extra presence bits that specify 
its state: “present,” “absent,” Or “waiting.” When an I- 
structure is allocated in this area, d l  its locations are initialized 
to the absent state. 

When a “read token” arrives, it contains the address Of the 
location to be read and the tag for the instruction that is Waiting 
for the value. If the designated location’s state is present, the 
datum is read and sent to that instruction. If the state is absent 
or waiting, the read is deferred, i.e., the tag is queued at that 
location. The queue is simply a linked list of tags in the 
deferred read requests area. 

When a “write token” arrives, it contains the address of the 
location to be written and the datum to be written there. If the 
location’s state is absent, the value is written there and the 
state changed to present. If the location’s state is waiting, the 

N~~~~~~ model. 

A [ j ] = u  

is translated into the dataflow graph shown in Fig. 9. 
As in the select operation, the address a of the I-structure 

location is computed, based on the descriptor A and the index 
j .  The I-store operator then sends a “write token” to the 
appropriate I-structure memory. 

When the write token arrives there, the location may be in 
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the absent state or in the waiting state, i.e., there are some 
destinations queued there from prior memory reads. The value 
U is written to location a ,  and the state is changed to present. If 
it was in the waiting state, a copy of U is also sent to all 
destinations that were queued at a. 

If the location is already in the present state, i.e., it already 
contains a value from a previous write token, it is treated as a 
run-time error, since an I-structure location may written to at 
most once. 

The I-store operator, in addition to generating the write- 
token (a, WRITE, U), also generates a signal token for the 
destination c.t. The signal is used, ultimately, to detect the 
termination of the function activation containing this I-store 
instruction. This is to ensure that the function’s context is not 
reclaimed before all its activity has ceased. (Note that this 
signal does not imply that the actual memory write has taken 
place-the write token may still be on its way to I-structure 
memory. ) 

In some resource-management situations, it may be neces- 
sary to know that the write has completed at the memory unit. 
This can be achieved simply by doing a fetch to the same 
location and waiting for the response-I-structure semantics 
ensures that it cannot come back until the write has occurred. 

4) I-Structure Allocation: I-structure allocation is required 
by the Id expression 

array (/,U). 

Just like the get-context “operator,” we can think of a get- 
storage operator 

get-storage : (c.s, size) * (c.t, A )  

where size is computed from 1 and U ,  and A is the descriptor 
for the allocated array. Like get-context, this is also imple- 
mented by a call to a manager (see Section 111-I). The storage 
allocator manager 

allocates a free area of I-structure memory, 

initializes all locations to the absent (i.e., empty) state, 

sends the descriptor to the instruction at c.t. 

Manager calls are split phase operations, like the select 
operation. Hence, the processor can execute other instructions 
while storage is being allocated. 

5) Discussion: The write-once semantics that we have 
described supports the high-level determinacy requirements of 
Id. However, architecturally, and at the dataflow graph level, 
it is trivial to implement other memory operations as well. An 
‘ ‘exchange” operation for managers is described in Section 
111-I. One could have ordinary, imperative writes as well (the 
storage allocator needs this). In fact, it is not difficult to 
include a small ALU in the I-structure controller to perform 
fetch-and-add style instructions [21], [41], [29]. 

and 

D. Well-Behaved Graphs and Signals 
When a function is invoked, some machine resources (e.g., 

a frame, registers) must be dynamically allocated for that 
invocation. We refer to these resources collectively as a 
context. Because machine resources are finite, the resources 
in a context must be recycled when that activation terminates. 
However, parallelism complicates the detection of termina- 
tion. The termination of a function is no longer synonymous 
with the production of the result token. Because functions are 
nonstrict, and because there are instructions that do not return 
results (e.g., I-store), a result can be returned before all 
operators within the function body have executed. If resources 
are released before termination, there may be tokens still in 
transit that amve at a nonexistent context, or worse, at a 
recycled context (a manifestation of the “dangling pointer” 
problem). 

How, then, can we determine when it is safe to reclaim the 
resources used by a function activation? We do so by imposing 
an inductively-defined structure on dataflow graphs; such 
graphs are called well-behaved. We insist that all graphs have 



308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990 

at least one input and at least one output. Then, a graph is well- 
behaved if 

1) initially, there are no tokens in the graph; 
2) given exactly one token on every input, ultimately 

exactly one token is produced on every output; 
3) when all output tokens have been produced, there are no 

tokens left in the graph, i.e., the graph is self-cleaning. 

To ensure that all our graphs are well-behaved, we construct 
them inductively. We start with primitive well-behaved graphs 
and build larger composite graphs using composition rules, or 
graph schemas, that preserve well-behavedness. 

Most graph primitives are already well-behaved (+, *, 
* .). For some operators, such as I-store, it is necessary to 

introduce an artificial output called a signal to make it well- 
behaved. Signal tokens do not carry any meaningful values; 
they are used only to detect that a graph has executed. 

For composite graphs, there may be many nested graphs 
that only produce signals. In the conditional schema (Section 
III-G), some data arcs may be used in one arm but not in the 
other. All such signals and dangling arcs are combined by 
feeding them into a “synchronization tree,” which is a tree of 
dyadic synchronization operators, each of which emits a signal 
token on its output when it has received tokens on both its 
inputs. Thus, a composite graph can itself be made well- 
behaved by augmenting it with a suitable synchronization tree. 
Some examples are shown in later sections, but we gloss over 
many subtleties, notably signal generation for conditionals and 
loops; these are explained in detail in [43]. 

E. Code Blocks and Triggers 

Apart from the common misconception that dataflow graphs 
represent an interconnection of hardware modules, another 
major misconception about dataflow is that decisions about the 
distribution of work on the machine are taken dynamically at 
the level of individual instructions. This naturally leads to 
fears of intolerable overheads. 

