
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. The results support the proposition that predicting the critical sections and 
accelerating the thread in advance would help reduce the contention between the 
critical sections and improve performance.  
b. In some cases, the wait-cycles increase upon prediction, which may be attributed to 
either pattern of critical section occurrence or mispredictions. 
c. Although, performance of Aggressive ACS (AACS) is comparable to Aggressive PACS 
(APACS), APACS is expected to be more immune to migration cost penalties than AACS. 
 
 
 
Future work could comprise of looking into the following aspects of the Predictive 
Acceleration of Critical Sections: 
a. Impact on Power Consumption due to higher utilization of faster core 
b. Cost of thread migration and its impact on performance 
c. Design a compiler to insert the prediction and release flags. 
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Lƴ ǘƘŜ ǇŀǇŜǊΣ ά!ŎŎŜƭŜǊŀǘƛƴƎ /ǊƛǘƛŎŀƭ {ŜŎǘƛƻƴ 9ȄŜŎǳǘƛƻƴ ǿƛǘƘ !ǎȅƳƳŜǘǊƛŎ aǳƭǘƛ-Core 
!ǊŎƘƛǘŜŎǘǳǊŜέ ōȅ Suleman et. al. threads executing critical sections were moved to the 
faster core so that they would execute the critical section in less time and hence reduce 
the contention between the different threads executing the same critical section. 
 
 
 
 
We extend this idea and propose to predict the critical region well in advance so as to 
accelerate the thread reaching the critical region earliest. This would reduce the 
contention between different threads  
contending for the same critical section  
even further by increasing the temporal  
gap between the occurrence of critical  
sections in different threads, thus  
improving performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part I: The Input: Flagging the critical section:  
    a. The compiler identifies instructions triggering the beginning of critical section 
execution. 
    b. The compiler  then analyses all possible paths that may lead to the critical section. 
hƴ ǘƘŜǎŜ ǇŀǘƘǎΣ ƛǘ ƛƴǎŜǊǘǎ ƛƴǎǘǊǳŎǘƛƻƴǎ όάŦƭŀƎǎέύ ƛƴŘƛŎŀǘƛƴƎ ǘƘŀǘ ǘƘŜ ǘƘǊŜŀŘ ƛǎ ŀōƻǳǘ ǘƻ 
enter a critical region and also inserts a rough estimate (based on profiling) as to how 
many instructions later the critical section would be reached. 
    c. Further, the compiler analyses the paths that the control flow might take which 
might cause it to skip the critical region despite having executed the flagging 
instructions. On these paths, it inserts instructions that indicate that the previously 
predicted critical region will no longer be reached. 
    (In the current model, the role of the compiler to insert the prediction and release 
flags is performed manually) 
 
Part II: The Scheduler: Dynamic prioritization of threads being scheduled on the faster 
core depending on the thread and system state. 
    The threads are scheduled on the faster core in the following order for an aggressive 
predictive accelerating mechanism: 
        i. Thread holding lock having most number of threads waiting upon it. 
        ii. Thread holding lock having active predictions in most threads. 
        iii. Thread holding a lock 
        iv. Threads being closest to highly contended critical sections 
        v. Threads predicting a critical section 
        vi. Threads performing normal work. 
 
Part III: Dynamic Prediction Improvement: Adapting to run-time environment. 
    a. The system maintains a prediction table and updates the predicted distances 
based on the past history and current number of instructions executed between the 
prediction flag and the start of critical section. 
    b. The system also maintains a confidence flag. If a flag mispredicts a critical section, 
then the confidence of the particular flag is decreased. When below threshold, the 
predicted state of the thread for the corresponding low confidence predictor is not 
considered while scheduling the thread on the faster core. 
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