
300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

Executing a Program on the MIT Tagged-Token
Dataflow Architecture

Abstract-The MIT Tagged-Token Dataflow project has an
unconventional, but integrated approach to general-purpose
high-performance parallel computing. Rather than extending
conventional sequential languages, we use Id, a high-level
language with fine-grained parallelism and determinacy implicit
in its operational semantics. Id programs are compiled to
dynamic dataflow graphs, a parallel machine language. Dataflow
graphs are directly executed on the MIT Tagged-Token Dataflow
Architecture (TTDA), a novel multiprocessor architecture. Da-
taflow research has advanced significantly in the last few years; in
this paper, we provide an overview of our current thinking, by
describing example Id programs, their compilation to dataflow
graphs, and their execution on the TTDA. Finally, we describe
related work and the status of our project.

Index Terms-Dataflow architectures, dataflow graphs, func-
tional languages, implicit parallelism, I-structures, MIMD ma-
chines.

I. INTRODUCTION

HERE are several commercial and research efforts T currently underway to build parallel computers with
performance far beyond what is possible today. Among those
approaches that can be classified as general-purpose, ‘ ‘multi-
ple instruction multiple data” (MIMD) machines, most are
evolutionary in nature. For architectures, they employ inter-
connections of conventional von Neumann machines. For
programming, they rely upon conventional sequential lan-
guages (such as Fortran, C, or Lisp) extended with some
parallel primitives, often implemented using operating system
calls. These extensions are necessary because the automatic
detection of adequate parallelism remains a difficult problem,
in spite of recent advances in compiler technology [28], [2],
[351.

Unfortunately, a traditional von Neumann processor has
fundamental characteristics that reduce its effectiveness in a
parallel machine. First, its performance suffers in the presence
of long memory and communication latencies, and these are
unavoidable in a parallel machine. Second, they do no1

Manuscript received August 5 , 1987; revised February 3, 1989. This work
was done at MIT Laboratory for Computer Science. This work was supported
in part by the Advanced Research Projects Agency of the Department of
Defense under the Office of Naval Research Contract N00014-84-K-0099. An
early version of this paper appeared in the Proceeding of the PARLE
Conference, Eindhoven, The Netherland, Springer-Verlag LNCS Vol. 259,
June 1987.

The authors are with the Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 8932907.

provide good synchronization mechanisms for frequent task
switching between parallel activities, again inevitable in a
parallel machine. Our detailed technical examination of these
issues may be found in [l l] . In [25], Iannucci explores
architectural changes to remedy these problems, inspired by
dataflow architectures.

Furthermore, traditional programming languages are not
easily extended to incorporate parallelism. First, loss of
determinacy adds significant complexity to establishing cor-
rectness (this includes debugging). Second, it is a significant
added complication for the programmer to manage parallelism
explicitly-to identify and schedule parallel tasks small enough
to utilize the machine effectively but large enough to keep the
resource-management overheads reasonable.

In contrast, our dataflow approach is quite unconventional.
We begin with Id, a high-level language with fine-grained
parallelism implicit in its operational semantics. Despite this
potential for enormous parallelism, the semantics are also
determinate. Programs in Id are compiled into dataflow
graphs, which constitute a parallel machine language. Finally,
dataflow graphs are executed directly on the Tagged- Token
Dataflow Architecture (TTDA), a machine with purely data-
driven instruction scheduling, unlike the sequential program
counter-based scheduling of von Neumann machines.

Dataflow research has made great strides since the seminal
paper on dataflow graphs by Dennis [18]. Major milestones
have been: the U-Interpreter for dynamic dataflow graphs [9],
the first version of Id [lo], the Manchester Dataflow machine
[22] and, most recently, the ETL Sigma-1 in Japan [48], [23].
But much has happened since then at all levels-language,
compiling, and architecture-and dataflow, not being a main-
stream approach, requires some demystification. In this paper,
we provide an accurate snapshot as of early 1987, by
providing a fairly detailed explanation of the compilation and
execution of an Id program. Because of the expanse of topics,
our coverage of neither the language and compiler nor the
architecture can be comprehensive; we provide pointers to
relevant literature for the interested reader.

In Section 11, we present example programs expressed in Id,
our high-level parallel language. We take the opportunity to
explain the parallelism in Id, and to state our philosophy about
parallel languages in general. In Section 111, we explain
dataflow graphs as a parallel machine language and show how
to compile the example programs. In Section IV, we describe
the MIT Tagged-Token Dataflow Architecture and show how
to encode and execute dataflow graphs. Finally, in Section V

0018-9340/90/03OO-0300$01 .OO 0 1990 IEEE

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE

~

301

we discuss some characteristics of the machine, compare it to
other approaches, and outline future research directions.

Before we plunge in, a word about our program examples.
First, we are not concerned here with algorithmic cleverness.
Improving an algorithm is always a possibility, but is outside
the scope of this paper-we concentrate here only on efficient
execution of a given algorithm. Second, even though in our
research we are concerned primarily with large programs, the
examples here are necessarily small because of limitations of
space. However, even these small examples will reveal an
abundance of issues relating to parallelism.

11. PROGRAMMING IN ID

We believe that it is necessary for a parallel programming
language to have the following characteristics.

It must insulate the programmer from details of the
machine such as the number and speed of processors, topology
and speed of the communication network, etc.

The parallelism should be implicit in the operational
semantics, thus freeing the programmer from having to
identify parallelism explicitly.

It must be determinate, i.e., if an algorithm, by itself, is
determinate, then so should its coding in the parallel language.
The programmer should not have to establish this determinacy
by explicit management of scheduling and synchronization.

The last point is worth elaboration. Varying machine
configurations and machine loads can cause the particular
schedule for parallel activities in a program to be nondeter-
ministic. However, the result computed should depend only on
the program inputs and should not vary with the particular
schedule chosen. It is a notoriously difficult task for the
programmer to guarantee determinacy by explicitly inserting
adequate synchronization. On the other hand, functional
programming languages guarantee determinacy automatically,
because of the Church-Rosser property.

Id is a high-level language-a functional programming
language augmented with a determinate, parallel data-structur-
ing mechanism called &structures. I-structures are array-like
data structures related to terms in logic programming lan-
guages, and were developed to overcome deficiencies in the
purely functional approach (see [12] for a detailed discussion
of this topic).

The exposition here relies on the intuition of the reader. The
precise syntax and operational semantics of Id (expressed as
rewrite rules) may be found in [34] and [13], respectively.

A . An Example Problem: Moving a Graphic Object
A graphics package requires a function to move objects

around on the screen. For example, as shown in Fig. 1 , we
may want to “drag” a shape to a new position. A k-sided
shape can be represented by a vector of k points, and a point in
an n-dimensional space can itself be represented by a vector of
n numbers. The distance and direction that we want the shape
to move can also be represented as an n-dimensional vector.
Given such a representation for a shape S and movement d , the
new shape S‘ can be computed by simply adding vector d to
each point of S . In order to explain Id, we develop the program
move-shape which, given an S and a d, will produce the new

I
Fig. 1. Moving a shape in a two-dimensional space.

shape. Along the way, we will define some functions that are
useful in other contexts as well.

To simplify the exposition here, we assume that n is a
constant, even though in Id we could discover n by querying
the index bounds of, say, d . Also, we use the words “array”
and “vector” synonymously.

B. Vector Sum

i.e., a function that can add two vectors:
We begin by writing a function that moves a single point,

Def vsum A B =
{ C = array (1 , n) ;

{For j From 1 To n Do
C [j l = A [j l + Wl)

In
c > ;

This defines a function vsum that takes two vector arguments
A and B and returns a vector result C. The body of the
function is a block (the outer braces). The first statement in the
block allocates the vector C with index bounds 1 to n. The
second statement, the For-loop, fills it with the appropriate
contents. Finally, the block’s return expression (after the
keyword In) indicates that the new vector is returned as the
value of the block (which is the value of the function).

It is, of course, obvious to the reader, and perhaps can be
deduced by a compiler, that the iterations of the loop are
independent of each other, and hence can be done in parallel.
But Id’s semantics reveal much more parallelism than this. In
any block, the return expression and the statements are all
executed in parallel, subject only to data dependencies. Thus,
the allocation of vector C can proceed in parallel with the
unfolding of the loop and evaluation of all the subexpressions
A [j] + B [j] . The array allocator returns a descriptor for the
new vector (a pointer to memory). When C is finally
available, all the pending stores C [j] =

Furthermore, the vector descriptor can be returned as the
value of the function vsum even before the For-loop has
terminated. This is because arrays in Id have I-structure
semantics, eliminating read-write races. Array locations are
initially empty, and they may be written at most once, at which
point they become full. A reader of an array location is

can proceed.

302 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

automatically deferred until it is full. In functional languages,
a data structure whose elements can be read before all the
elements of the data structure have been defined is called
nonstrict. In this sense, all data structures in Id, including I-
structures, are nonstrict. Generally, nonstrictness increases

the names 1 and U . The second statement allocates a new array
Y with the same bounds. The loop fills each Y [j] with the
result of applying the function f to X [j] . The value of the
block, Y, is also the value of the function.

So, to move a shape, we simply say _ _ -
the opportunity for parallelism, in addition to increasing the
expressive power of functional languages. Def move-shape S d = map-array (vsum d) S ;

Functions can be called merely by juxtaposing them with

vsum el e2

their arguments. The expression

represents the application of vsum to two arguments, the
values of the expressions e 1 and e2.

Functions are nonstrict in the same sense as data structures.
When evaluating the function-call expression (vsum el e2),
the output vector C can be allocated and returned, and the loop
unfolded, even before el and e2 have produced vsum’s input
vectors A and B. The expressions A [j] and B [j] simply
suspend until descriptors for A and B arrive. Because of this
nonstrict behavior, Id can dynamically adjust to, and exploit,
variations in producer-consumer (or ‘‘pipelined”) parallel-

i.e., to each point in the shape S , we apply vsum d , thus
computing a corresponding point displaced by d , and we
collect the resulting points into an array (the result shape).