The dataflow graph for a program is divided into units 
called code blocks. Each user-defined function is compiled as 
a separate code block. Inner loops (i.e., loops that are 
contained within other loops) are also compiled as separate 
code blocks. Of course, because of compiler transformations 
(such as lambda lifting [27]) and optimizations (such as in-line 
function expansion), there may no longer be a one-to-one 
correspondence between code blocks and source program 
functions and loops. 

The “function call” mechanism described in Section III-B 
is, in fact, the general mechanism by which any code block 
invokes another. Thus, it is the code block that is the unit of 
dynamic distribution of work in the TTDA, at which resource 
allocation decisions are taken. In contrast, within a code 
block, the work is distributed automatically with some 
hardware support, as described in Section IV-C. 

Every code block has one or more input arcs and one or 
more output arcs. One of the input arcs is designated as the 
trigger input and one of the output arcs the termination-signal 
output. When a code block B1 invokes a code block B2, 

pJLq+ --[Fm 

Fig. 10. Representation of a closure. 

B1 (the caller) acquires a context for B2 (the callee) from a 
manager (see Section 111-1). This may involve loading code for 
B2 in one or more processors. 

B, sends a trigger token to B2. Usually, the return 
continuation token (i.e., the implicit zeroth argument) can be 
used as the trigger. 

B1 sends other input tokens to B2 (and, perhaps, continues 
its own execution). 

B2 returns result(s) to B1 (and, perhaps, continues its own 
execution). 

One of the “results” from B2 is a termination signal. 
Often, one of the data results can be used as a termination 
signal. 

B1 deallocates the context for B2. If there is more than one 
output arc from B2 back to B 1 ,  then B1 will need a 
synchronization tree to ensure that all these tokens have 
arrived before it deallocates Bl’s context. 

The top level computation of a program begins by injecting 
a trigger token into the outermost code block. Inner code 
blocks, in turn, get their triggers from their callers. The reader 
is referred to [43] for the details of generation and propagation 
of signals and triggers. 

F. Higher Order Functions 
Every function has a syntactically derived property called 

its arity (1 1) which is the number of arguments in its 
definition. For example, vsum has arity 2. In Section 111-B, we 
saw how to compile expressions representing the application 
of a known, arity n function to n arguments [e.g., (ip argl 
arg2)]. But what about expressions where the function is 
applied to fewer than n arguments? (An example is the 
expression (vsum d )  described in Section 11-C.) 

The “partial application” of a function of arity n to one 
argument produces a function that requires n - 1 arguments. 
When this, in turn, is applied to another argument, it produces 
a function that requires n - 2 arguments, and so on. Finally, 
when a function is applied to its last argument, the “full 
application,” or invocation, of Section ID-B can be per- 
formed. 

Function values are represented by a data structure called a 
closure. Fig. 10 depicts the situation after a function f of arity 
n has been applied to j arguments. A closure contains: 

the entry address of the functionk 
its arity n; 
n - j ,  the number of arguments remaining; 
a list of the j argument values collected so far. 

The degenerate case of a closure is the function value itself 
(for example, the token ip at the top left of Fig. 6);  it is a 
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Fig. 12. Dataflow graph for a conditional 

closure with n arguments remaining and an empty list of 
arguments collected so far. 

For general applications, we use a dyadic apply schema. 
The apply schema is not a primitive operator, but we will 
describe its behavior here without expanding it into a more 
detailed dataflow graph. 

The left input to the apply schema is a closure for a function 
f of arity n, n - j remaining arguments, and list o f j  collected 
arguments. The right input to apply is the next argument. 

Suppose n - j > 1 ; then, this is a partial application to the 
j + 1st argument. The output of apply is a new closure 
containing the same function and arity , but with decremented 
arguments-remaining (n - j - 1) and an augmented argu- 
ment list incorporating this argument. This is depicted in Fig. 
1 1 .  Note that the input and output closures share the first j 
arguments. 

When n - j = 1, the current argument is the final 
argument for f, and f can now be invoked. In this case, apply 
performs a full function call, as shown in Fig. 6 .  

Since closures and argument-lists are implemented using I- 
structures, the apply schema can return the new closure even 
before the argument token on its right input has arrived-the 
allocation of the new cell in the argument list can be done 
immediately. When the argument finally arrives, it will be 
stored in the argument list. Thus, the apply schema is 
consistent with the nonstrict semantics of full function calls. 
The reader is referred to [43] for further details. 

The general apply schema is of course not inexpensive. 
However, most applications are detectable as full-arity appli- 
cations at compile time, in which case the call-return linkage is 
generated directly. For those familiar with the literature on 
compiling graph reduction, the general apply schema is 
needed only in those places where a graph must be constructed 
instead of a direct function call. 

G. Conditionals 

formulation of the ip inner product function, not shown): 
Consider the following expression (part of a tail-recursive 

If ( j  > n )  Then s 
Else aux ( j  + 1) (s + A [ j ]  * B [ j ] ) .  

The graph for the conditional is shown in Fig. 12. 
The output of the > n operator is actually forked four ways 

to the side inputs of the four switch operators; the abbreviation 
in the picture is for clarity only. 

A true token at the side input of a switch copies the token 
from the top input to the T output. A false token at the side 
input of a switch copies the token from the top input to the F 
output. The 8 node simply passes tokens from either input to 
its output. The 8 node is only a notational device and does not 
actually exist in the encoding of a dataflow graph-the outputs 
of the two arms of the conditional are sent directly to the 
appropriate destination. The T outputs of the A ,  B,  and j 
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switches are routed to a synchronization tree to produce the 
termination signal for the true arm of the conditional. 

Note that the switch operator is not well-behaved by itself- 
given a token on each of its two inputs, it produces a token on 
only one of its outputs. However, when used in the context of 
a structured conditional schema, the overall graph is well- 
behaved. The reader should convince himself that after a token 
has appeared on each of the output arcs no token could remain 
in the graph. 

