
Cache Replacement
 Championship

Abeer Agrawal | Joe Berman

What is the CRC?

Overview

Methodology Algorithms

The Cache Replacement Championship is an annual
competition whereby entrants compete to develop the
best cache replacement algorithms within a set of size
constraints. The competition is led by individuals from
Intel, IBM, Microsoft, NC State and Georgia Tech.
There are two tracks to the competition, a single core
and a multi core track. We focused on developing
multicore algorithms, as they are a more important
and expanding field of research.

We evaluated the following algorithms as our baselines for
improvement. They use several different techniques to improve the
performance of caches.

•  Victim Tag Store: Stores the last n evicted tags in a FIFO queue.

If upon insertion of a block, it’s tag is found in the queue, insert
the block into the most recently used (MRU) position, otherwise
insert it into the least recently used (LRU) slot.

•  DRRIP: Uses set dueling to determine how far in the future a
block will be used by inserting either far in the future, to the LRU
slot, with random insertions to the LRU-1 slot or just to the
LRU-1 slot. Increments LRU stack counters to find the next
block to be evicted from the cache.

•  TADIP: Dynamically chooses using set dueling between

inserting blocks at LRU (Linear Insertion policy) or mostly at
LRU with random insertions at MRU (Bimodal Insertion Policy)

•  Reference Set: Breaks all of the ways into two sets, referenced

and not-referenced. Additionally uses dynamic bypassing,
random promotion and aging of blocks to change which reference
set they are in. Only evicts from the not-referenced set.

•  LRU: Used as a baseline against which to compare results. Insert

new blocks at the MRU slot and evict blocks from the LRU slot.

Cache replacement policies have been a hot topic of
research for many years, as memory latencies have
grown longer because of faster processors and
deeper cache hierarchies. Current last level caches
have miss penalty times on the order of hundreds, if
not thousands, of cycles, which means that last level
cache misses can be particularly damaging to
performance. We looked into several leading
algorithms in order to ascertain useful techniques for
developing the most effective last level cache
replacement policy.

We implemented these algorithms in order to
effectively gain an understanding of how they worked.
After a thorough analysis, we were able to modify and
improve upon the performance of them for certain
workloads.

We used a simulator, CMP $im, that was provided
to us by the CRC. We used the following
configuration, as specified by the CRC:

•  Our cache algorithm was used in the Level 2

(last level) cache

•  The last level cache is 4MB in size and consists
of 16-ways

•  The last level cache is shared by all 4 cores

•  All misses are treated the same and are
assumed to have the same latency

We created traces from SPEC2006 benchmarks.
All traces generated had 100 million instructions,
and were generated after warming up the cache for
40 billion instructions.

We took these traces and generated mixes of
traces based upon the sensitivity of the trace to
cache size. The sensitivities were determined
through the analysis of data by other research
papers, as well as of our own testing.

Results are based upon speedup in CPI seen over
the baseline of the Least Recently Used
replacement policy.

Special Thanks To:

Fall 2011
18-740

Computer
Architecture

Professor Onur Mutlu, TAs Justin Meza
and Yoongu Kim and Vivek Seshadri

 Analysis & Results

Initially, we tested the above algorithms for various benchmarks. The best
performing algorithms were DRRIP and Refset. However, DRRIP and TADIP
performed extremely poorly for the sensitive trace Astar.

We then tested a Thread Aware implementation of the RefSet algorithm, since we
had noticed that thread awareness was extremely beneficial in converting single-
core algorithms to multi-core ones. However, the results of this thread-aware
RefSet were not very good.

Following this, we wanted to investigate the potential benefits of inserting into
positions other than MRU and LRU. To do this, we tested our set dueling
algorithm, which picked between inserting at MRU or in the middle of the LRU
stack, depending on how the leader sets were doing. We noticed an improvement
in the performance of various traces, especially Astar.

We believe that our best algorithm performs better on Astar than either DRRIP or
TADIP because it allows for a longer amount of time for blocks to be re-
referenced.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

CP
I	
 p

er
	
 P
ha

se
	
 	

Percentage	
 of	
 Instruc2ons	
 in	
 Astart	
 Executed	

CPI	
 for	
 Different	
 Algorithms	
 for	
 Astar	
 	

DRRIP	

TADIP	

Set	
 Duel	
 -­‐	
 9	

We believed that inserting blocks into positions in the middle of the stack would be beneficial to
cache performance. As you can see, we identified a maximum speedup across all of our mixes
when we used set dueling to insert either at the MRU position or at the 11th position in the LRU
stack. Inserting at the MRU position is the same as the traditional LRU insertion policy, which is
most effective for workloads that have high temporal locality. Inserting at the 11th position is good
for thrashing workloads, which have a working set larger than the size of the cache. In this case,
if a block is unused within the next 5 evictions to that set, that original cache block itself is
evicted. This provides more time for the block to be reused than in either DRRIP or TADIP, which
insert blocks very close to or at the end of the LRU stack. It is a tradeoff between maintaining
enough space in the cache for blocks that have higher temporal locality and providing a long
enough time for newly inserted blocks to be re-referenced.

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1.1	

1.15	

Mix	
 8	
 Mix	
 9	
 Mix	
 10	
 Mix	
 11	
 Mix	
 12	
 Mix	
 13	
 Mix	
 14	
 Mix	
 15	
 Mix	
 16	
 Mix	
 17	
 Mix	
 18	
 Average	

Sp
ee
du

p	

ov
er
	
 L
RU

	

Speedups	
 of	
 Various	
 Algorithms	

VTS	

DRRIP	

TADIP	

RefSet	

Thread-­‐Aware	
 RefSet	

Set	
 Duel	
 -­‐	
 11	

0.94	

0.95	

0.96	

0.97	

0.98	

0.99	

1	

1.01	

1.02	

1.03	

1.04	

�Geometric	
 Mean	
 of	
 All	
 Threads	

Sp
ee
du

p	

O
ve
r	
 L
RU

	

Speedup	
 For	
 All	
 Mixes	

Set	
 Duel	
 -­‐	
 0	

Set	
 Duel	
 -­‐	
 1	

Set	
 Duel	
 -­‐	
 2	

Set	
 Duel	
 -­‐	
 3	

Set	
 Duel	
 -­‐	
 4	

Set	
 Duel	
 -­‐	
 5	

Set	
 Duel	
 -­‐	
 6	

Set	
 Duel	
 -­‐	
 7	

Set	
 Duel	
 -­‐	
 8	

Set	
 Duel	
 -­‐	
 9	

Set	
 Duel	
 -­‐	
 10	

Set	
 Duel	
 -­‐	
 11	

Set	
 Duel	
 -­‐	
 12	

Set	
 Duel	
 -­‐	
 13	

Set	
 Duel	
 -­‐	
 14	

Set	
 Duel	
 -­‐	
 15	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	

Sp
ee
du

p	

Re

la
Pv
e	

to
	
 L
RU

	

S-­‐Curve	
 Showing	
 Rela2ve	
 Performance	
 of	
 Top	
 Algorithms	

DRRIP	

TADIP	

RefSet	

Set	
 Duel	
 -­‐	
 11	