Of course, we could have written moveshape as a loop
iterating over S and doing a vsum with d in each iteration.
However, the recommended style for programming in Id is to
use abstractions like make-array [8] . The abstractions are
inexpensive-our compiler is sophisticated enough to produce
code for the above program that is as efficient as one written
directly using nested loops. In fact, with a handful of generally
useful abstractions like map-array, one rarely needs to write
loops explicitly at all. However, in this paper we use loops to
minimize the gap between the source program and dataflow
graphs, so that the translation is easier to understand.

. _

ism, even if it depends on the inputs of the program.
D. Another Example: Inner Product We reassure the reader that the above informal exdanations

of the parallelism in Id will be made more precise in Sections
III and IV. follows:

C. Higher Order Functions: map-array

The inner product of two vectors may be written in Id as

D e f i p A B = { s = 0

A very interesting and useful feature of functional languages
like Id is currying, which allows us to give meaning to
expressions like (vsum A) . Such expressions are called partial
applications. Suppose we write

move-point = vsumA ;

Then, the application (move-point p) is equivalent to the
expression (vsum A p) , and will compute a new point which is
a distance A away from p . In other words, move-point is itself
a legitimate unary function that adds vector A to its argument.
Functions viewed in this higher order sense are said to be
curried they can be partially applied to their arguments, one
at a time, to produce successively more specialized functions.

In order to move each point of a shape, we will first write a
function for the following general paradigm:

“Do something (f) to each element of an array (X) and
return an array (Y) containing the results.”

This can be expressed in Id as follows:

Def map-array f X = { I,u = bounds X ;
Y = array (1,u) ;
{ F o r j From 1 To U Do

Y [j l = f X [j l l
In

YI ;

Note that one of the arguments (f) is itself a function. The
first statement queries the index bounds of X and binds them to

In
{For j From 1 To n Do

Next s = s + A [j] * B [j]
Finally s } } ;

In the first statement of the block, the value of a running sum s
is bound to zero for the first iteration of the loop. During the
jth iteration of the loop, the s for the next (i.e., j + 1st)
iteration is bound to the sum of s for the current iteration and
the product of the jth elements of the vectors. The value of s
after the nth iteration is returned as the value of the loop,
block, and function.

Id loops differ radically from loops in conventional lan-
guages like Pascal. All iterations execute in parallel (after
some initial unfolding), except where constrained by data
dependencies. In ip, all 2n array selections and n multiplica-
tions may proceed in parallel, but the n additions are
sequentialized.* The variables j and s do not refer to single
locations which are updated on each iteration (as in Pascal);
rather, every iteration has its own copy of j and S .

III. DATAFLOW GRAPHS AS A TARGET FOR COMPILATION
In this section, we describe dataflow graphs, which we

consider to be an excellent parallel machine language and a
suitable target for programs written in high-level languages
like Id. This idea was first expressed by Dennis in a seminal
paper in 1974 [1 8] . The version we present here reflects 1) an
augmentation from “static” to “dynamic” dataflow graphs
that significantly increases the available parallelism [lo], [9] ,

’ It is to support currying notationally that parentheses are optional in
function applications. For example, the curried applicationfx y z would be
written (((f x) y) z) in Lisp.

Of course, a different definition for ip could use a divide-and-conquer
method to parallelize the additions.

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE 303

emits an output token carrying the constant. We discuss trigger
arcs in Section 111-E.

B. Functions

S A

I The body of a function definition is an expression; its + dataflow graph will have

an input arc for each formal parameter, and
an output arc for each result.

There are two major issues to be addressed: 1) when one
function invokes (i.e., calls) another, how should the graph of
the caller be linked to the graph for the body of the callee, and

Fig. 2. Dataflow graph for s+A[J]*B[J] .

and 2) the introduction of numerous significant details and
optimizations developed subsequently.

A . Basics
A dataflow graph consists of operators (or instructions)

connected by directed arcs that represent data dependencies
between the operators. Each operator may have one or more
input and output arcs. Arcs may be named-the names
correspond to program variables. Fig. 2 shows the graph for a
simple subexpression of the inner product program ip.

The fork for j at the top of the figure can be regarded as a
separate one-input, two-output operator, but since any opera-
tor can have more than one output, it would usually be
incorporated as part of the preceding operator (not shown).

Data values between operators are carried on tokens which
are said toflow along the arcs. In a dataflow machine, this is
represented by including a destination in the token, that is, the
address of the instruction (operator) at the end of the arc. (So,
except in special signal processing architectures, one should
never think of the dataflow graph as representing physical
wiring between function modules.)

An operator is ready to fire, i.e., execute, when there are
tokens on all its input arcs. Firing an operator involves
consuming all its input tokens, performing the designated
operation on the values carried on the tokens, and producing a
result token on each output arc. Fig. 3 shows a possible firing
sequence for our simple expression.

Tokens on the A and B arcs carry only descriptors (or
pointers) to the I-structures themselves which reside in a
memory called I-structure storage. (We discuss this in detail
in Section 111-C.) Note that the firing sequence is unspecified:
operators may fire as soon as tokens arrive at their inputs;
many operators may fire at the same time, and the execution
times of the operators may vary.

The compilation of constants requires some care. In most
cases, such as the constant 1 in the expression j + 1, it is
incorporated as an immediate operand into the + instruction
itself, making it effectively a unary “ + 1” operator. How-
ever, if necessary, a constant can be compiled as an operator
with one trigger input and one output (see Fig. 4). Such a
situation may arise, for example, if both inputs to an
instruction are constants. The data value on a trigger token is

2) how to handle multiple- invocations of a function that may
overlap in time (due to recursion, calls from parallel loops,
etc). We address the latter issue first.

I) Contexts and Firing Rules: Because of parallel invoca-
tions and recursion, a function can have many simultaneous
activations. Therefore, we need a way to distinguish tokens
within a function’s graph that logically belong to different
activations. One way to handle this would be to copy the entire
graph of the function body for each activation. However, in
the TTDA we avoid this overhead by keeping a single copy of
the function body, and by tagging each token with a context
identifier that specifies the activation to which it belongs.

The reader should think of a context exactly as a “frame
pointer,” i.e., one should regard the set of tokens correspond-
ing to a function activation as the contents of a frame (or
“activation record”) for that function. The dataflow graph for
the function corresponds to its fixed code. A token carries the
address of an instruction in this fixed code, and a dynamic
context that specifies the frame for a particular invocation of
the function. The format of a token can now be seen:

(c.s,

Here, c is the context, s is the address of the destination
instruction, U is the datum, andp is the port identifying which
input of the instruction this token is meant for. The value c.s is
called the fag of the token.4 To simplify hardware implemen-
tation, we limit the number of inputs per instruction to two
(with no loss of expressive power). Thus, p designates the
“left” or “right” port. We have written p as a subscript for
convenience; we will drop it whenever it is obvious from the
graph.

Tokens corresponding to many activations may flow simul-
taneously through a graph. The normal firing rule for
operators must therefore be changed so that tokens from
different activations are not confused:

An operator is ready to fire when a matched set of input
tokens arrives, i.e., a set of tokens for all its input ports that
have the same tag C.S.

When the operator fires, the output value is tagged with
c.t . , i.e., the instruction in the same context that is to receive
this token.

Of course, this does not preclude also making copies of the function body
across processors, to avoid congestion.

The “tag” terminology is historical. It may be more appropriate to call it
a “continuation,” because it specifies what must be done subsequently with

irrelevant. Whenever the trigger token arrives, the operator the value on the token.

304 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3 , MARCH 1990

‘ t A

I

Fig. 3 . A firing sequence for “ s + A [i] * B [i] . ”
v-

trigger

JP
Fig. 4. Dataflow graphs for constants.

/i+:++<c.-> t:

t: <c . t ,30>

Fig. 5. Firing rule for “*” operator.

2) Function Linkage: In order to handle function calls, it This is summarized using the following notation:
is necessary

op : (c.s, u l) , x (c . s , u 2) , 3 (C A , (U1 op u 2)) .

For clarity, we will consistently follow the convention that the
operator is located at address s, and its destination is located at
address t . Fig. 5 shows the tag manipulation for the firing of
the * operator.

to allocate a new context (i.e., a new frame) for the
cdlee,

for the caller to send argument tokens, including a
“return continuation,” to the new context, and

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE

Caller I Callee
I

305

Fig. 6 . Dataflow graph for function call and return linkage.

for the callee to send result tokens back to the caller’s
context using the return continuation.

While reading the following description, the reader may
want to refer to Fig. 6, where the graph for the function call,
(ip argl arg2) is shown. It is assumed that r is the address of
the instruction expecting the result of the function call. Thus,
the return continuation is c.r, where c is the context of the
caller. By convention, the return continuation implicitly
becomes the zeroth argument. Function linkage requires
instructions to manipulate contexts on tokens. The two key
instructions for this purpose are extract-tag, and change-tagj.

Extract-tag, is a family of monadic instructions parameter-
ized by an address and is used by a caller to construct a return
continuation for the instruction at r in the current context:

extract-tag, : (c.s, -) * (c.t, c . ~) .

It takes a trigger input (whose value is irrelevant) and uses the
current context c to produce a tag c.r as its output datum.

Change-tagj is a family of dyadic instructions parameter-
ized by a small constant j , and is used by the caller to send
arguments to the callee:

change-tagj : (c.s, c’.t’),x (c.s, U), * (c‘.(t’ + j) , U)[.

Here, U is an argument value, c’ is the context of the callee,
and t‘ + j is the address of the instruction in the callee that is to
receive this argument. Change-tagj is also used by the callee
to send results back to the caller. In this case, U is a result
value, c’ is the context of the caller, and t’ + j is the address of
the instruction in the caller that is to receive the result.
Although not shown here, note that it is possible to return
multiple results. By convention, the receiving instructions for
multiple arguments (or results) are placed at contiguous
addresses t ‘ , t’ + 1, t ’ + 2, etc. Thus, for example, to send the
second argument, the compiler uses a change-tag2 instruction.

It is not possible to depict the output arc of change-tag
graphically, because the destination of its output token is not
determined statically-it depends on the left input data value.

We call such arcs dynamic arcs and show them in figures
using dashed lines.

All that remains is to allocate a new context for the callee.
For this, we use the following “operator:”

get-context : (c . s , f) * (c.t, new-cf).