H. Loops 
Loops are an efficient implementation of tail-recursive 

functions. In Id, the programmer may express a computation 
directly as a loop, or the compiler may recognize tail-recursive 
forms and transform them to loops. 

(The impatient reader may safely skip to Section 111-1, but 
we invite you to scan the intermediate subsection headings, 
hoping that you will be tempted to come back!) 

We will discuss only while-loops here, using this version of 
the function ip which is equivalent to the for-loop version: 

D e f i p A B =  { s = O ;  
j =  1 

{While ( j  < = n )  Do 
Nextj  = j + 1 ;  
Next s = s + A [ j ]  * B[j l  

In 

Finally s } }  ; 
I )  Circulating Variables and Loop Constants: The body 

of the loop contains expressions with free variables j ,  s, A ,  
and B. Two of them, j and s, are bound on each iteration using 
Next-we call these circulating variables. The dataflow graph 
for the loop body has an input arc and an output arc for every 
circulating variable. The remaining two, A and B ,  are 
invariant over all iterations of the loop, and are thus called 
loop constants. It is possible to think of loop constants as if 
they too, were circulating, using the trivial statements 

nextA = A ; 
next B = B. 

However, implementing them in this way would incur 
unnecessary overheads, and so we give them special treat- 
ment. 

With every loop, we associate a region of memory in its 
context (frame) called its constant area. Before the loop body 
executes, there is a graph called the loop prelude that stores 
the loop constants in the constant area. Within the loop body, 
every reference to a loop constant is translated into a simple 
memory fetch from the constant area. 

The dataflow graph for our loop is shown in Fig. 13. For the 
moment, ignore the operators labeled D and D-reset. The loop 
prelude stores A and B in the constant area. j and s circulate 
around the loop as long as the j < = n output is true. 

2) Loop Iteration Context: Because of the asynchronous 
nature of execution, it is possible that the j tokens circulate 
much faster than the s tokens. This means that since the loop 
condition depends only on j ,  many j tokens corresponding to 
different iterations may pile up on the right-hand inputs of the 
select operators. Thus, we need a mechanism to distinguish the 

a i B 

Loop Prelude: Store A and B in Constant Area 

I U I 

nezt j 

dl 
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Fig. 13. Dataflow graph for a loop. 

tokens corresponding to different iterations. This is performed 
by the D and D-reset operators. The D operator merely 
changes the context of its input token to a new context; the D- 
reset operator resets the context of its input token to the 
original context of the entire loop. 

We could use the general get-context mechanism for this, 
but this would be equivalent to implementing the loop using 
general recursion. Instead, we assume that the get-context call 
that is used when invoking a code block containing a loop 
actually preallocates several contexts CO, CI, * - , for the 
different iterations of the loop, and returns CO, the identifier of 
the first one. The structure of context identifiers is such that 
given the identifier Ci, we can compute the identifiers C;+l 

and Co. The former computation is performed by the D 
operator, which is an identity operator that simply increments 
the context of its input token from C; to Ci+l, and the latter 
computation is performed by the D-reset operator, which is an 
identity operator that resets the context of its input token to CO. 
The i part of the context field is called the iteration number. 
In effect, a block of resources is preallocated for the loop 
which is then able to perform its own resource management 
locally. 

The astute reader will recognize that the loop-iteration- 
context mechanism is not sufficient to handle nested loops- 
tokens can still get confused. For this reason, every nested 
loop is packaged as a separate code block, like a procedure 
call, and given its own, unique context when it is invoked. 

3) Loop Throttling: There remains the problem of how 
large should be the contiguous block of contexts for a loop. 
One of the problems in parallel machines is the difficulty of 
controlling enormous amounts of parallelism. For example, 
unfolding 100 OOO iterations of a loop on a 256-processor 
machine could swamp the machine. A related point is this: in a 
real machine, there will be only a fixed number of bits to 
represent the iteration number of contexts. Hence, there is a 
possibility of overflow, if the loop unfolds too fast. 
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There is an elegant solution to these problems based on the 
simple observation that all inputs to the loop body are 
controlled by the bank of switch operators at the top of the 
loop, and these, in turn, are all controlled by a single Boolean 
value from the loop predicate. Any particular iteration of the 
loop can proceed only if the corresponding Boolean token 
arrives at the switches. Thus, by controlling the delivery of 
these Boolean tokens to the switches, we can regulate the rate 
at which the loop unfolds. 

Suppose we wanted to limit the unfolding of a loop to some 
k, i.e., no more than k iterations are to exist simultaneously. 
The general form of a k-throttled loop is shown in Fig. 14. 

The Boolean input to the switches is now gated using X , a 
two-input operator that fires when both inputs arrive, copying 
one of them to its output. By gating this token, we can hold 
back an iteration of the loop. The loop prelude primes the gate 
with the first k - 1 loop iteration contexts CO, . . . , Ck-2, 
which allows the first k - 1 Booleans to go through, which, in 
turn, allows the first k - 1 iterations to proceed. At the 
bottom of the loop, each circulating variable goes through a Dk 
operator which increments the loop iteration context from i to i 
+ 1, modulo k. Thus, the loop iteration context is the same 
for the ith and the i + kth iteration. 

The reader should convince himself that tokens with 
contexts CO and c k -  1,  inclusive, may now be sitting at the 
inputs to the switches. In order to prevent mismatching 
unrelated tokens, we must allow the c k -  iteration to proceed 
only after the CO iteration is over. 

The outputs of all the Dk operators are combined using a 
synchronization tree. When a signal token appears at the 
output of the tree with context C,, we know that the CO 
iteration has terminated completely, and that there are no more 
CO tokens extant. (Recall that the loop body is itself well- 
behaved, by induction, so that we know that all instructions in 
it, including I-stores, have completed.) When triggered by the 
signal token, the D;2  operator enables the gate with a token 
carrying context C k -  I (hence the “ - 2” in the name, since (k 
- 1 )  = ( 1  - 2 )  mod k). 

