

a. The results support the proposition that predicting the critical sections and
accelerating the thread in advance would help reduce the contention between the
critical sections and improve performance.
b. In some cases, the wait-cycles increase upon prediction, which may be attributed to
either pattern of critical section occurrence or mispredictions.
c. Although, performance of Aggressive ACS (AACS) is comparable to Aggressive PACS
(APACS), APACS is expected to be more immune to migration cost penalties than AACS.

Future work could comprise of looking into the following aspects of the Predictive
Acceleration of Critical Sections:
a. Impact on Power Consumption due to higher utilization of faster core
b. Cost of thread migration and its impact on performance
c. Design a compiler to insert the prediction and release flags.

We would like to thank Prof. Onur Mutlu and the TAs, Yoongu Kim and Justin Meza, for
their critical suggestions and help. Their constant motivation has been the driving
factor which enabled us to complete the project.

PREDICTIVE ACCELERATION OF CRITICAL SECTION

EXECUTION WITH ASYMMETRIC MULTICORE ARCHITECTURE
Padmanabham Patki Paul Kennedy Yifei Yao

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, USA

Lƴ ǘƘŜ ǇŀǇŜǊΣ ά!ŎŎŜƭŜǊŀǘƛƴƎ /ǊƛǘƛŎŀƭ {ŜŎǘƛƻƴ 9ȄŜŎǳǘƛƻƴ ǿƛǘƘ !ǎȅƳƳŜǘǊƛŎ aǳƭǘƛ-Core
!ǊŎƘƛǘŜŎǘǳǊŜέ ōȅ Suleman et. al. threads executing critical sections were moved to the
faster core so that they would execute the critical section in less time and hence reduce
the contention between the different threads executing the same critical section.

We extend this idea and propose to predict the critical region well in advance so as to
accelerate the thread reaching the critical region earliest. This would reduce the
contention between different threads
contending for the same critical section
even further by increasing the temporal
gap between the occurrence of critical
sections in different threads, thus
improving performance.

Part I: The Input: Flagging the critical section:
 a. The compiler identifies instructions triggering the beginning of critical section
execution.
 b. The compiler then analyses all possible paths that may lead to the critical section.
hƴ ǘƘŜǎŜ ǇŀǘƘǎΣ ƛǘ ƛƴǎŜǊǘǎ ƛƴǎǘǊǳŎǘƛƻƴǎ όάŦƭŀƎǎέύ ƛƴŘƛŎŀǘƛƴƎ ǘƘŀǘ ǘƘŜ ǘƘǊŜŀŘ ƛǎ ŀōƻǳǘ ǘƻ
enter a critical region and also inserts a rough estimate (based on profiling) as to how
many instructions later the critical section would be reached.
 c. Further, the compiler analyses the paths that the control flow might take which
might cause it to skip the critical region despite having executed the flagging
instructions. On these paths, it inserts instructions that indicate that the previously
predicted critical region will no longer be reached.
 (In the current model, the role of the compiler to insert the prediction and release
flags is performed manually)

Part II: The Scheduler: Dynamic prioritization of threads being scheduled on the faster
core depending on the thread and system state.
 The threads are scheduled on the faster core in the following order for an aggressive
predictive accelerating mechanism:
 i. Thread holding lock having most number of threads waiting upon it.
 ii. Thread holding lock having active predictions in most threads.
 iii. Thread holding a lock
 iv. Threads being closest to highly contended critical sections
 v. Threads predicting a critical section
 vi. Threads performing normal work.

Part III: Dynamic Prediction Improvement: Adapting to run-time environment.
 a. The system maintains a prediction table and updates the predicted distances
based on the past history and current number of instructions executed between the
prediction flag and the start of critical section.
 b. The system also maintains a confidence flag. If a flag mispredicts a critical section,
then the confidence of the particular flag is decreased. When below threshold, the
predicted state of the thread for the corresponding low confidence predictor is not
considered while scheduling the thread on the faster core.

INTRODUCTION

MOTIVATION

MECHANISM

CONCLUSION

FUTURE WORK

TYPES OF SIMULATORS

ACKNOWLEDGEMENTS

RESULTS

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

2 4 6 8

G
lo

b
a

l-c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 4 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

0

2000

4000

6000

8000

10000

12000

2 4 6 8

W
a

it-
c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 4 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

0

2000

4000

6000

8000

10000

12000

2 4 6 8

W
a

it-
c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 2 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

2 4 6 8

G
lo

b
a

l-c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 3 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

0

2000

4000

6000

8000

10000

12000

2 4 6 8

W
a

it-
c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 3 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

2 4 6 8

G
lo

b
a

l-c
yc

le
s

Speed-up on Faster Core

SysBench-OLTP-complex
(16 slow cores, 2 fast cores)

ACS

Lazy ACS

Aggressive ACS

PACS

Aggressive PACS

|| OM GAN GANAPATAYE NAMAHA ||
|| OM SARASWATYAYA NAMAHA ||

