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The Cache Replacement Championship is an annual 
competition whereby entrants compete to develop the 
best cache replacement algorithms within a set of size 
constraints. The competition is led by individuals from 
Intel, IBM, Microsoft, NC State and Georgia Tech. 
There are two tracks to the competition, a single core 
and a multi core track. We focused on developing 
multicore algorithms, as they are a more important 
and expanding field of research. 
   

We evaluated the following algorithms as our baselines for 
improvement. They use several different techniques to improve the 
performance of caches. 
 
•  Victim Tag Store: Stores the last n evicted tags in a FIFO queue. 

If upon insertion of a block, it’s tag is found in the queue, insert 
the block into the most recently used (MRU) position, otherwise 
insert it into the least recently used (LRU) slot. 

•  DRRIP: Uses set dueling to determine how far in the future a 
block will be used by inserting either far in the future, to the LRU 
slot, with random insertions to the LRU-1 slot or just to the 
LRU-1 slot. Increments LRU stack counters to find the next 
block to be evicted from the cache. 

 
•  TADIP: Dynamically chooses using set dueling between 

inserting blocks at LRU (Linear Insertion policy) or mostly at 
LRU with random insertions at MRU (Bimodal Insertion Policy)  

 
•  Reference Set: Breaks all of the ways into two sets, referenced 

and not-referenced. Additionally uses dynamic bypassing, 
random promotion and aging of blocks to change which reference 
set they are in. Only evicts from the not-referenced set. 

 
•  LRU: Used as a baseline against which to compare results. Insert 

new blocks at the MRU slot and evict blocks from the LRU slot. 

Cache replacement policies have been a hot topic of 
research for many years, as memory latencies have 
grown longer because of faster processors and 
deeper cache hierarchies. Current last level caches 
have miss penalty times on the order of hundreds, if 
not thousands, of cycles, which means that last level 
cache misses can be particularly damaging to 
performance. We looked into several leading 
algorithms in order to ascertain useful techniques for 
developing the most effective last level cache 
replacement policy.  
 
We implemented these algorithms in order to 
effectively gain an understanding of how they worked. 
After a thorough analysis, we were able to modify and 
improve upon the performance of them for certain 
workloads.  

We used a simulator, CMP $im, that was provided 
to us by the CRC. We used the following 
configuration, as specified by the CRC: 
 
•  Our cache algorithm was used in the Level 2 

(last level) cache 

•  The last level cache is 4MB in size and consists 
of 16-ways 

•  The last level cache is shared by all 4 cores 

•  All misses are treated the same and are 
assumed to have the same latency 

We created traces from SPEC2006 benchmarks. 
All traces generated had 100 million instructions, 
and were generated after warming up the cache for 
40 billion instructions. 
 
We took these traces and generated mixes of 
traces based upon the sensitivity of the trace to 
cache size. The sensitivities were determined 
through the analysis of data by other research 
papers, as well as of our own testing. 
 
Results are based upon speedup in CPI seen over 
the baseline of the Least Recently Used 
replacement policy. 
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 Analysis & Results   

Initially, we tested the above algorithms for various benchmarks. The best 
performing algorithms were DRRIP and Refset. However, DRRIP and TADIP 
performed extremely poorly for the sensitive trace Astar. 
 
We then tested a Thread Aware implementation of the RefSet algorithm, since we 
had noticed that thread awareness was extremely beneficial in converting single-
core algorithms to multi-core ones. However, the results of this thread-aware 
RefSet were not very good. 
 
Following this, we wanted to investigate the potential benefits of inserting into 
positions other than MRU and LRU. To do this, we tested our set dueling 
algorithm, which picked between inserting at MRU or in the middle of the LRU 
stack, depending on how the leader sets were doing. We noticed an improvement 
in the performance of various traces, especially Astar. 
 
We believe that our best algorithm performs better on Astar than either DRRIP or 
TADIP because it allows for a longer amount of time for blocks to be re-
referenced.   
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We believed that inserting blocks into positions in the middle of the stack would be beneficial to 
cache performance. As you can see, we identified a maximum speedup across all of our mixes 
when we used set dueling to insert either at the MRU position or at the 11th position in the LRU 
stack. Inserting at the MRU position is the same as the traditional LRU insertion policy, which is 
most effective for workloads that have high temporal locality. Inserting at the 11th position is good 
for thrashing workloads, which have a working set larger than the size of the cache. In this case, 
if a block is unused within the next 5 evictions to that set, that original cache block itself is 
evicted. This provides more time for the block to be reused than in either DRRIP or TADIP, which 
insert blocks very close to or at the end of the LRU stack. It is a tradeoff between maintaining 
enough space in the cache for blocks that have higher temporal locality and providing a long 
enough time for newly inserted blocks to be re-referenced.     
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