The value k may be specified as a compile-time or load-time 
pragma, or may be dynamically generated based on the current 
load on the machine. In our current graph interpreter, the user 
can specify it on a per loop basis at load time. There is also 
some code generated by the compiler, which we have glossed 
over, to consume the k extra tokens left at the gate when the 
loop terminates; for full details see [6] and [16]. 

Loop throttling amounts to inserting extra data dependen- 
cies in the dataflow graph. Because of this, it is possible for a 
throttled loop to deadlock where the unthrottled loop would 
not. Consider this example: 

{ a = array (1,lO) ; 
a1101 = 1 ; 
{For j From 1 To 9 Do 

a [ j l  = 2 * a [ j + l ]  }}. 

The loop unfolds forward, but the data dependencies go 
backward, so that a[9] becomes defined first, which enables 
a[8] to become defined, which enables a[7] to become 
defined, and so on. If the unfolding is throttled too much (e.g., 

k = 5 ) ,  the loop will deadlock, since the iteration that defines 
a [9] cannot execute. 

This example is pathological; it would have been more 
natural to write it with a For-downto loop instead of a For-to 
loop, in which case the deadlock problem does not arise. In 
our experience, programs rarely have dependencies that run 
counter to the loop direction. 

To avoid deadlock, the compiler may do some analysis to 
choose adequately large loop bounds or to change the loop 
direction, but this is of course undecidable in general. The 
programmer also has recourse to using general recursion to 
avoid deadlocks due to throttled loops. 

I. Managers 
In any machine supporting a general-purpose programming, 

various resources need to be allocated and deallocated 
dynamically, e. g . , frame and heap allocation and deallocation. 
We call the entities that perform these services resource 
managers. In a sequential language, such managers may not 
be clearly distinguishable as they are often distributed and 
embedded within the program itself. However, in any parallel 
language, these services must be shared by multiple processes 
(we will call them clients) and thus need special treatment. 

Even though the bulk of a resource manager may be written 
as an ordinary procedure (mapping resource requests to 
resources), the entry and exit are handled quite differently 
from ordinary procedure calls. First, each resource manager 
must have private data structures that are shared across all 
calls to that manager. Second, multiple calls to a manager 
must be serialized so that the manipulation of these data 
structures is done consistently. Typically, this serialization is 
performed in the nondeterministic order in which requests 
arrive. 

On a conventional machine, concurrent accesses to a 
manager are usually operating system calls (e.g., file alloca- 
tion) and are implemented using interrupts and interrupt 
handlers. Serialized entry is ensured by disabling interrupts, 
setting semaphore locks, etc. This kind of programming is 
notorious for its difficulty and high probability of error. The 
dataflow approach offers a very clean and elegant solution to 
these problems, allowing significant internal parallelism 
within the manager itself. We present one possible implemen- 
tation. 

Resource managers are ordinary Id programs that run 
continuously and concurrently with the main application 
program. While no special hardware is necessary, managers 
do use privileged instructions that allow them to manipulate 
the state of the machine. For example, the I-structure memory 
manager uses special instructions to reset presence bits, update 
its memory map (such as free lists), etc. 

Access to a manager is mediated by a shared serializing 
queue of requests, shown in Fig. 15. All data structures shown 
in the figure are located in I-structure memory. The queue is a 
chain of two-slot entries, where the first slot holds a request 
and the second slot points to the next entry in the queue. The 
second slot of the last entry (a) is empty (in the I-structure 
sense). The clients’ interface to the manager is m, an 
indirection cell that always points to the last entry in the queue. 
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Fig. 15. Serializing input queue for a resource manager. 

Clients use rn to attach their requests to the end of the queue, 
in some nondeterministic order. The manager holds a refer- 
ence to q, the current head of the queue. After consuming the 
request in the first slot of q, it uses the second slot to refer to 
the next entry in the queue, and so on. If the manager runs 
ahead of the requests, it suspends automatically when it tries to 
read the empty slot at the end of the queue. 

Suppose a client wishes to send a request, such as “get a 
context for function ip,” to the context manager. First, it 
creates a new entry b, a two-slot I-structure, and puts the 
request in b [ I]. The client then executes (exchange rn b) ,  an I- 
structure operation that simultaneously fetches a,  the current 
tail of the queue and stores 6 ,  the new tail, into rn. The 
exchange is performed atomically at the I-structure memory, 
to ensure that two clients executing this code simultaneously 
do not corrupt the shared data structure. Finally, the client 
enqueues b by storing b in a[2]. 

The request to a manager generally contains several pieces 
of information, according to software convention. For exam- 
ple, we may have a manager exclusively for allocating and 
deallocating contexts (see Section III-B2). The request con- 
structed by get-context may contain 

initial q initial state L 
Manager 

manager 
state 

contezt I re~pon~el 

/ I  I \ \  

Y3.CLY 
Fig. 16. Dataflow graph for a manager. 

a request type (“allocate”/“deallocate”), 
the name of the callee function (so that the manager 

knows what resources to allocate), and 
a return continuation c.t for the managers’ response (the 

instruction that receives the output of get-context). 
Some requests, such as releasexontext, may not require a 

return continuation. The mechanism also allows other prag- 
matic information to be packaged with the request, such as 
loop bounds, priorities, etc. 

Similarly, get-storage and releasestorage expand into calls 
to a manager for heap storage, with request containing the size 
of the memory request. 

