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We extend this idea and propose to predict the critical region well in advance so a
accelerate the thread reaching the critical region earliest. This would reduce the
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Part |: The InputFlagging the critical section: g e ‘ e i L

a. The compliler identifies instructions triggering the beginning of critical section \_\ \\
execution. e \ e :

b. The compiler then analyses all possible paths that may lead to the critical sectiphim T~ swse P ety s
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enter a critical region and also inserts a rough estimate (based on profiling) as to how ... \
many Instructions later the critical section would be reached.

c. Further, the compiler analyses the paths that the control flow might take whicb
might cause it to skip the critical region despite having executed the flagging T : e ;
Instructions. On these paths, it inserts instructions that indicate that the previously
predicted critical region will no longer be reached. CONCLUSION

(In the current model, the role of the compiler to insert the prediction and release

flags Is performed manually) a. The results support the proposition that predicting the critical sections and
accelerating the thread in advance would help reduce the contention between the
Part II: The ScheduleBynamic prioritization of threads being scheduled on the faster| critical sections and improve performance.

core depending on the thread and system state. b. In some cases, the waiycles increase upon prediction, which may be attributed|to
The threads are scheduled on the faster core in the following order for an aggressither pattern of critical section occurrence mispredictions
predictive accelerating mechanism: c. Although, performance of Aggressive ACS (AACS) is comparable to Aggressive PACS
I. Thread holding lock having most number of threads waiting upon It. (APACS), APACS Is expected to be more immune to migration cost penalties than AACS.
. Thread holding lock having active predictions in most threads.
lil. Thread holding &ck FUTURE WORK
Iv. Threads being closest to highly contended critical sections
V. Threads predicting a critical section Future work could comprise of looking into the following aspects of the Predictive
vi. Threads performing normal work. Acceleration of Critical Sections:
a. Impact on Power Consumption due to higher utilization of faster core
Part Ill: Dynamic Prediction Improvemenfidapting to runtime environment. b. Cost of thread migration and its impact on performance
a. The system maintains a prediction table and updates the predicted distances |c. Design a compiler to insert the prediction and release flags.
based on the past history and current number of instructions executed between tf
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