The input is a destination address f (the callee function’s entry
point), and the output is new-c.f, where new-c is a new,
unique context identifier. The astute reader will immediately
realize that there is something special about the get-context
“operator.” Whereas all operators described so far were purely
functional (outputs depended only on the inputs), this “opera-
tor” needs some internal state so that it can produce a new
unique context each time it is called. The way this is achieved
is discussed in Section 111-I-get-context is actually an
abbreviation for a call to a special dataflow graph called a
manager.

Now we have described the machinery used in Fig. 6 for
linking function calls and returns. This linkage mechanism is
only one of a number of possibilities that we have investigated.

It is important to note that the callheturn scheme supports
nonstrict functions. As suggested in Fig. 6, the zeroth
argument (the return continuation) may be received by an
identity instruction (id) that forks it and uses it as a “trigger”
(to be described in Section 111-E) to initiate computation in the
body of the function before any of the “normal” arguments
arrive. Furthermore, it is even possible for the function to
return a result before the normal arguments arrive. An
example of such a function is the vsum program of Section II-
B, where the allocation of the result vector c does not depend
on the argument vectors A and B. Thus, the part of vsum that
allocates C and returns its pointer to the caller can be triggered
as soon as the return continuation arrives. When the normal
arguments A and B arrive, other parts of vsum will execute
concurrently, filling in C’s components. Our experiments
show that this kind of overlap due to nonstrictness is a
significant source of additional parallelism [7].

306

n :

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3 , MARCH 1990

,- Presence Bits (Present, Absent, Waiting)

Data or r Deferred Read Pointer

datum Tag Y

n+3 :
n+4 : Deferred Read Requests

I I I Possible execution sequence producing this structure:
Attempt to READ(n+2) for instruction X

* WRITE(n+m
* Attem t to R!CAD(n+3) for instruction Z
* WRIT%(n)
* Attempt to READ(n+2) for instruction Y

Data Storage * READ(n)

Fig. I . I-structure memory.

C. I-structures value is written there, its state is changed to present, and the
value is also sent to all the destinations queued at the location.
If the location’s state is already present, it is an error.

an aside, we would like to point out that dataflow
processors with I-structure storage are able to tolerate high
memory latencies and synchronization we have given
extensive reasons in [ill why it is difficult to do so in a
parallel machine based on the

We now return to the discussion of I-structures at the Id and
dataflow graph level.

2) I-Structure Select Operation: The architecture takes no
position on the representation of I-structure descriptors. One
possible representation is simply a pointer to the base of the
amay, with its index bounds stored just below the base. In
order to evaluate the expression A [j] , the address a to be read
must be computed from the descriptor A and the index j . The
address computation may also perform bounds checking (see
Fig. 8). The I-fetcht operator then sends a “read token” to the
I-structure storage controller with address a, along with the
continuation c. t .

At the I-structure memory, if the location a has the present
state, i.e., it is not empty and contains a value U , the value is
sent in a token (c.t,u) to the instruction at c.t. If the location is
in the absent state, i.e., it is empty, it is changed to the waiting
state, and the continuation c.t is simply queued at that
location,

Thus, all memory reads are so-called split-phase reads,
i.e., the request and the reply are not synchronous. The
processor is free to execute any number of other enabled
dataflow instructions during the memory fetch. In fact, the
destination c. t may be on an entirely different processor.

3) I-Structure Assignment: An I-structure assignment

In the simple model of dataflow graphs, all data are carried
On tokens. k3trUCtUres are a Way Of introducing a limited
notion of State daQflow graphs, Without compromising
parallelism or determinacy. I-structures reside in a global
memory which has atypical read-write semantics. A token
representing an I-structure carries only a descriptor of, i.e., a
pointer to, an I-struCtUre. When an I-StlllCtUre token ImXW

through a fork, only the token and not the whole I-structure, is
duplicated, so that there can be many pointers to a structure.

A “Producer” dataflow graph writes into an z-structure
location while several other “consumer” dataflow graphs read
that location. However, I-structure Semantics require that
consumers should wait Until the value becomes available-
Furthermore, determinacy is preserved by disallowing multi-
Ple writes Or testing for the emptiness of an I-struct~re
location. Even though Our general discussion of TTDA
architectures is in Section IV, we would like to shore up the
reader’s intuition about I-structures by presenting the I-
structure storage model here.

1) I-Structure Storage: An I-structure store is a memow
module With a controller that handles I-structure read and
write requests, as well as requests to initialize the storage. The
structure of the memory is shown in Fig. 7. In the data storage
area, each location has some extra presence bits that specify
its state: “present,” “absent,” Or “waiting.” When an I-
structure is allocated in this area, d l its locations are initialized
to the absent state.

When a “read token” arrives, it contains the address Of the
location to be read and the tag for the instruction that is Waiting
for the value. If the designated location’s state is present, the
datum is read and sent to that instruction. If the state is absent
or waiting, the read is deferred, i.e., the tag is queued at that
location. The queue is simply a linked list of tags in the
deferred read requests area.

When a “write token” arrives, it contains the address of the
location to be written and the datum to be written there. If the
location’s state is absent, the value is written there and the
state changed to present. If the location’s state is waiting, the

N~~~~~~ model.

A [j] = u

is translated into the dataflow graph shown in Fig. 9.
As in the select operation, the address a of the I-structure

location is computed, based on the descriptor A and the index
j . The I-store operator then sends a “write token” to the
appropriate I-structure memory.

When the write token arrives there, the location may be in

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE 307

3 ..Ayl
<a, READ, c.t >

l e I-structure

t : A

signal

t :

t : 4-c-
Fig. 8. Dataflow graph for I-structure selection.

a! Compute Address

<a, WRITE, v >

e I-structure

Fig. 9. Dataflow graph for I-structure assignment.

the absent state or in the waiting state, i.e., there are some
destinations queued there from prior memory reads. The value
U is written to location a , and the state is changed to present. If
it was in the waiting state, a copy of U is also sent to all
destinations that were queued at a.

If the location is already in the present state, i.e., it already
contains a value from a previous write token, it is treated as a
run-time error, since an I-structure location may written to at
most once.

The I-store operator, in addition to generating the write-
token (a, WRITE, U), also generates a signal token for the
destination c.t. The signal is used, ultimately, to detect the
termination of the function activation containing this I-store
instruction. This is to ensure that the function’s context is not
reclaimed before all its activity has ceased. (Note that this
signal does not imply that the actual memory write has taken
place-the write token may still be on its way to I-structure
memory.)

In some resource-management situations, it may be neces-
sary to know that the write has completed at the memory unit.
This can be achieved simply by doing a fetch to the same
location and waiting for the response-I-structure semantics
ensures that it cannot come back until the write has occurred.

4) I-Structure Allocation: I-structure allocation is required
by the Id expression

array (/,U).

Just like the get-context “operator,” we can think of a get-
storage operator

get-storage : (c.s, size) * (c.t, A)

where size is computed from 1 and U , and A is the descriptor
for the allocated array. Like get-context, this is also imple-
mented by a call to a manager (see Section 111-I). The storage
allocator manager

allocates a free area of I-structure memory,

initializes all locations to the absent (i.e., empty) state,

sends the descriptor to the instruction at c.t.

Manager calls are split phase operations, like the select
operation. Hence, the processor can execute other instructions
while storage is being allocated.

5) Discussion: The write-once semantics that we have
described supports the high-level determinacy requirements of
Id. However, architecturally, and at the dataflow graph level,
it is trivial to implement other memory operations as well. An
‘ ‘exchange” operation for managers is described in Section
111-I. One could have ordinary, imperative writes as well (the
storage allocator needs this). In fact, it is not difficult to
include a small ALU in the I-structure controller to perform
fetch-and-add style instructions [21], [41], [29].

and

D. Well-Behaved Graphs and Signals
When a function is invoked, some machine resources (e.g.,

a frame, registers) must be dynamically allocated for that
invocation. We refer to these resources collectively as a
context. Because machine resources are finite, the resources
in a context must be recycled when that activation terminates.
However, parallelism complicates the detection of termina-
tion. The termination of a function is no longer synonymous
with the production of the result token. Because functions are
nonstrict, and because there are instructions that do not return
results (e.g., I-store), a result can be returned before all
operators within the function body have executed. If resources
are released before termination, there may be tokens still in
transit that amve at a nonexistent context, or worse, at a
recycled context (a manifestation of the “dangling pointer”
problem).

How, then, can we determine when it is safe to reclaim the
resources used by a function activation? We do so by imposing
an inductively-defined structure on dataflow graphs; such
graphs are called well-behaved. We insist that all graphs have

308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

at least one input and at least one output. Then, a graph is well-
behaved if

1) initially, there are no tokens in the graph;
2) given exactly one token on every input, ultimately

exactly one token is produced on every output;
3) when all output tokens have been produced, there are no

tokens left in the graph, i.e., the graph is self-cleaning.

To ensure that all our graphs are well-behaved, we construct
them inductively. We start with primitive well-behaved graphs
and build larger composite graphs using composition rules, or
graph schemas, that preserve well-behavedness.

Most graph primitives are already well-behaved (+, *,
* .). For some operators, such as I-store, it is necessary to

introduce an artificial output called a signal to make it well-
behaved. Signal tokens do not carry any meaningful values;
they are used only to detect that a graph has executed.

For composite graphs, there may be many nested graphs
that only produce signals. In the conditional schema (Section
III-G), some data arcs may be used in one arm but not in the
other. All such signals and dangling arcs are combined by
feeding them into a “synchronization tree,” which is a tree of
dyadic synchronization operators, each of which emits a signal
token on its output when it has received tokens on both its
inputs. Thus, a composite graph can itself be made well-
behaved by augmenting it with a suitable synchronization tree.
Some examples are shown in later sections, but we gloss over
many subtleties, notably signal generation for conditionals and
loops; these are explained in detail in [43].

E. Code Blocks and Triggers

Apart from the common misconception that dataflow graphs
represent an interconnection of hardware modules, another
major misconception about dataflow is that decisions about the
distribution of work on the machine are taken dynamically at
the level of individual instructions. This naturally leads to
fears of intolerable overheads.