A manager is shown in outline in Fig. 16. Each manager is 
initialized with an initial state containing data structures 
representing available resources and a reference to q,  the head 
of its serializing queue. A request is taken off the queue, and 
together with the current state, enters the manager body 
(which is an ordinary dataflow graph) to actually allocate/ 
deallocate the resource. It uses the change-tag operator and 
the return continuation that was packaged with the request to 
send the response back to the client. Finally, the manager body 
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produces a next state which is fed back, ready to be combined . . . . . . . 
with the next request. The behavior of a manager is abstractly 
modeled as follows: 

{WHILE true DO 
request = q[1] ; 
next state = manager-body request state ; 
next q = q [ 2 ]  }. 

As pointed out earlier, the manager will automatically suspend 
when it tries to read the empty Z-structure slot at the end of the 
queue. Using loop bounding, we can limit it to one iteration at 
a time. The manager body itself can have significant internal 
parallelism. 

The manager need not respond to requests in the order in 
which they were received. For example, in order to favor 
small requests over large, a heap allocator needs the ability to 
defer a large request. In such cases, the manager simply stores 
the pending request in its state variable and examines the next 
request. Thus, dataflow managers permit all the flexibility one 
normally expects in resource managers, such as priority 
queues, preemptive resource allocation, etc. 

As in any resource management system, there are some 
bootstrapping issues. For example, storage for the queue entry 
for a storage allocation request must not itself need a call to the 
storage manager. These issues are no different from those in 
conventional systems, and are handled similarly. 

If all requests for a particular kind of resource (e.g., heap 
storage) went to a single manager, it is, of course, likely to 
become a bottleneck. This can be addressed in standard ways. 
For example, we may partition the resource into separate 
domains, each managed by a local manager. These managers 
may negotiate with each other occasionally to balance resource 
usage across the machine. The communication between 
managers is no different from the communication between 
parts of any other Id program. 

Functional programmers will recognize that the manager 
queue performs a “nondeterministic” merge. However, 
managers are significantly easier to use than the nondeter- 
ministic merge operator, which cannot adequately cope with 
systems in which the users of a resource manager are 
dynamically determined. The reader is invited to see [4] for 
more details, including a programming methodology for 
managers. 

Dataflow graphs provide all the mechanisms necessary to 
implement managers; what remains is to decide the policies 
encoded therein. This is a major area for research (see [17]), 
both in our project and elsewhere. Currently, a major obstacle 
is the general lack of experience in the research community 
with large, parallel applications. 

Iv .  DATAFLOW GRAPHS AS A MACHINE LANGUAGE FOR THE 

TTDA 

We have seen that dataflow graphs are a good target for a 
compiler for a high-level programming language such as Id. 
Our experiments have confirmed that the tagged-token seman- 
tics for executing dataflow graphs exposes large amounts of 
parallelism, even in conventional algorithms [7]. In this 
section, we describe the MIT Tagged-Token Dataflow Archi- 

;;; 
Fig. 17. Top-level view of TTDA. 
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Fig. 18. A processing element. 

tecture (TTDA), a machine architecture for directly executing 
dataflow graphs. 

A .  Architecture 
At a sufficiently abstract level, the TTDA looks no different 

from a number of other parallel MIMD machines (Fig. 17)-it 
has a number of identical processing elements (PE’s) and 
storage units interconnected by an n-cube packet network. As 
usual, there are many packaging alternatives-for example, a 
PE and storage unit may be physically one unit-but we do not 
explore such choices here. However, it is important that the 
storage units are addressed uniformly in a global address 
space; thus, they can be regarded as a multiported, interleaved 
memory. 

Each PE is a dataflow processor. Each storage unit is an Z- 
structure storage unit, which was described in Section 111-C. A 
single PE and a single I-structure unit constitute a complete 
dataflow computer. To simplify the exposition, we will first 
describe the operation of the machine as if it had only one PE 
and I-structure unit; in Section IV-C, we discuss multiproces- 
sor operation. 
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Fig. 19. Representation of an instruction. 

B. Single Processor Operation 
The architecture of a single processing element is shown in 

Fig. 18. The main pipeline is the central feature of the PE. 
I )  Representation of Dataflow Graphs and Contexts: 

Recall (from Section 111-E) that a program is translated into a 
set of basic dataflow graphs called code blocks. The graph for 
a code block is encoded as a linear sequence of instructions in 
program memory. The assignment of instructions to addresses 
in the linear sequence is arbitrary, except for the call-return 
linkage convention mentioned in Section 111-B. As an engi- 
neering decision, every instruction has no more than two 
inputs. Thus, every instruction in the graph is encoded as 
shown in Fig. 19. 

The literal/constant field in an instruction may be a literal 
value or an offset into the constant area in constant memory. 
The destinations are merely the addresses of the successor 
instructions in the graph. To facilitate relocation, addressing 
within a code block is relative, i.e., destination addresses are 
encoded as offsets from the current instruction. 

A specific invocation of a code block is determined by a 
context, which identifies two registers: a code block register 
(CBR) which points to the base address in program memory 
for the code block’s instructions, and a database register 
(DBR) which points to the base address for the constant area in 
constant memory. 

The getxontext manager-call discussed in Sections 111-B 
and 111-1 must therefore 

Instruction-Fetch Unit: The tag on the operand tokens 
entering the instruction-fetch unit identifies an instruction to 
be fetched from program memory (via a CBR). The fetched 
instruction may include a literal or offset into the constant 
area, and a list of destination instruction offsets. The tag also 
specifies a DBR; using the constant base address found there 
and the constant offset in the instruction, any required 
constants from the constant area are now fetched from constant 
memory. 

All this information-the data values from the tokens; a 
constant from the constant area or a literal from the instruc- 
tion, the opcode from the instruction, the destination offsets 
from the instruction, and the context itself-is passed on to the 
next stage, the ALU, and compute-tag unit. 

ALU and Compute-Tag Unit: The ALU and compute-tag 
units are actually two ALU’s operating in parallel. The ALU 
unit is a conventional one that takes the operand/literal/ 
constant data values and the opcode, performs the operation, 
and produces a result. 

