PREDICTIVACCELERATION ORITICAISECTION
EXECUTION WITASYMMETRIMULTICORARCHITECTURE

Padmanabham Patki Paul Kennedy YifelYao

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, USA

MOTIVATION
LY UKS LI LISNE d&! OOSEf SNIUAYy3I [/ NALaOF £ | { ottt s

TYPES OF SIMULATORS

X AN .r Z x  rr I ¥ YN N rNvrrA S oAam A o7 -|_f UA

| NOK A U S Suled:d. &l. thvedds executing critical sections were moved to tlhe ——
faster core so that they would execute the critical section in less time and hence redpi~ Cical secton
the contention between the different threads executing the same critical section. Maximum occupancy

on Fastercore

o

Activity sensitive thread
movement

OO0

INFRODUCTION

Prediction of critical
section

We extend this idea and propose to predict the critical region well in advance so a
accelerate the thread reaching the critical region earliest. This would reduce the

contention between different threads T e e S R
COntending fOr the same Critical SeCtiOn - Environment: 4-cores, 1-Fast e (16 slow cores, 4 fast cores) (16 slow cores, 4 fast cores)
' ; - Application: 4-threads, 1-critical region . 16000000 12000
even further by increasing the temporal .
gap between the occurrence of critical e R : : .
) 1 : 1x 600 600 600 Lock<CR>
sections In different threads, thus . = s .\ \
. : % Unlock<CR>
Improving performance. i = - . finst 100 _
#inst: 100 ;g \‘-\\-_ ——ACS 8 ——ACS
&*g{;m :f% Sins, \\ +:Z§:eAs(s:ije ACS é 0 +:§:ei:iie ACS
6000000 » \ Aggressive PACS ok g Aggressive PACS

4000000 \
2000
2000000 \

0 0
2 4 6 8 2 4 6 8

Speedup on Faster Core Speedup on Faster Core

SysBenctOLTRPcomplex SysBenckOLTPcomplex
(16 slow cores, 3 fast cores) (16 slow cores, 3 fast cores)
16000000 12000

14000000

¢ ¢ ¢ * 10000
12000000
8000

10000000

——ACS
—m—Lazy ACS

8000000 L —8—Lazy ACS > 6000 \
>/‘\ Aggressive ACS . Aggressive ACS
» —PACS —<PACS
6000000 . Aggressive PACS Aggressive PACS
4000
4000000 \

——ACS

Globalcycles
Wait-cycles

2000

2000000

0 0
2 4 6 8 2 4 6 8

Speedup on Faster Core Speedup on Faster Core

MECHANISM - ; ; ; ; ; ; 1l . 3 ek v ok o 2 o
Part |: The InputFlagging the critical section: g e ‘ e i L

a. The compliler identifies instructions triggering the beginning of critical section \_\ \\
execution. e \ e :

b. The compiler then analyses all possible paths that may lead to the critical sectiphim T~ swse P ety s
hy G(KS&S LI GK&Z AdG Ay&ESNIA AyaGiNHOGARZY&w 0GFEF 3860 AYREOFGAYI 0KS GKNBI R
enter a critical region and also inserts a rough estimate (based on profiling) as to how ... \
many Instructions later the critical section would be reached.

c. Further, the compiler analyses the paths that the control flow might take whicb
might cause it to skip the critical region despite having executed the flagging T : e ;
Instructions. On these paths, it inserts instructions that indicate that the previously
predicted critical region will no longer be reached. CONCLUSION

(In the current model, the role of the compiler to insert the prediction and release

flags Is performed manually) a. The results support the proposition that predicting the critical sections and
accelerating the thread in advance would help reduce the contention between the
Part II: The ScheduleBynamic prioritization of threads being scheduled on the faster| critical sections and improve performance.

core depending on the thread and system state. b. In some cases, the waiycles increase upon prediction, which may be attributed|to
The threads are scheduled on the faster core in the following order for an aggressither pattern of critical section occurrence mispredictions
predictive accelerating mechanism: c. Although, performance of Aggressive ACS (AACS) is comparable to Aggressive PACS
I. Thread holding lock having most number of threads waiting upon It. (APACS), APACS Is expected to be more immune to migration cost penalties than AACS.
. Thread holding lock having active predictions in most threads.
lil. Thread holding &ck FUTURE WORK
Iv. Threads being closest to highly contended critical sections
V. Threads predicting a critical section Future work could comprise of looking into the following aspects of the Predictive
vi. Threads performing normal work. Acceleration of Critical Sections:
a. Impact on Power Consumption due to higher utilization of faster core
Part Ill: Dynamic Prediction Improvemenfidapting to runtime environment. b. Cost of thread migration and its impact on performance
a. The system maintains a prediction table and updates the predicted distances |c. Design a compiler to insert the prediction and release flags.
based on the past history and current number of instructions executed between tf

prediction flag and the start of critical section. ACKNOWLEDGEMENTS

b. The system also maintains a confidence flag. If anflagredictsa critical section,
then the confidence of the particular flag is decreased. When below threshold, the |We would like to thank Pro®nurMutlu and the TAsYoonguKimand JustirMieza,for
predicted state of the thread for the corresponding low confidence predictor is not, | their critical suggestions and help. Their constant motivation has been the driving
considered while scheduling the thread on the faster core. factor which enabled us to complete the project.