The dataflow graph for a program is divided into units
called code blocks. Each user-defined function is compiled as
a separate code block. Inner loops (i.e., loops that are
contained within other loops) are also compiled as separate
code blocks. Of course, because of compiler transformations
(such as lambda lifting [27]) and optimizations (such as in-line
function expansion), there may no longer be a one-to-one
correspondence between code blocks and source program
functions and loops.

The “function call” mechanism described in Section III-B
is, in fact, the general mechanism by which any code block
invokes another. Thus, it is the code block that is the unit of
dynamic distribution of work in the TTDA, at which resource
allocation decisions are taken. In contrast, within a code
block, the work is distributed automatically with some
hardware support, as described in Section IV-C.

Every code block has one or more input arcs and one or
more output arcs. One of the input arcs is designated as the
trigger input and one of the output arcs the termination-signal
output. When a code block B1 invokes a code block B2,

pJLq+ --[Fm

Fig. 10. Representation of a closure.

B1 (the caller) acquires a context for B2 (the callee) from a
manager (see Section 111-1). This may involve loading code for
B2 in one or more processors.

B, sends a trigger token to B2. Usually, the return
continuation token (i.e., the implicit zeroth argument) can be
used as the trigger.

B1 sends other input tokens to B2 (and, perhaps, continues
its own execution).

B2 returns result(s) to B1 (and, perhaps, continues its own
execution).

One of the “results” from B2 is a termination signal.
Often, one of the data results can be used as a termination
signal.

B1 deallocates the context for B2. If there is more than one
output arc from B2 back to B 1 , then B1 will need a
synchronization tree to ensure that all these tokens have
arrived before it deallocates Bl’s context.

The top level computation of a program begins by injecting
a trigger token into the outermost code block. Inner code
blocks, in turn, get their triggers from their callers. The reader
is referred to [43] for the details of generation and propagation
of signals and triggers.

F. Higher Order Functions
Every function has a syntactically derived property called

its arity (1 1) which is the number of arguments in its
definition. For example, vsum has arity 2. In Section 111-B, we
saw how to compile expressions representing the application
of a known, arity n function to n arguments [e.g., (ip argl
arg2)]. But what about expressions where the function is
applied to fewer than n arguments? (An example is the
expression (vsum d) described in Section 11-C.)

The “partial application” of a function of arity n to one
argument produces a function that requires n - 1 arguments.
When this, in turn, is applied to another argument, it produces
a function that requires n - 2 arguments, and so on. Finally,
when a function is applied to its last argument, the “full
application,” or invocation, of Section ID-B can be per-
formed.

Function values are represented by a data structure called a
closure. Fig. 10 depicts the situation after a function f of arity
n has been applied to j arguments. A closure contains:

the entry address of the functionk
its arity n;
n - j , the number of arguments remaining;
a list of the j argument values collected so far.

The degenerate case of a closure is the function value itself
(for example, the token ip at the top left of Fig. 6); it is a

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE 309

Dataflow graph I-Structure Memory

I I -
* I

n-j-1

Fig. 1 1 . Dataflow graph for partial applications.

J l 9 1

m m m

auz (I + 1) (S + Ah] * BL])

Fig. 12. Dataflow graph for a conditional

closure with n arguments remaining and an empty list of
arguments collected so far.

For general applications, we use a dyadic apply schema.
The apply schema is not a primitive operator, but we will
describe its behavior here without expanding it into a more
detailed dataflow graph.

The left input to the apply schema is a closure for a function
f of arity n, n - j remaining arguments, and list o f j collected
arguments. The right input to apply is the next argument.

Suppose n - j > 1 ; then, this is a partial application to the
j + 1st argument. The output of apply is a new closure
containing the same function and arity , but with decremented
arguments-remaining (n - j - 1) and an augmented argu-
ment list incorporating this argument. This is depicted in Fig.
1 1 . Note that the input and output closures share the first j
arguments.

When n - j = 1, the current argument is the final
argument for f, and f can now be invoked. In this case, apply
performs a full function call, as shown in Fig. 6 .

Since closures and argument-lists are implemented using I-
structures, the apply schema can return the new closure even
before the argument token on its right input has arrived-the
allocation of the new cell in the argument list can be done
immediately. When the argument finally arrives, it will be
stored in the argument list. Thus, the apply schema is
consistent with the nonstrict semantics of full function calls.
The reader is referred to [43] for further details.

The general apply schema is of course not inexpensive.
However, most applications are detectable as full-arity appli-
cations at compile time, in which case the call-return linkage is
generated directly. For those familiar with the literature on
compiling graph reduction, the general apply schema is
needed only in those places where a graph must be constructed
instead of a direct function call.

G. Conditionals

formulation of the ip inner product function, not shown):
Consider the following expression (part of a tail-recursive

If (j > n) Then s
Else aux (j + 1) (s + A [j] * B [j]) .

The graph for the conditional is shown in Fig. 12.
The output of the > n operator is actually forked four ways

to the side inputs of the four switch operators; the abbreviation
in the picture is for clarity only.

A true token at the side input of a switch copies the token
from the top input to the T output. A false token at the side
input of a switch copies the token from the top input to the F
output. The 8 node simply passes tokens from either input to
its output. The 8 node is only a notational device and does not
actually exist in the encoding of a dataflow graph-the outputs
of the two arms of the conditional are sent directly to the
appropriate destination. The T outputs of the A , B, and j

310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3 , MARCH 1990

switches are routed to a synchronization tree to produce the
termination signal for the true arm of the conditional.

Note that the switch operator is not well-behaved by itself-
given a token on each of its two inputs, it produces a token on
only one of its outputs. However, when used in the context of
a structured conditional schema, the overall graph is well-
behaved. The reader should convince himself that after a token
has appeared on each of the output arcs no token could remain
in the graph.

H. Loops
Loops are an efficient implementation of tail-recursive

functions. In Id, the programmer may express a computation
directly as a loop, or the compiler may recognize tail-recursive
forms and transform them to loops.

(The impatient reader may safely skip to Section 111-1, but
we invite you to scan the intermediate subsection headings,
hoping that you will be tempted to come back!)

We will discuss only while-loops here, using this version of
the function ip which is equivalent to the for-loop version:

D e f i p A B = { s = O ;
j = 1

{While (j < = n) Do
Nextj = j + 1 ;
Next s = s + A [j] * B[j l

In

Finally s } } ;
I) Circulating Variables and Loop Constants: The body

of the loop contains expressions with free variables j , s, A ,
and B. Two of them, j and s, are bound on each iteration using
Next-we call these circulating variables. The dataflow graph
for the loop body has an input arc and an output arc for every
circulating variable. The remaining two, A and B , are
invariant over all iterations of the loop, and are thus called
loop constants. It is possible to think of loop constants as if
they too, were circulating, using the trivial statements

nextA = A ;
next B = B.

However, implementing them in this way would incur
unnecessary overheads, and so we give them special treat-
ment.

With every loop, we associate a region of memory in its
context (frame) called its constant area. Before the loop body
executes, there is a graph called the loop prelude that stores
the loop constants in the constant area. Within the loop body,
every reference to a loop constant is translated into a simple
memory fetch from the constant area.

The dataflow graph for our loop is shown in Fig. 13. For the
moment, ignore the operators labeled D and D-reset. The loop
prelude stores A and B in the constant area. j and s circulate
around the loop as long as the j < = n output is true.

2) Loop Iteration Context: Because of the asynchronous
nature of execution, it is possible that the j tokens circulate
much faster than the s tokens. This means that since the loop
condition depends only on j , many j tokens corresponding to
different iterations may pile up on the right-hand inputs of the
select operators. Thus, we need a mechanism to distinguish the

a i B

Loop Prelude: Store A and B in Constant Area

I U I

nezt j

dl
I - I

Fig. 13. Dataflow graph for a loop.

tokens corresponding to different iterations. This is performed
by the D and D-reset operators. The D operator merely
changes the context of its input token to a new context; the D-
reset operator resets the context of its input token to the
original context of the entire loop.

We could use the general get-context mechanism for this,
but this would be equivalent to implementing the loop using
general recursion. Instead, we assume that the get-context call
that is used when invoking a code block containing a loop
actually preallocates several contexts CO, CI, * - , for the
different iterations of the loop, and returns CO, the identifier of
the first one. The structure of context identifiers is such that
given the identifier Ci, we can compute the identifiers C;+l

and Co. The former computation is performed by the D
operator, which is an identity operator that simply increments
the context of its input token from C; to Ci+l, and the latter
computation is performed by the D-reset operator, which is an
identity operator that resets the context of its input token to CO.
The i part of the context field is called the iteration number.
In effect, a block of resources is preallocated for the loop
which is then able to perform its own resource management
locally.

The astute reader will recognize that the loop-iteration-
context mechanism is not sufficient to handle nested loops-
tokens can still get confused. For this reason, every nested
loop is packaged as a separate code block, like a procedure
call, and given its own, unique context when it is invoked.

3) Loop Throttling: There remains the problem of how
large should be the contiguous block of contexts for a loop.
One of the problems in parallel machines is the difficulty of
controlling enormous amounts of parallelism. For example,
unfolding 100 OOO iterations of a loop on a 256-processor
machine could swamp the machine. A related point is this: in a
real machine, there will be only a fixed number of bits to
represent the iteration number of contexts. Hence, there is a
possibility of overflow, if the loop unfolds too fast.

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE

~

31 1

There is an elegant solution to these problems based on the
simple observation that all inputs to the loop body are
controlled by the bank of switch operators at the top of the
loop, and these, in turn, are all controlled by a single Boolean
value from the loop predicate. Any particular iteration of the
loop can proceed only if the corresponding Boolean token
arrives at the switches. Thus, by controlling the delivery of
these Boolean tokens to the switches, we can regulate the rate
at which the loop unfolds.

Suppose we wanted to limit the unfolding of a loop to some
k, i.e., no more than k iterations are to exist simultaneously.
The general form of a k-throttled loop is shown in Fig. 14.