The compute-tag unit takes the CBR and DBR numbers 
from the context and the instruction offsets for the destina- 
tions, and computes the tags for the output of the operator. 
Recall that the tag for two instructions in the same code block 
invocation will differ only in the instruction offset. 

The ALU result and the destination tags are passed to the 
form-tokens unit. 

Form-Tokens Unit: The form-tokens unit takes the data 
value(s) from the ALU and the tags from the compute tag and 
combines them into result tokens. 

Output tokens emerging at the bottom of the pipe are routed 
according to their destination addresses: back to the top of the 
PE, or into the network to the I-structure unit, or, in a 
multiprocessor, to other PE’s and I-structure units. The global 
address space makes this routing straightforward. 

The main pipeline can be viewed as two simpler pipelines- 
the wait-match unit and everything below it. Once tokens 
enter the lower pipeline, there is nothing further to block 

allocate a CBR/DBR pair and space in constant memory 

initialize the CBR/DBR to point to the instruction and 

return the CBRIDBR number as the context. 
2) Operation of the Main Pipeline: Tokens entering the 

main pipeline go through the following units in sequence. 
Wait-Match Unit: The wait-match unit (WM) is a 

memory containing a pool of waiting tokens. If the entering 
token is destined for a monadic operator, it goes straight 
through WM to the instruction-fetch unit. Otherwise, the 
token is destined for a dyadic operator and the tokens in WM 
are examined to see if the other operand has already arrived, 
i.e., if WM contains another token with the same tag. If so, a 
match occurs: that token is extracted from WM, and the two 
tokens are passed on to the instruction-fetch unit. If WM does 
not contain the partner, then this token is deposited into WM to 
wait for it. 

The wait-match unit is thus the rendezvous point for pairs 
of arguments for dyadic operators. It has the semantics of an 
associative memory, but can be implemented using hashing. 

for the designated function, 

constant base addresses, and 

them. Pipeline stages do not share any state, so there are no 
complications such as reservation bits, etc. 

3) The Control Unit: The control unit receives special 
tokens that can manipulate any part of the PE’s state-for 
example, tokens that initialize code-block registers, store 
values into constant memory and program memory, etc. These 
tokens are typically produced by various managers such as the 
context manager. 

The control section also contains any connection to the 
outside world, such as input-output channels. 

C. Multiprocessor Operation 
In a multiprocessor machine, all memories (program, 

constant, I-structure) are globally addressed. Thus, one can 
implement any desired form of interleaving. The simplest 
distribution of code on the TTDA is to allocate an entire code 
block to a PE. However, the TTDA has a sophisticated 
mapping mechanism that also allows a code block to be 
allocated across a group of PE’s, thereby exploiting the 
internal parallelism within them. For example, it is possible to 
load a copy of a loop procedure on several PE’s, and distribute 
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different iterations of the loop on different PE’s according to 
some prespecified hash function on the tags. The hash function 
to be used is stored in a MAP register which like the CBR and 
DBR is loaded at the time of procedure activation. In fact it is 
also possible to execute a code block on several PE’s by 
loading only parts of it on different PE’s. When a token is 
produced at the output of either a PE or an I-structure unit, its 
tag specifies exactly which PE or I-structure unit it must go to. 
The token is sent there directly, i.e., there is no broadcasting. 

It is important to note that the program does not have to be 
recompiled for different mapping schemes. The machine code 
(dataflow graph) is independent of the mapping schemes and 
the machine configuration. Furthermore, the number of 
instructions executed does not vary with the machine configu- 
ration. 

D. Discussion 
It is important to realize that the PE architecture shown here 

is the hardware interpreter for dataflow graphs-it is not an 
abstraction to be implemented at a lower level by a conven- 
tional processor. 

Any parallel machine must support mechanisms for fast 
synchronization and process switching. The TTDA supports 
these at the lowest level of the architecture, without any busy- 
waiting. Every wait-match operation and every I-structure 
read and write operation is a synchronization event directly 
supported in hardware. Sequential threads may be interleaved 
at the level of individual instructions. Unlike von Neumann 
machines, switching between threads does not involve any 
overheads of saving and restoring registers, loading and 
flushing caches, etc. All memory reads are split phase, i.e., 
between the request-to-read and the datum-reply there may be 
an arbitrary number of other instructions executed. Thus, the 
latency (roundtrip time) of memory reads, which is bound to 
be high in a parallel machine, is masked by doing useful work 
in the interval; the overall throughput of the interconnection 
network is more critical than its latency. 

V. COMPARISON TO OTHER WORK 
An invariant in our approach to the problem of high-speed, 

general-purpose parallel computing has been the belief that it 
cannot be solved at any single level. The goal will be achieved 
only with synergy between the language, the compiler, and the 
architecture. This cannot be achieved by simple extensions to 
conventional sequential languages and architectures-the 
problems of determinacy, cost of synchronization and context 
switches, and intolerance of memory latency are insurmounta- 
ble in the pure von Neumann framework. 

A .  Languages and Compiling 
Our research on languages is constrained mainly by the two 

requirements of implicitly parallel semantics and determi- 
nacy. 

Originally (i.e., in [lo], 1978), Id was simply intended as a 
convenient textual encoding of dataflow graphs which are 

’The RISC experience has demonstrated this tight coupling even on 
sequential machines. 

tedious to draw explicitly. Over the years, Id has evolved in 
the direction of higher level features and greater abstraction. 
Today, the functional subset of Id is as powerful and abstract 
as other modern functional languages such as SML [3 11, LML 
[ 151, and Miranda [46]. Like these other functional languages, 
Id can be explained and understood purely in terms of the 
concept of reduction, without any recourse to dataflow graphs 
(such an explanation may be found in [13]). 

