
15-740/18-740 

Computer Architecture

Lecture 9: More on Precise Exceptions

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2011, 9/30/2011



Reminder: Papers to Read and Review

� Review Set 5 – due October 3 Monday

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Transactions on Computers 1988 (earlier version: 
ISCA 1985).

� Sprangle and Carmean, “Increasing Processor Performance by 
Implementing Deeper Pipelines,” ISCA 2002.

� Review Set 6 – due October 7 Friday

� Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic 
Units,” IBM Journal of R&D, Jan. 1967.

� Smith and Sohi, “The Microarchitecture of Superscalar Processors,”
Proc. IEEE, Dec. 1995.

2



Review of Last Lecture

� Causes of stalls in pipelining

� Fine-grained multithreading

� Multi-cycle execute

� Exceptions vs. interrupts

� Precise exceptions

� Why?

� Reorder buffer

� Intro to register renaming

3



Today

� More solutions to enable precise exceptions

4



Solutions to Enable Precise Exceptions

� Reorder buffer

� History buffer

� Future register file

� Checkpointing

� Reading

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors” IEEE Trans on Computers 1988 and ISCA 1985.

� Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987.

5



Review: Solution I: Reorder Buffer (ROB)

� Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state

� When instruction is decoded it reserves an entry in the ROB

� When instruction completes, it writes result into ROB entry

� When instruction oldest in ROB and it has completed, its 
result moved to reg. file or memory

6

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache



Review: Reorder Buffer: Independent Operations

� Results first written to ROB, then to register file at commit 
time

� What if a later operation needs a value in the reorder 
buffer?

� Read reorder buffer in parallel with the register file. How?

7

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W



Review: Reorder Buffer: How to Access?

� A register value can be in the register file, reorder buffer, 
(or bypass paths)

8

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass path

Content 
Addressable
Memory
(searched with
register ID)



Review: Simplifying Reorder Buffer Access

� Idea: Use indirection

� Access register file first

� If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register

� Mapping of the register to a ROB entry

� Access reorder buffer next

� What is in a reorder buffer entry?

� Can it be simplified further? 

9

V DestRegID DestRegVal StoreAddr StoreData BranchTarget PC/IP Control/valid bits



Review: Register Renaming with a Reorder Buffer

� Output and anti dependencies are not true dependencies

� WHY? The same register refers to values that have nothing to 
do with each other

� They exist due to lack of register ID’’’’s (i.e. names) in 
the ISA

� The register ID is renamed to the reorder buffer entry that 
will hold the register’s value

� Register ID � ROB entry ID

� Architectural register ID � Physical register ID

� After renaming, ROB entry ID used to refer to the register

� This eliminates anti- and output- dependencies

� Gives the illusion that there are a large number of registers

10



Reorder Buffer Pros and Cons

� Pro

� Conceptually simple for supporting precise exceptions

� Con

� Reorder buffer needs to be accessed to get the results that 
are yet to be written to the register file

� CAM or indirection � increased latency and complexity

11



Solution II: History Buffer (HB)

� Idea: Update architectural state when instruction 
completes, but UNDO UPDATES when an exception occurs

� When instruction is decoded, it reserves an HB entry

� When the instruction completes, it stores the old value of 
its destination in the HB

� When instruction is oldest and no exceptions/interrupts, the 
HB entry discarded

� When instruction is oldest and an exception needs to be 
handled, old values in the HB are written back into the 
architectural state from tail to head

12



History Buffer

� Advantage:

� Register file contains up-to-date values. History buffer access 
not on critical path

� Disadvantage:

� Need to read the old value of the destination

� Need to unwind the history buffer upon an exception �

increased exception/interrupt handling latency

13

Register
File

Func Unit

Func Unit

Func Unit

History
Buffer

Instruction
Cache

Used only on exceptions



Solution III: Future File (FF)

� Idea: Keep two register files:

� Arch reg file: Updated in program order for precise exceptions

� Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register)

� Future file is used for fast access to latest register values

� Architectural file is used for recovery on exceptions

14



Future File

� Advantage

� No sequential scanning of history buffer: Upon exception, 
simply copy arch file to future file

� No need for extra read of destination value

� Disadvantage

� Multiple register files + reorder buffer

15

Future
File

Func Unit

Func Unit

Func Unit

Arch.
File

Instruction
Cache

Used only on exceptions

ROB

VData or Tag



Checkpointing

� Idea: Periodically checkpoint the register file state. When 
exception/interrupt occurs, go back to the most recent 
checkpoint and re-execute instructions one by one to re-
generate exception.

� State guaranteed to be precise only at checkpoints.

� Advantage:
� Per-instruction reorder buffer is not needed

� Allows for aggressive execution between checkpoints

� Disadvantage:
� Interrupt latency depends on distance from checkpoint

� Number of checkpoints?

� Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987.

16



Summary: Precise Exceptions in Pipelining

� When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

� Recovers architectural state (register file, IP, and memory)

� Flushes all younger instructions in the pipeline

� Saves IP and registers (as specified by the ISA)

� Redirects the fetch engine to the exception handling routine

� Vectored exceptions

17



Pipelining Issues: Branch Mispredictions

� A branch misprediction resembles an “exception”

� Except it is not visible to software

� What about branch misprediction recovery?

� Similar to exception handling except can be initiated before 
the branch is the oldest instruction

� All three state recovery methods can be used 

� Difference between exceptions and branch mispredictions?

� Branch mispredictions more common: need fast recovery

18



Pipelining Issues: Stores

� Handling out-of-order completion of memory operations

� UNDOing a memory write more difficult than UNDOing a 
register write. Why?

� One idea: Keep store address/data in reorder buffer

� How does a load instruction find its data?

� Store/write buffer: Similar to reorder buffer, but used only for 
store instructions

� Program-order list of un-committed store operations

� When store is decoded: Allocate a store buffer entry 

� When store address and data become available: Record in store 
buffer entry

� When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data

19



Summary: Precise Exceptions in Pipelining

� When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

� Recovers architectural state (register file, IP, and memory)

� Flushes all younger instructions in the pipeline

� Saves IP and registers (as specified by the ISA)

� Redirects the fetch engine to the exception handling routine

20



Putting It Together: In-Order Pipeline with Future File

� Decode (D): Access future file, allocate entry in reorder buffer, store 
buffer, check if instruction can execute, if so dispatch instruction

� Execute (E): Instructions can complete out-of-order, store-load 
dependencies determined

� Completion (R): Write result to reorder/store buffer

� Retirement/Commit (W): Write result to architectural register file or 
memory

� In-order dispatch/execution, out-of-order completion, in-order retirement 

21

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R