The Boolean input to the switches is now gated using X , a
two-input operator that fires when both inputs arrive, copying
one of them to its output. By gating this token, we can hold
back an iteration of the loop. The loop prelude primes the gate
with the first k - 1 loop iteration contexts CO, . . . , Ck-2,
which allows the first k - 1 Booleans to go through, which, in
turn, allows the first k - 1 iterations to proceed. At the
bottom of the loop, each circulating variable goes through a Dk
operator which increments the loop iteration context from i to i
+ 1, modulo k. Thus, the loop iteration context is the same
for the ith and the i + kth iteration.

The reader should convince himself that tokens with
contexts CO and c k - 1, inclusive, may now be sitting at the
inputs to the switches. In order to prevent mismatching
unrelated tokens, we must allow the c k - iteration to proceed
only after the CO iteration is over.

The outputs of all the Dk operators are combined using a
synchronization tree. When a signal token appears at the
output of the tree with context C,, we know that the CO
iteration has terminated completely, and that there are no more
CO tokens extant. (Recall that the loop body is itself well-
behaved, by induction, so that we know that all instructions in
it, including I-stores, have completed.) When triggered by the
signal token, the D;2 operator enables the gate with a token
carrying context C k - I (hence the “ - 2” in the name, since (k
- 1) = (1 - 2) mod k).

The value k may be specified as a compile-time or load-time
pragma, or may be dynamically generated based on the current
load on the machine. In our current graph interpreter, the user
can specify it on a per loop basis at load time. There is also
some code generated by the compiler, which we have glossed
over, to consume the k extra tokens left at the gate when the
loop terminates; for full details see [6] and [16].

Loop throttling amounts to inserting extra data dependen-
cies in the dataflow graph. Because of this, it is possible for a
throttled loop to deadlock where the unthrottled loop would
not. Consider this example:

{ a = array (1,lO) ;
a1101 = 1 ;
{For j From 1 To 9 Do

a [j l = 2 * a [j + l] }}.

The loop unfolds forward, but the data dependencies go
backward, so that a[9] becomes defined first, which enables
a[8] to become defined, which enables a[7] to become
defined, and so on. If the unfolding is throttled too much (e.g.,

k = 5) , the loop will deadlock, since the iteration that defines
a [9] cannot execute.

This example is pathological; it would have been more
natural to write it with a For-downto loop instead of a For-to
loop, in which case the deadlock problem does not arise. In
our experience, programs rarely have dependencies that run
counter to the loop direction.

To avoid deadlock, the compiler may do some analysis to
choose adequately large loop bounds or to change the loop
direction, but this is of course undecidable in general. The
programmer also has recourse to using general recursion to
avoid deadlocks due to throttled loops.

I. Managers
In any machine supporting a general-purpose programming,

various resources need to be allocated and deallocated
dynamically, e. g . , frame and heap allocation and deallocation.
We call the entities that perform these services resource
managers. In a sequential language, such managers may not
be clearly distinguishable as they are often distributed and
embedded within the program itself. However, in any parallel
language, these services must be shared by multiple processes
(we will call them clients) and thus need special treatment.

Even though the bulk of a resource manager may be written
as an ordinary procedure (mapping resource requests to
resources), the entry and exit are handled quite differently
from ordinary procedure calls. First, each resource manager
must have private data structures that are shared across all
calls to that manager. Second, multiple calls to a manager
must be serialized so that the manipulation of these data
structures is done consistently. Typically, this serialization is
performed in the nondeterministic order in which requests
arrive.

On a conventional machine, concurrent accesses to a
manager are usually operating system calls (e.g., file alloca-
tion) and are implemented using interrupts and interrupt
handlers. Serialized entry is ensured by disabling interrupts,
setting semaphore locks, etc. This kind of programming is
notorious for its difficulty and high probability of error. The
dataflow approach offers a very clean and elegant solution to
these problems, allowing significant internal parallelism
within the manager itself. We present one possible implemen-
tation.

Resource managers are ordinary Id programs that run
continuously and concurrently with the main application
program. While no special hardware is necessary, managers
do use privileged instructions that allow them to manipulate
the state of the machine. For example, the I-structure memory
manager uses special instructions to reset presence bits, update
its memory map (such as free lists), etc.

Access to a manager is mediated by a shared serializing
queue of requests, shown in Fig. 15. All data structures shown
in the figure are located in I-structure memory. The queue is a
chain of two-slot entries, where the first slot holds a request
and the second slot points to the next entry in the queue. The
second slot of the last entry (a) is empty (in the I-structure
sense). The clients’ interface to the manager is m, an
indirection cell that always points to the last entry in the queue.

312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

Enable k-1 iterations
Loop Prelude :

v&3 switch switch

Fig. 14. Dataflow graph for throttled loops.

Manager Clients
\ \ I I /

\ \ I I / \\I I /

e..

Fig. 15. Serializing input queue for a resource manager.

Clients use rn to attach their requests to the end of the queue,
in some nondeterministic order. The manager holds a refer-
ence to q, the current head of the queue. After consuming the
request in the first slot of q, it uses the second slot to refer to
the next entry in the queue, and so on. If the manager runs
ahead of the requests, it suspends automatically when it tries to
read the empty slot at the end of the queue.

Suppose a client wishes to send a request, such as “get a
context for function ip,” to the context manager. First, it
creates a new entry b, a two-slot I-structure, and puts the
request in b [I]. The client then executes (exchange rn b) , an I-
structure operation that simultaneously fetches a, the current
tail of the queue and stores 6 , the new tail, into rn. The
exchange is performed atomically at the I-structure memory,
to ensure that two clients executing this code simultaneously
do not corrupt the shared data structure. Finally, the client
enqueues b by storing b in a[2].

The request to a manager generally contains several pieces
of information, according to software convention. For exam-
ple, we may have a manager exclusively for allocating and
deallocating contexts (see Section III-B2). The request con-
structed by get-context may contain

initial q initial state L
Manager

manager
state

contezt I re~pon~el

/ I I \ \

Y3.CLY
Fig. 16. Dataflow graph for a manager.

a request type (“allocate”/“deallocate”),
the name of the callee function (so that the manager

knows what resources to allocate), and
a return continuation c.t for the managers’ response (the

instruction that receives the output of get-context).
Some requests, such as releasexontext, may not require a

return continuation. The mechanism also allows other prag-
matic information to be packaged with the request, such as
loop bounds, priorities, etc.

Similarly, get-storage and releasestorage expand into calls
to a manager for heap storage, with request containing the size
of the memory request.

A manager is shown in outline in Fig. 16. Each manager is
initialized with an initial state containing data structures
representing available resources and a reference to q, the head
of its serializing queue. A request is taken off the queue, and
together with the current state, enters the manager body
(which is an ordinary dataflow graph) to actually allocate/
deallocate the resource. It uses the change-tag operator and
the return continuation that was packaged with the request to
send the response back to the client. Finally, the manager body

ARVIND AND NIMIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE 313

produces a next state which is fed back, ready to be combined
with the next request. The behavior of a manager is abstractly
modeled as follows:

{WHILE true DO
request = q[1] ;
next state = manager-body request state ;
next q = q [2] }.

As pointed out earlier, the manager will automatically suspend
when it tries to read the empty Z-structure slot at the end of the
queue. Using loop bounding, we can limit it to one iteration at
a time. The manager body itself can have significant internal
parallelism.

The manager need not respond to requests in the order in
which they were received. For example, in order to favor
small requests over large, a heap allocator needs the ability to
defer a large request. In such cases, the manager simply stores
the pending request in its state variable and examines the next
request. Thus, dataflow managers permit all the flexibility one
normally expects in resource managers, such as priority
queues, preemptive resource allocation, etc.

As in any resource management system, there are some
bootstrapping issues. For example, storage for the queue entry
for a storage allocation request must not itself need a call to the
storage manager. These issues are no different from those in
conventional systems, and are handled similarly.

If all requests for a particular kind of resource (e.g., heap
storage) went to a single manager, it is, of course, likely to
become a bottleneck. This can be addressed in standard ways.
For example, we may partition the resource into separate
domains, each managed by a local manager. These managers
may negotiate with each other occasionally to balance resource
usage across the machine. The communication between
managers is no different from the communication between
parts of any other Id program.

Functional programmers will recognize that the manager
queue performs a “nondeterministic” merge. However,
managers are significantly easier to use than the nondeter-
ministic merge operator, which cannot adequately cope with
systems in which the users of a resource manager are
dynamically determined. The reader is invited to see [4] for
more details, including a programming methodology for
managers.

Dataflow graphs provide all the mechanisms necessary to
implement managers; what remains is to decide the policies
encoded therein. This is a major area for research (see [17]),
both in our project and elsewhere. Currently, a major obstacle
is the general lack of experience in the research community
with large, parallel applications.

Iv . DATAFLOW GRAPHS AS A MACHINE LANGUAGE FOR THE

TTDA

We have seen that dataflow graphs are a good target for a
compiler for a high-level programming language such as Id.
Our experiments have confirmed that the tagged-token seman-
tics for executing dataflow graphs exposes large amounts of
parallelism, even in conventional algorithms [7]. In this
section, we describe the MIT Tagged-Token Dataflow Archi-

;;;
Fig. 17. Top-level view of TTDA.

mom Communication Network d
I

ll I 1 *- U

I
I +

Compute Tag

Form Tokens m output To Communication Network

Fig. 18. A processing element.

tecture (TTDA), a machine architecture for directly executing
dataflow graphs.

A . Architecture
At a sufficiently abstract level, the TTDA looks no different

from a number of other parallel MIMD machines (Fig. 17)-it
has a number of identical processing elements (PE’s) and
storage units interconnected by an n-cube packet network. As
usual, there are many packaging alternatives-for example, a
PE and storage unit may be physically one unit-but we do not
explore such choices here. However, it is important that the
storage units are addressed uniformly in a global address
space; thus, they can be regarded as a multiported, interleaved
memory.

Each PE is a dataflow processor. Each storage unit is an Z-
structure storage unit, which was described in Section 111-C. A
single PE and a single I-structure unit constitute a complete
dataflow computer. To simplify the exposition, we will first
describe the operation of the machine as if it had only one PE
and I-structure unit; in Section IV-C, we discuss multiproces-
sor operation.

3 14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3. MARCH 1990

Literallconstant

Destination s’,

Destination s’

Fig. 19. Representation of an instruction.