I-structures and managers extend Id beyond functional 
languages. I-structures were originally introduced only as a 
characterization of certain “monotonic” constructions of 
functional arrays ([14], 1980). It was only in 1986 that the 
connection with logic variables became clear, and I-structures 
were clearly incorporated into the language 1121. A recent 
development is the ‘‘array comprehension” notation by which 
the programmer can stay within the functional subset and 
largely avoid the explicit use of I-structures [34]. We believe 
that the treatment of arrays is one of Id’s unique features. 
Managers in Id are used for expressing explicit nondeter- 
minism and are more expressive than the “merge” operator 
often used to express nondeterminism in functional languages. 

It is also interesting to compile Id for sequential and parallel 
architectures using von Neumann processors. The major 
complication here arises from Id’s nonstrict semantics which 
makes it quite difficult to achieve efficient partitioning of code 
into sequential von Neumann threads. This has recently been a 
very active area for research. Outside our group, this has been 
the primary focus of the graph-reduction [45] community, 
where an additional motivation has been ‘‘lazy evaluation, ” 
which is one way to achieve nonstrict semantics. Work on 
compiling for sequential von Neumann machines may be 
found in [26] and [19], and for parallel von Neumann 
machines in [37] and 1201. Within our group, we have recently 
embarked upon a project to tackle this problem systematically 
and at a more fundamental level [U], cleanly separating out 
the issue of nonstrictness from the issue of laziness. This work 
has, in fact, strengthened our conviction that dataflow archi- 
tectures are good architectures in which to implement parallel 
graph reduction. 

Another language associated prominently with dataflow is 
SISAL [30] (which, in turn, was influenced by both Id and 
VAL, another early dataflow language [l]). Id and SISAL 
differ in many ways; most notably: 

SISAL deliberately omits higher order functions in favor 
of simplicity. 

Current implementations of SISAL have strict semantics, 
although we have been informed that the SISAL specification 
takes no position on strictness. 

SISAL arrays are purely functional, and are extensible, 
i.e., the index bounds can grow. It is possible to define some 
arrays monolithically using the “forall” construct. In addi- 
tion, there is an incremental update operation that conceptually 
produces a new array from an old one, differing at one index. 
If implemented naively, this implies some sequentialization 
and a heavy use of array storage, but it is the aim of SISAL 
researchers to use program analysis to alleviate this problem. 
In contrast, Id arrays are not extensible, and instead of 
incremental updates, the Id programmer uses bulk or mono- 
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lithic operators like map-array (the programmer can code new 
bulk operators himself, using higher order functions). The 
nonstrictness of Id is crucial in allowing bulk operators to be 
used when an array is defined using recurrences. 

Both Id and SISAL are statically and strongly typed. 
However, SISAL’S type-system is monomorphic, and requires 
type declarations by the programmer, whereas Id has a 
polymorphic type system, and types are automatically inferred 
by the compiler. 

Most current SISAL research focuses on compiling to 
existing multiprocessors, except at Manchester University, 
where the target is the Manchester dataflow machine. A major 
contribution of the SISAL effort has been to define IFl, an 
intermediate language to which SISAL programs are first 
translated. IF1 is a dataflow graph language, although not at a 
sufficiently detailed level to be a directly executable machine 
language. Proper documentation of IF1 and tools for manipu- 
lating it have allowed diverse research groups to target SISAL 
to their machines. However, none of the current implementa- 
tions of SISAL can match the performance of conventional 
languages on parallel or sequential machines. 

Lucid is another language known as a dataflow language 
[47] because, though textually a functional language, the 
operational interpretation often given to Lucid programs is one 
of networks of filter functions connected by arcs carrying 
infinite sequences of values. High-level iteration constructs 
are used to specify the filters and their interconnections. 
Unlike our dataflow graphs that constitute a machine lan- 
guage, Lucid’s networks are at a much more abstract level and 
do not address such issues as tagging, data structure represen- 
tations, etc. Current implementations of Lucid interpret such 
networks in von Neumann code. Insofar as Lucid can be 
viewed denotationally as a purely functional language, it 
should also be amenable to our compilation techniques. As a 
programming language, Lucid does not have higher order 
functions, arrays, user-defined data types, type checkmg, etc., 
although we understand that such features are under consider- 
ation. 

B. Dataflow Architectures 

The first tagged-token dynamic dataflow interpreter was the 
U-Interpreter developed in 1977 [9]. In the U-Interpreter, 
contexts and iteration numbers on tags were completely 
abstract entities, with no physical interpretation. Indeed, for 
procedure calls, each context carried within it the entire chain 
of its parent contexts. The TTDA is an evolution of the U- 
Interpreter in the direction of a realizable architecture. 
Contexts now have a physical interpretation-they are directly 
related to machine resources, referring to code block registers, 
database registers, constant areas, and so on. Detailed, explicit 
mechanisms have been developed to invoke new contexts and 
restore old ones. Loop-bounding techniques have been devel- 
oped in recognition that resources are bounded (including the 
iteration field on a token). Finally, I-structure memory has 
been developed to deal with data structures. 

Of course, the TTDA is not the end of the evolutionary path 
from the &Interpreter. Our current view is embodied in the 

Monsoon dataflow processor architecture [36], which we 
describe briefly in the next section. 

The tagged-token dataflow idea was also developed inde- 
pendently at Manchester University, where the first dataflow 
machine was built [22]. It consisted of one processing element 
and introduced the idea of “waiting-matching ” functions. 
This made it possible to implement an “I-structure store” in 
the waiting-matching section itself. Although the Manchester 
machine was too small to run any actual applications, it was 
able to demonstrate that pipelines in a dataflow processor can 
be kept busy almost effortlessly. 

