15-740/18-740
Computer Architecture
Lecture 9: More on Precise Exceptions

Prof. Onur Mutlu
Carnegie Mellon University
Fall 2011, 9/30/2011

Reminder: Papers to Read and Review

Review Set 5 — due October 3 Monday

Smith and Plezskun, “"Implementing Precise Interrupts in Pipelined
Processors,” IEEE Transactions on Computers 1988 (earlier version:
ISCA 1985).

Sprangle and Carmean, “Increasing Processor Performance by
Implementing Deeper Pipelines,” ISCA 2002.

o Review Set 6 — due October 7 Friday

Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,” IBM Journal of R&D, Jan. 1967.

Smith and Sohi, “"The Microarchitecture of Superscalar Processors,”
Proc. IEEE, Dec. 1995.

Review of Last Lecture

Causes of stalls in pipelining
Fine-grained multithreading
Multi-cycle execute
Exceptions vs. interrupts
Precise exceptions

o Why?

Reorder buffer

Intro to register renaming

Today

= More solutions to enable precise exceptions

Solutions to Enable Precise Exceptions

Reorder buffer
History buffer
Future register file
Checkpointing

Reading

o Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors” IEEE Trans on Computers 1988 and ISCA 1985.

o Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

Review: Solution I: Reorder Buftfer (ROB)

Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

When instruction is decoded it reserves an entry in the ROB
When instruction completes, it writes result into ROB entry

When instruction oldest in ROB and it has completed, its
result moved to reg. file or memory

Func Unit

Instruction Register . _ Reorder
Cache [~ 777777 ’| File Func Unit Buffer

Func Unit ——

Review: Reorder Buffer: Independent Operations

Results first written to ROB, then to register file at commit
time

F /D |E |E|E|E|E|E|E|E|R|W
F D |E |R W
F |D|E |R W
F D |E |R W
F D |E|E|E|E|E|E|E|E|R|W
F |D|E R W
F |D|E |R W

What if a later operation needs a value in the reorder
buffer?

o Read reorder buffer in parallel with the register file. How?

Review: Reorder Buffer: How to Access?

A register value can be in the register file, reorder buffer,
(or bypass paths)

Instruction Register
Cache _._._._..;. > Flle
\ Func Unit >
] Func Unit
Content Reorder / Func Unit >
Addressable T Buffer
Memory
(searched with bypass path
register ID) 0

Review: Simplitying Reorder Butfer Access

Idea: Use indirection

Access register file first

o If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

o Mapping of the register to a ROB entry
Access reorder buffer next

What is in a reorder buffer entry?

V | DestRegID | DestRegVal | StoreAddr | StoreData | BranchTarget | PC/IP | Control/valid bits

a Can it be simplified further?

Review: Register Renaming with a Reorder Buffer

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist due to lack of register ID’ s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’ s value

o Register ID - ROB entry ID
o Architectural register ID - Physical register ID
o After renaming, ROB entry ID used to refer to the register

This eliminates anti- and output- dependencies
o Gives the illusion that there are a large number of registers

10

Reorder Buffer Pros and Cons

Pro
o Conceptually simple for supporting precise exceptions

Con

o Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file
CAM or indirection = increased latency and complexity

11

Solution II: History Butter (HB)

Idea: Update architectural state when instruction
completes, but UNDO UPDATES when an exception occurs

When instruction is decoded, it reserves an HB entry

When the instruction completes, it stores the old value of
its destination in the HB

When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

12

History Buttfer

\

Func Unit

Instruction Register . _ History
Cache [~ 77777 7| File Func Unit|— Buffer

Func Unit ——

Advantage: Used only on exceptions

o Register file contains up-to-date values. History buffer access
not on critical path

Disadvantage:

o Need to read the old value of the destination

o Need to unwind the history buffer upon an exception >
increased exception/interrupt handling latency

Solution III: Future File (FF)

Idea: Keep two register files:

o Arch reg file: Updated in program order for precise exceptions

o Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

Future file is used for fast access to latest register values

Architectural file is used for recovery on exceptions

14

Future

Cache

Instruction

File

\

Future
File |

Func Unit

Func Unit

Advantage

o No sequential scanning of history buffer: Upon exception,

Func Unit

ROB

Arch.
File

Used only on exceptions

simply copy arch file to future file

2 No need for extra read of destination value

Disadvantage
o Multiple register files + reorder buffer

15

Checkpointing

Idea: Periodically checkpoint the register file state. When
exception/interrupt occurs, go back to the most recent
checkpoint and re-execute instructions one by one to re-
generate exception.

State guaranteed to be precise only at checkpoints.

Advantage:
o Per-instruction reorder buffer is not needed
o Allows for aggressive execution between checkpoints

Disadvantage:

o Interrupt latency depends on distance from checkpoint
o Number of checkpoints?

Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

16

Summary: Precise Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

o Recovers architectural state (register file, IP, and memory)
o Flushes all younger instructions in the pipeline
o Saves IP and registers (as specified by the ISA)

o Redirects the fetch engine to the exception handling routine
Vectored exceptions

17

Pipelining Issues: Branch Mispredictions

A branch misprediction resembles an “exception”
o Except it is not visible to software

What about branch misprediction recovery?

o Similar to exception handling except can be initiated before
the branch is the oldest instruction

o All three state recovery methods can be used

Difference between exceptions and branch mispredictions?
Branch mispredictions more common: need fast recovery

18

Pipelining Issues: Stores

Handling out-of-order completion of memory operations

o UNDOing a memory write more difficult than UNDQing a
register write. Why?
o One idea: Keep store address/data in reorder buffer
How does a load instruction find its data?
o Store/write buffer: Similar to reorder buffer, but used only for
store instructions
Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

19

Summary: Precise Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

o Recovers architectural state (register file, IP, and memory)
o Flushes all younger instructions in the pipeline

o Saves IP and registers (as specified by the ISA)

o Redirects the fetch engine to the exception handling routine

20

Putting It Together: In-Order Pipeline with Future File

Decode (D): Access future file, allocate entry in reorder buffer, store
buffer, check if instruction can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order, store-load

dependencies determined
Completion (R): Write result to reorder/store buffer

Retirement/Commit (W): Write result to architectural register file or

memory

In-order dispatch/execution, out-of-order completion, in-order retirement
E Integer add

Integer mul
E |E |E |E > .
F D epmul [LR W

>E |E |E |E |E |E |E
E |E |E |E |E |E |E e

Load/store

21