B. Single Processor Operation
The architecture of a single processing element is shown in

Fig. 18. The main pipeline is the central feature of the PE.
I) Representation of Dataflow Graphs and Contexts:

Recall (from Section 111-E) that a program is translated into a
set of basic dataflow graphs called code blocks. The graph for
a code block is encoded as a linear sequence of instructions in
program memory. The assignment of instructions to addresses
in the linear sequence is arbitrary, except for the call-return
linkage convention mentioned in Section 111-B. As an engi-
neering decision, every instruction has no more than two
inputs. Thus, every instruction in the graph is encoded as
shown in Fig. 19.

The literal/constant field in an instruction may be a literal
value or an offset into the constant area in constant memory.
The destinations are merely the addresses of the successor
instructions in the graph. To facilitate relocation, addressing
within a code block is relative, i.e., destination addresses are
encoded as offsets from the current instruction.

A specific invocation of a code block is determined by a
context, which identifies two registers: a code block register
(CBR) which points to the base address in program memory
for the code block’s instructions, and a database register
(DBR) which points to the base address for the constant area in
constant memory.

The getxontext manager-call discussed in Sections 111-B
and 111-1 must therefore

Instruction-Fetch Unit: The tag on the operand tokens
entering the instruction-fetch unit identifies an instruction to
be fetched from program memory (via a CBR). The fetched
instruction may include a literal or offset into the constant
area, and a list of destination instruction offsets. The tag also
specifies a DBR; using the constant base address found there
and the constant offset in the instruction, any required
constants from the constant area are now fetched from constant
memory.

All this information-the data values from the tokens; a
constant from the constant area or a literal from the instruc-
tion, the opcode from the instruction, the destination offsets
from the instruction, and the context itself-is passed on to the
next stage, the ALU, and compute-tag unit.

ALU and Compute-Tag Unit: The ALU and compute-tag
units are actually two ALU’s operating in parallel. The ALU
unit is a conventional one that takes the operand/literal/
constant data values and the opcode, performs the operation,
and produces a result.

The compute-tag unit takes the CBR and DBR numbers
from the context and the instruction offsets for the destina-
tions, and computes the tags for the output of the operator.
Recall that the tag for two instructions in the same code block
invocation will differ only in the instruction offset.

The ALU result and the destination tags are passed to the
form-tokens unit.

Form-Tokens Unit: The form-tokens unit takes the data
value(s) from the ALU and the tags from the compute tag and
combines them into result tokens.

Output tokens emerging at the bottom of the pipe are routed
according to their destination addresses: back to the top of the
PE, or into the network to the I-structure unit, or, in a
multiprocessor, to other PE’s and I-structure units. The global
address space makes this routing straightforward.

The main pipeline can be viewed as two simpler pipelines-
the wait-match unit and everything below it. Once tokens
enter the lower pipeline, there is nothing further to block

allocate a CBR/DBR pair and space in constant memory

initialize the CBR/DBR to point to the instruction and

return the CBRIDBR number as the context.
2) Operation of the Main Pipeline: Tokens entering the

main pipeline go through the following units in sequence.
Wait-Match Unit: The wait-match unit (WM) is a

memory containing a pool of waiting tokens. If the entering
token is destined for a monadic operator, it goes straight
through WM to the instruction-fetch unit. Otherwise, the
token is destined for a dyadic operator and the tokens in WM
are examined to see if the other operand has already arrived,
i.e., if WM contains another token with the same tag. If so, a
match occurs: that token is extracted from WM, and the two
tokens are passed on to the instruction-fetch unit. If WM does
not contain the partner, then this token is deposited into WM to
wait for it.

The wait-match unit is thus the rendezvous point for pairs
of arguments for dyadic operators. It has the semantics of an
associative memory, but can be implemented using hashing.

for the designated function,

constant base addresses, and

them. Pipeline stages do not share any state, so there are no
complications such as reservation bits, etc.

3) The Control Unit: The control unit receives special
tokens that can manipulate any part of the PE’s state-for
example, tokens that initialize code-block registers, store
values into constant memory and program memory, etc. These
tokens are typically produced by various managers such as the
context manager.

The control section also contains any connection to the
outside world, such as input-output channels.

C. Multiprocessor Operation
In a multiprocessor machine, all memories (program,

constant, I-structure) are globally addressed. Thus, one can
implement any desired form of interleaving. The simplest
distribution of code on the TTDA is to allocate an entire code
block to a PE. However, the TTDA has a sophisticated
mapping mechanism that also allows a code block to be
allocated across a group of PE’s, thereby exploiting the
internal parallelism within them. For example, it is possible to
load a copy of a loop procedure on several PE’s, and distribute

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE 315

different iterations of the loop on different PE’s according to
some prespecified hash function on the tags. The hash function
to be used is stored in a MAP register which like the CBR and
DBR is loaded at the time of procedure activation. In fact it is
also possible to execute a code block on several PE’s by
loading only parts of it on different PE’s. When a token is
produced at the output of either a PE or an I-structure unit, its
tag specifies exactly which PE or I-structure unit it must go to.
The token is sent there directly, i.e., there is no broadcasting.

It is important to note that the program does not have to be
recompiled for different mapping schemes. The machine code
(dataflow graph) is independent of the mapping schemes and
the machine configuration. Furthermore, the number of
instructions executed does not vary with the machine configu-
ration.

D. Discussion
It is important to realize that the PE architecture shown here

is the hardware interpreter for dataflow graphs-it is not an
abstraction to be implemented at a lower level by a conven-
tional processor.

Any parallel machine must support mechanisms for fast
synchronization and process switching. The TTDA supports
these at the lowest level of the architecture, without any busy-
waiting. Every wait-match operation and every I-structure
read and write operation is a synchronization event directly
supported in hardware. Sequential threads may be interleaved
at the level of individual instructions. Unlike von Neumann
machines, switching between threads does not involve any
overheads of saving and restoring registers, loading and
flushing caches, etc. All memory reads are split phase, i.e.,
between the request-to-read and the datum-reply there may be
an arbitrary number of other instructions executed. Thus, the
latency (roundtrip time) of memory reads, which is bound to
be high in a parallel machine, is masked by doing useful work
in the interval; the overall throughput of the interconnection
network is more critical than its latency.

V. COMPARISON TO OTHER WORK
An invariant in our approach to the problem of high-speed,

general-purpose parallel computing has been the belief that it
cannot be solved at any single level. The goal will be achieved
only with synergy between the language, the compiler, and the
architecture. This cannot be achieved by simple extensions to
conventional sequential languages and architectures-the
problems of determinacy, cost of synchronization and context
switches, and intolerance of memory latency are insurmounta-
ble in the pure von Neumann framework.

A . Languages and Compiling
Our research on languages is constrained mainly by the two

requirements of implicitly parallel semantics and determi-
nacy.

Originally (i.e., in [lo], 1978), Id was simply intended as a
convenient textual encoding of dataflow graphs which are

’The RISC experience has demonstrated this tight coupling even on
sequential machines.

tedious to draw explicitly. Over the years, Id has evolved in
the direction of higher level features and greater abstraction.
Today, the functional subset of Id is as powerful and abstract
as other modern functional languages such as SML [3 11, LML
[151, and Miranda [46]. Like these other functional languages,
Id can be explained and understood purely in terms of the
concept of reduction, without any recourse to dataflow graphs
(such an explanation may be found in [13]).

I-structures and managers extend Id beyond functional
languages. I-structures were originally introduced only as a
characterization of certain “monotonic” constructions of
functional arrays ([14], 1980). It was only in 1986 that the
connection with logic variables became clear, and I-structures
were clearly incorporated into the language 1121. A recent
development is the ‘‘array comprehension” notation by which
the programmer can stay within the functional subset and
largely avoid the explicit use of I-structures [34]. We believe
that the treatment of arrays is one of Id’s unique features.
Managers in Id are used for expressing explicit nondeter-
minism and are more expressive than the “merge” operator
often used to express nondeterminism in functional languages.

It is also interesting to compile Id for sequential and parallel
architectures using von Neumann processors. The major
complication here arises from Id’s nonstrict semantics which
makes it quite difficult to achieve efficient partitioning of code
into sequential von Neumann threads. This has recently been a
very active area for research. Outside our group, this has been
the primary focus of the graph-reduction [45] community,
where an additional motivation has been ‘‘lazy evaluation, ”
which is one way to achieve nonstrict semantics. Work on
compiling for sequential von Neumann machines may be
found in [26] and [19], and for parallel von Neumann
machines in [37] and 1201. Within our group, we have recently
embarked upon a project to tackle this problem systematically
and at a more fundamental level [U], cleanly separating out
the issue of nonstrictness from the issue of laziness. This work
has, in fact, strengthened our conviction that dataflow archi-
tectures are good architectures in which to implement parallel
graph reduction.

Another language associated prominently with dataflow is
SISAL [30] (which, in turn, was influenced by both Id and
VAL, another early dataflow language [l]). Id and SISAL
differ in many ways; most notably:

SISAL deliberately omits higher order functions in favor
of simplicity.

Current implementations of SISAL have strict semantics,
although we have been informed that the SISAL specification
takes no position on strictness.

SISAL arrays are purely functional, and are extensible,
i.e., the index bounds can grow. It is possible to define some
arrays monolithically using the “forall” construct. In addi-
tion, there is an incremental update operation that conceptually
produces a new array from an old one, differing at one index.
If implemented naively, this implies some sequentialization
and a heavy use of array storage, but it is the aim of SISAL
researchers to use program analysis to alleviate this problem.
In contrast, Id arrays are not extensible, and instead of
incremental updates, the Id programmer uses bulk or mono-

316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

lithic operators like map-array (the programmer can code new
bulk operators himself, using higher order functions). The
nonstrictness of Id is crucial in allowing bulk operators to be
used when an array is defined using recurrences.

Both Id and SISAL are statically and strongly typed.
However, SISAL’S type-system is monomorphic, and requires
type declarations by the programmer, whereas Id has a
polymorphic type system, and types are automatically inferred
by the compiler.