The most complete and impressive dataflow machine to date 
is the Sigma-1, built by researchers at Japan’s Electro- 
Technical Laboratory [23], [48]. It embodies nearly all the 
ideas discussed in this paper. The current implementation 
consists of 128 processors and 128 I-structure stores and has 
just gone into operation (early 1988). It has already demon- 
strated a performance of 170 MFLOPS on a small integration 
problem. It is programmed in dataflow C, a derivative subset 
of the C programming language. There is a paucity of software 
for Sigma-1 , although we think it would be straightforward to 
develop an Id compiler for it. 

In Japan, there is also related work at the NTT under the 
direction of Dr. Amamiya [3], [40]. NEC has also built some 
dataflow machines, including a commercial signal-processing 
chip [32], [42]. 

A more detailed survey of dataflow architectures may be 
found in [5]. 

C. Project Status and Plans: Id and the Monsoon 
Machine 

Our current research (December 1988) continues to cover a 
spectrum from languages to compilers to architectures. 

On the Id language, we are working on further improve- 
ments in data-structuring facilities, development of an auto- 
matic incremental, polymorphic type-checker with overload- 
ing, and language constructs for resource managers. 

The central vehicle of our compiler research is the Id 
compiler implemented by Traub [43]. Issues we are currently 
investigating revolve around optimization techniques: use of 
type information to improve object code, code motion and 
transformation, fast function calls and loops, fast resource 
management, and reducing the overhead of dynamic resource 
management by moving some of those activities into in-line 
code. 

To support this research, we have constructed Id World, an 
integrated programming environment for Id and the TTDA 
[33] running on workstations such as Lisp machines. In 
addition to sophisticated edit-compile-debug-run support, Id 
World measures and plots parallelism profiles, instruction 
counts, and other emulated TTDA machine statistics. The first 
version of Id World was released under license from MIT on 
April 15, 1987. 

In our laboratory, programs can also be run on two other 
facilities without recompilation. The Multiprocessor Emula- 
tion Facility (MEF) is a collection of 32 TI Explorer Lisp 
Machines interconnected by a high-speed network that we 
built and has heen operational since January 1986. An event- 
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driven simulator provides the detailed timing information 
essential for designing a real dataflow processor. 

The Monsoon Machine: We are sufficiently encouraged 
by the experiments conducted to date that we are proceeding 
with the construction of a 256-node, 1 BIPS (billion instruc- 
tions per second) machine. The architecture of this machine is 
called “Monsoon” and was proposed by Papadopoulos and 
Culler [36]. It is another evolutionary step from the TTDA 
(and ultimately from the U-Interpreter) in which the resources 
for a code block have a direct correspondence to “frames” or 
“activation records” of conventional systems. The idea is 
basically to allocate a “frame” of wait-match storage on each 
code-block invocation. This frame interpretation allows the 
wait-match store to be a fast, directly addressable memory, 
whereas in the TTDA it had the semantics of a potentially slow 
associative memory. 

A context, then, is merely the pointer to a frame. Tokens 
now have the format (S, R, u ) ~  where S is a pointer to an 
instruction in program memory, R is a pointer to the frame, U 
is the datum, and p ,  as before, the port. The instruction now 
contains the offset of a location in its frame where its input 
tokens wait to rendezvous. When a token arrives, S is used 
first to fetch the instruction. The offset r encoded in the 
instruction, together with R ,  is used to interrogate exactly one 
location, R + r ,  in wait-match memory. If empty, this token is 
deposited there to wait. If full, the partner token is extracted, 
and the instruction is dispatched. 

Interestingly, it is also possible to view R as an I-structure 
address and specify fancy I-structure operations using S. With 
minor modification to the empty/full states associated with the 
token-store elements, I-structures can be implemented on the 
same PE hardware. 

This new architecture eliminates the CBR/DBR registers of 
the TTDA and thus simplifies one of its resource management 
problems. By combining PE’s and I-structures it reduces the 
engineering effort. Most importantly, our current software 
will run on this machine with minimal changes in the Id 
compiler. 

A prototype single-processor Monsoon board has been 
operational in our laboratory since October 1988. Single- 
processor boards to be plugged into workstations are expected 
to be available in early 1990. A 16-node multiprocessor 
containing Monsoon processors, I-structure memory, and a 
switching network is expected to be ready by the end of 1990. 

D. Macrodataflow or Pure Dataflow? 
We are often asked why we take such a “fine-grained” 

approach to dataflow instead of using a hybrid computation 
model which may be termed macrodataflow. Rather than 
adopting dataflow scheduling at the individual instruction 
level, one considers larger chunks or “grains” of conven- 
tional von Neumann instructions that are scheduled using a 
program counter, with the grains themselves being scheduled 
in dataflow fashion. 

First, we have reason to believe that the compilation 
problem for macrodataflow is significantly harder. Choosing 
an appropriate grain size and partitioning a program into such 
grains is a very difficult problem [381, [241, 1251, [GI. 

Second, the macrodataflow approach requires an ability to 
switch a von Neumann processor very rapidly between the 
threads representing different grains, and no one has yet 
shown convincing solutions to this problem. The Denelcor 
HEP [39] was one attempt at such a multithreaded architec- 
ture; however, it still had inadequate support for synchroniza- 
tion, with some degree of busy-waiting and a limited 
namespace for synchronization events. 

However, the appeal of a hybrid dataflow machine cannot 
be denied, as it represents an evolutionary step away from a 
von Neumann machine. Such a “von Neumann-Dataflow” 
machine has been studied recently in our group by Iannucci 
[25].  We believe that further synthesis of the dataflow and von 
Neumann computation models is very likely. 

E. TheFuture 
Our main research focus is determined by our belief that 

declarative languages on dataflow architectures constitute the 
right combination for general-purpose, parallel computing. 
However, our experiments have given us increasing confi- 
dence that Id can be a competitive language for other 
multiprocessors, and that dataflow architectures can competi- 
tively support other parallel languages such as parallel Fortran 
or C. These are exciting alternatives which we hope will 
attract more research attention in the future, both within our 
group and without. 
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