Most current SISAL research focuses on compiling to
existing multiprocessors, except at Manchester University,
where the target is the Manchester dataflow machine. A major
contribution of the SISAL effort has been to define IFl, an
intermediate language to which SISAL programs are first
translated. IF1 is a dataflow graph language, although not at a
sufficiently detailed level to be a directly executable machine
language. Proper documentation of IF1 and tools for manipu-
lating it have allowed diverse research groups to target SISAL
to their machines. However, none of the current implementa-
tions of SISAL can match the performance of conventional
languages on parallel or sequential machines.

Lucid is another language known as a dataflow language
[47] because, though textually a functional language, the
operational interpretation often given to Lucid programs is one
of networks of filter functions connected by arcs carrying
infinite sequences of values. High-level iteration constructs
are used to specify the filters and their interconnections.
Unlike our dataflow graphs that constitute a machine lan-
guage, Lucid’s networks are at a much more abstract level and
do not address such issues as tagging, data structure represen-
tations, etc. Current implementations of Lucid interpret such
networks in von Neumann code. Insofar as Lucid can be
viewed denotationally as a purely functional language, it
should also be amenable to our compilation techniques. As a
programming language, Lucid does not have higher order
functions, arrays, user-defined data types, type checkmg, etc.,
although we understand that such features are under consider-
ation.

B. Dataflow Architectures

The first tagged-token dynamic dataflow interpreter was the
U-Interpreter developed in 1977 [9]. In the U-Interpreter,
contexts and iteration numbers on tags were completely
abstract entities, with no physical interpretation. Indeed, for
procedure calls, each context carried within it the entire chain
of its parent contexts. The TTDA is an evolution of the U-
Interpreter in the direction of a realizable architecture.
Contexts now have a physical interpretation-they are directly
related to machine resources, referring to code block registers,
database registers, constant areas, and so on. Detailed, explicit
mechanisms have been developed to invoke new contexts and
restore old ones. Loop-bounding techniques have been devel-
oped in recognition that resources are bounded (including the
iteration field on a token). Finally, I-structure memory has
been developed to deal with data structures.

Of course, the TTDA is not the end of the evolutionary path
from the &Interpreter. Our current view is embodied in the

Monsoon dataflow processor architecture [36], which we
describe briefly in the next section.

The tagged-token dataflow idea was also developed inde-
pendently at Manchester University, where the first dataflow
machine was built [22]. It consisted of one processing element
and introduced the idea of “waiting-matching ” functions.
This made it possible to implement an “I-structure store” in
the waiting-matching section itself. Although the Manchester
machine was too small to run any actual applications, it was
able to demonstrate that pipelines in a dataflow processor can
be kept busy almost effortlessly.

The most complete and impressive dataflow machine to date
is the Sigma-1, built by researchers at Japan’s Electro-
Technical Laboratory [23], [48]. It embodies nearly all the
ideas discussed in this paper. The current implementation
consists of 128 processors and 128 I-structure stores and has
just gone into operation (early 1988). It has already demon-
strated a performance of 170 MFLOPS on a small integration
problem. It is programmed in dataflow C, a derivative subset
of the C programming language. There is a paucity of software
for Sigma-1 , although we think it would be straightforward to
develop an Id compiler for it.

In Japan, there is also related work at the NTT under the
direction of Dr. Amamiya [3], [40]. NEC has also built some
dataflow machines, including a commercial signal-processing
chip [32], [42].

A more detailed survey of dataflow architectures may be
found in [5].

C. Project Status and Plans: Id and the Monsoon
Machine

Our current research (December 1988) continues to cover a
spectrum from languages to compilers to architectures.

On the Id language, we are working on further improve-
ments in data-structuring facilities, development of an auto-
matic incremental, polymorphic type-checker with overload-
ing, and language constructs for resource managers.

The central vehicle of our compiler research is the Id
compiler implemented by Traub [43]. Issues we are currently
investigating revolve around optimization techniques: use of
type information to improve object code, code motion and
transformation, fast function calls and loops, fast resource
management, and reducing the overhead of dynamic resource
management by moving some of those activities into in-line
code.

To support this research, we have constructed Id World, an
integrated programming environment for Id and the TTDA
[33] running on workstations such as Lisp machines. In
addition to sophisticated edit-compile-debug-run support, Id
World measures and plots parallelism profiles, instruction
counts, and other emulated TTDA machine statistics. The first
version of Id World was released under license from MIT on
April 15, 1987.

In our laboratory, programs can also be run on two other
facilities without recompilation. The Multiprocessor Emula-
tion Facility (MEF) is a collection of 32 TI Explorer Lisp
Machines interconnected by a high-speed network that we
built and has heen operational since January 1986. An event-

ARVIND AND NIKHIL: EXECUTING A PROGRAM ON MIT TAGGED-TOKEN ARCHITECTURE

~

317

driven simulator provides the detailed timing information
essential for designing a real dataflow processor.

The Monsoon Machine: We are sufficiently encouraged
by the experiments conducted to date that we are proceeding
with the construction of a 256-node, 1 BIPS (billion instruc-
tions per second) machine. The architecture of this machine is
called “Monsoon” and was proposed by Papadopoulos and
Culler [36]. It is another evolutionary step from the TTDA
(and ultimately from the U-Interpreter) in which the resources
for a code block have a direct correspondence to “frames” or
“activation records” of conventional systems. The idea is
basically to allocate a “frame” of wait-match storage on each
code-block invocation. This frame interpretation allows the
wait-match store to be a fast, directly addressable memory,
whereas in the TTDA it had the semantics of a potentially slow
associative memory.

A context, then, is merely the pointer to a frame. Tokens
now have the format (S, R, u) ~ where S is a pointer to an
instruction in program memory, R is a pointer to the frame, U
is the datum, and p , as before, the port. The instruction now
contains the offset of a location in its frame where its input
tokens wait to rendezvous. When a token arrives, S is used
first to fetch the instruction. The offset r encoded in the
instruction, together with R , is used to interrogate exactly one
location, R + r , in wait-match memory. If empty, this token is
deposited there to wait. If full, the partner token is extracted,
and the instruction is dispatched.

Interestingly, it is also possible to view R as an I-structure
address and specify fancy I-structure operations using S. With
minor modification to the empty/full states associated with the
token-store elements, I-structures can be implemented on the
same PE hardware.

This new architecture eliminates the CBR/DBR registers of
the TTDA and thus simplifies one of its resource management
problems. By combining PE’s and I-structures it reduces the
engineering effort. Most importantly, our current software
will run on this machine with minimal changes in the Id
compiler.

A prototype single-processor Monsoon board has been
operational in our laboratory since October 1988. Single-
processor boards to be plugged into workstations are expected
to be available in early 1990. A 16-node multiprocessor
containing Monsoon processors, I-structure memory, and a
switching network is expected to be ready by the end of 1990.

D. Macrodataflow or Pure Dataflow?
We are often asked why we take such a “fine-grained”

approach to dataflow instead of using a hybrid computation
model which may be termed macrodataflow. Rather than
adopting dataflow scheduling at the individual instruction
level, one considers larger chunks or “grains” of conven-
tional von Neumann instructions that are scheduled using a
program counter, with the grains themselves being scheduled
in dataflow fashion.

First, we have reason to believe that the compilation
problem for macrodataflow is significantly harder. Choosing
an appropriate grain size and partitioning a program into such
grains is a very difficult problem [381, [241, 1251, [GI.

Second, the macrodataflow approach requires an ability to
switch a von Neumann processor very rapidly between the
threads representing different grains, and no one has yet
shown convincing solutions to this problem. The Denelcor
HEP [39] was one attempt at such a multithreaded architec-
ture; however, it still had inadequate support for synchroniza-
tion, with some degree of busy-waiting and a limited
namespace for synchronization events.

However, the appeal of a hybrid dataflow machine cannot
be denied, as it represents an evolutionary step away from a
von Neumann machine. Such a “von Neumann-Dataflow”
machine has been studied recently in our group by Iannucci
[25]. We believe that further synthesis of the dataflow and von
Neumann computation models is very likely.

E. TheFuture
Our main research focus is determined by our belief that

declarative languages on dataflow architectures constitute the
right combination for general-purpose, parallel computing.
However, our experiments have given us increasing confi-
dence that Id can be a competitive language for other
multiprocessors, and that dataflow architectures can competi-
tively support other parallel languages such as parallel Fortran
or C. These are exciting alternatives which we hope will
attract more research attention in the future, both within our
group and without.

ACKNOWLEDGMENT
The ideas presented in this paper are due to the efforts of the

very talented students and research staff of the Computation
Structures Group of the Laboratory for Computer Science at
MIT. While every member of the group is typically interested
in, and contributes to several aspects of the project, we
mention here some rough areas of specialization: Languages
and Reduction: K. Pingali and V. Kathail; Demand-driven
evaluation: Pingali and S. Heller; Compilers: Kathail origi-
nally, then K. Traub, and now J . Hicks; Architecture: D.
Culler, B. Iannucci, and G. Papadopoulos; Resource Manage-
ment: Culler and P. Barth; Id World: D. Morais and R. Soley;
Simulator: S. Brobst, A. Chien and G. Maa; Emulator:
Culler, Morais, and Traub; MEF: Papadopoulos, Soley and
A. Boughton.

Our thanks to the referees for detailed comments which
spurred a major reworking of this paper, and to P. Barth, S.
Brobst, D. Culler, G. Papadopoulos, L. Snyder, R. Soley, and
N. Tarbet for a careful reading and comments on the revision.

REFERENCES
[I] W. B. Ackerman and J . B. Dennis, “VAL-A value-oriented al-

gorithmic language: Preliminary reference manual,’’ Tech. Rep. TR-
218, Computat. Structures Group, MIT Lab. for Comput. Sci., 545
Technology Square, Cambridge, MA 02139, June 1979.
J . Allen and K. Kennedy, “PFC: A program to convert FORTRAN to
parallel form,” Tech. Rep. MASC-TR82-6, Rice Univ., Houston, TX,
Mar. 1982.
M. Amamiya, R. Hasegawa, 0. Nakamura, and H. Mikami, “A list-
oriented data flow machine,” in Proc. Nat. Comput. Conf., AFIPS,
1982, pp. 143-151.
Arvind and J. D. Brock, “Resource managers in functional program-
ming,” J. Parallel Distrib. Comput., vol. 1, no. 1, Jan. 1984.

[2]

[3]

[4]

318

[5] Arvind and D. E. Culler, “Dataflow architectures,” in Annual
Reviews in Computer Science, Vol. I . Palo Alto, CA: Annual
Reviews Inc., 1986, pp. 225-253.

[6] -, “Managing resources in a parallel machine,” in Fifth Genera-
tion Computer Architectures, 1986. New York: Elsevier Science
Publishers, B.V., 1986, pp. 103-121.
Arvind, D. E. Culler, and G. L. Maa, “Assessing the benefits of fine-
grained parallelism in dataflow programs,” Int. J. Supercomput.
Appl., vol. 2, no. 3, Fall 1988.
Arvind and K. Ekanadham, “Future scientific programming on parallel
machines,” J. Parallel Distrib. Comput., vol. 5, no. 5, Oct. 1988.
Arvind and K. Gostelow, “The U-Interpreter,” ZEEE Comput. Mag.,
vol. 15, Feb. 1982.
Arvind, K. Gostelow, and W. Plouffe, “An asynchronous program-
ming language and computing machine,’’ Tech. Rep. TR-I14a, Dep.
Inform. Comput. Sci., Univ. of California, Imine, CA, Dec. 1978.
Arvind and R. A. Iannucci, “Two fundamental issues in multiprocess-
ing,” in Proc. DFVLR-Conf. 1987 Parallel Processing Sci. Eng.,
BonnBad Godesberg, W. Germany, June 25-29, 1987.
Arvind, R. S. Nikhil, and K. K. Pingali, “I-Structures: Data structures
for parallel computing,” in Proc. Workshop Graph Reduction, Santa
Fe, New Mexico. Berlin, Germany: Springer-Verlag, Sept./Oct.
1986. Lecture Notes in Computer Science 279.

[13] -, “Id Nouveau reference manual, Part II: Semantics,” Tech.
Rep., Computat. Structures Group, MIT Lab. Comput. Sci., 545
Technology Square, Cambridge, MA 02139, Apr. 1987.
Arvind and R. E. Thomas, “I-structures: An efficient data type for
parallel machines,” Tech. Rep. TM 178, Computat. Structures Group,
MIT Lab. for Comput. Sci., 545 Technology Square, Cambridge, MA
02139, Sept. 1980.
L. Augustsson and T. Johnsson, “Lazy ML user’s manual,” Tech.
Rep. (Preliminary Draft), Programming Methodology Group Rep.,
Dep. Comput. Sci., Chalmers Univ. of Technol. and Univ. of
Goteborg, S-421 96 Goteborg, Sweden, Jan. 1988.
D. E. Culler, “Resource management for the tagged token dataflow
architecture,” Tech. Rep. TR-332, Computat. Structures Group, MIT
Lab. for Comput. Sci., 545 Technology Square, Cambridge, MA
02139, 1985.

[I71 -, “Effective dataflow execution of scientific applications,” Ph.D.
dissertation, Lab. Comput. Sci., Massachusetts Instit. Technol.,
Cambridge, MA, 02139, 1989.

[I81 J. B. Dennis, “First version of a data flow procedure language,” in
Proc. Programming Symp., G. Goos and J. Hartmanis, Eds. Paris,
France, 1974. Berlin, Germany: Springer-Verlag, 1974. Lecture
Notes in Computer Science 19.
J. Fairbairn and S. C. Wray, “TIM: A simple abstract machine for
executing supercombinators,” in Proc. 1987 Functional Program-
ming Comput. Architecture Conf., Portland, OR, Sept. 1987.

[201 B. Goldberg and P. Hudak, “Alfalfa: Distributed graph reduction on a
hypercube multiprocessor,” Tech. Rep., Dep. Comput. Sci., Yale
Univ., New Haven, CT, Nov. 1986.

[21] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and
M. Snir, “The NYU Ultracomputer-Designing an MIMD shared
memory parallel computer,” IEEE Trans. Comput., vol. C-32, no. 2,
pp. 175-189, Feb. 1983.
J. R. Gurd, C. Kirkham, and I. Watson, “The Manchester prototype
dataflow computer,” Commun. ACM, vol. 28, no. 1, pp. 34-52, Jan.
1985.
K. Hiraki, S. Sekiguchi, and T. Shimada, “System architecture of a
dataflow supercomputer,” Tech. Rep., Comput. Syst. Division,
Electrochemical Lab., 1-14 Umezono, Sakura-mura, Niihari-gun,
Ibaraki, 305, Japan, 1987.
P. Hudak and B. Goldberg, “Serial combinators: “Optimal” grains of
parallelism,” in Proc. Functional Programming Languages Archi-
tures. Nancy, France, pp. 382-399. Berlin, Germany: Springer-
Verlag, Sept. 1985, Lecture Notes in Computer Science 201.
R. A. Iannucci, “A dataflow/von Neumann hybrid architecture,”
Ph.D. dissertation, Lab. for Comput. Sci., Massachusetts Institute of
Technology, Cambridge, MA 02139, May 1988.

[26] T. Johnsson, “Efficient compilation of lazy evaluation,” ACM
SIGPLAN Notices, vol. 19, no. 6, pp. 58-69, June 1984. Proc.
ACM SIGPLAN ’84 Symp. Compiler Construction.

1271 -, “Lambda lifting: Transforming Drograms to recursive equa-

[7]

[8]

[9]

[IO]

[l I]

[I21

[I41

[15]

[I61

1191

1221

[23]

[24]

[25]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 3, MARCH 1990

Architecture, Nancy, France. Berlin, Gemany: Springer-Verlag,
Sept. 1985. Lecture Notes in Computer Science 201.
D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe,
“Dependence graphs and compiler optimizations,” in Proc. 8th ACM
Symp. Principles Programming Languages, Jan. 1981, pp. 207-218.
D. J. Kuck, D. Lawrie, R. Cytron, A. Sameh, and D. Gajski, “The
architecture and programming of the Cedar System,” Tech. Rep.
Cedar No. 21, Lab. for Advanced Supercomput., Dep. Comput. Sci.,
Univ. of Illinois at Urbana-Champaign, Aug. 12, 1983.
J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J .
Glauert, P. Hohensee, and I. Dobes, “Sisal reference manual,” Tech.
Rep., Lawrence Livermore Nat. Lab., 1984.
R. Milner, “A proposal for standard ML,” in Proc. 1984 ACM
Symp. Lisp Functional Programming, Aug. 1984, pp. 184-197.
NEC, Advanced Product Information User’s Manual: pPD7281,
NEC Electronics Inc., Mountain View, CA, 1985.
R. S. Nikhil, “Id World reference manual,” Tech. Rep., Computat.
Structures Group, MIT Lab. for Comput. Sci., 545 Technology
Square, Cambridge, MA 02139, Apr. 1987.
-, “Id (Version 88.1) reference manual,” Tech. Rep. CSG Memo
284, MIT Lab. for Comput. Sci., 545 Technology Square, Cambridge,
MA 02139, Aug. 1988.
D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Commun. ACM, vol. 29, no. 12, Dec. 1986.
G. M. Papadopoulos, “Implementation of a general-purpose dataflow
multiprocessor,” Ph.D. dissertation, Lab. for Comput. Sci., Massa-
chusetts Instit. Technol., Cambridge, MA 02139, Aug. 1988.
S. L. Peyton-Jones, C. Clack, J. Salkild, and M. Hardie, “GRIP-A
high performance architecture for parallel graph reduction,” in Proc.
3rd Int. Conf. Functional Programming Comput. Architecture,
Portland, OR, Sept. 1987.
V. Sarkar and J. Hennessy, “Partitioning parallel programs for macro-
dataflow,” in Proc. 1986 ACM Conf. Lisp Functional Program-
ming, Cambridge, MA, Aug. 4-6, 1986, pp. 202-211.
B. J. Smith, “A pipelined, shared resource MIMD computer,” in
Proc. 1978 Int. Conf. Parallel Processing, 1978, pp. 6-8.
N. Takahashi and M. Amamiya, “A dataflow processor array system:
Design and analysis,” in Proc. 10th Int. Symp. Comput. Architec-
ture, Stockholm, Sweden, June 1983, pp. 243-250.
P. Tang, C.-Q. Zhu, and P.-C. Yew, “An implementation of Cedar
synchronization primitives,” Tech. Rep. Cedar No. 32, Lab. for
Advanced Supercomput., Dep. Comput. Sci., Univ. of Illinois at
Urbana-Champaign, Apr. 3, 1984.
T. Temma, S. Hasegawa, and S. Hanaki, “Dataflow processor for
image processing,” in Proc. 11th Int. Symp. Mini and Microcompu-
ters, Monterey, CA, pp. 52-56, 1980.
K. R. Traub, “A compiler for the MIT tagged token dataflow
architecture,” Master’s thesis, Tech. Rep. TR-370, MIT Lab. for
Comput. Sci., Cambridge, MA 02139, Aug. 1986.
-, “Sequential implementation of non-strict languages,” PhD
dissertation, MIT Lab, for Computer Sci., 545 Technology Square,
Cambridge, MA 02139, May 1988.
D. A. Turner, “A new implementation technique for applicative
languages,” Software: Practice and Experience, vol. 9, no. 1, pp.

-, “Miranda, A non-strict functional language with polymorphic
types,’’ in Proc. Functional Programming Languages Comput.
Architecture, Nancy, France. Berlin, Germany: Springer-Verlag,
Sept. 1985. Lecture Notes in Computer Science 201, pp. 1-16.
W. W. Wadge and E. A. Ashcroft, Lucid, The Dataflow Program-
ming Language.
T. Yuba, T. Shimada, K. Hiraki, and H. Kashiwagi, “Sigma-1: A
dataflow computer for scientific computation,” Tech. Rep., Electro-
technical Lab., 1-1-4 Umesono, Sakuramura, Niiharigun, Ibaraki 305,
Japan, 1984.

31-49, 1979.

London, England: Academic, 1985.

Arvind (SM’85). photograph and biography not available at the time of
publication.

Rishiyur S. Nikhil (M’87), photograph and biography not available at the
time of uublication. tions,” in Proc. Functional Programming Languages and Comput.

