
15-740/18-740

Computer Architecture

Lecture 8: Precise Exceptions

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2011, 9/28/2011

Reminder: Papers to Read and Review

� Review Set 5 – due October 3 Monday

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Transactions on Computers 1988 (earlier version:
ISCA 1985).

� Sprangle and Carmean, “Increasing Processor Performance by
Implementing Deeper Pipelines,” ISCA 2002.

� Review Set 6 – due October 7 Friday

� Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic
Units,” IBM Journal of R&D, Jan. 1967.

� Smith and Sohi, “The Microarchitecture of Superscalar Processors,”
Proc. IEEE, Dec. 1995.

2

Review of Last Lecture

� More performance metrics

� Microcoded machines

� Pipelining

� Issues in pipelining

3

Today

� More issues in pipelining

� Precise exceptions

4

Causes of Pipeline Stalls

� Data dependencies

� Control dependencies

� Resource contention

5

� Data dependency stall: what if the next ADD is dependent

� Solution: data forwarding. Can this always work?

� How about memory operations? Cache misses?

� If data is not available by the time it is needed: STALL

� What if the pipeline was like this?

� R3 cannot be forwarded until read from memory

� Is there a way to make ADD not stall?

Review: Issues in Pipelining: Increased CPI

6

F D E W

F D D D E
ADD R3 � R1, R2
ADD R4 � R3, R7

F D E M WLD R3 � R2(0)
ADD R4 � R3, R7 F D E E M W

W

Review: Implementing Stalling

� Hardware based interlocking

� Common way: scoreboard

� i.e. valid bit associated with each register in the register file

� Valid bits also associated with each forwarding/bypass path

7

Register
File

Func Unit

Func Unit

Func Unit

Instruction
Cache

� Control dependency stall: what to fetch next

� Solution: predict which instruction comes next

� What if prediction is wrong?

� Another solution: hardware-based fine-grained multithreading

� Can tolerate both data and control dependencies

� Read: James Thornton, “Parallel operation in the Control Data
6600,” AFIPS 1964.

� Read: Burton Smith, “A pipelined, shared resource MIMD
computer,” ICPP 1978.

Issues in Pipelining: Increased CPI

8

BEQ R1, R2, TARGET F D E W

F F F D E W

Issues in Pipelining: Increased CPI

� Resource Contention Stall

� What if two concurrent operations need the same resource?

� Examples:

� Instruction fetch and data fetch both need memory. Solution?

� Register read and register write both need the register file

� A store instruction and a load instruction both need to access
memory. Solution?

9

F D E W

F D E W

F F D E W

LD R1 � R2(4)
ADD R2 � R1, R5
ADD R6 � R3, R4

Issues in Pipelining: Multi-Cycle Execute

� Instructions can take different number of cycles in
EXECUTE stage

� Integer ADD versus FP MULtiply

� What is wrong with this picture?

� What if FMUL incurs an exception?

� Sequential semantics of the ISA NOT preserved!

10

F D E W

F D E WE E E E E E EFMUL R4 � R1, R2
ADD R3 � R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 � R5, R6
ADD R4 � R5, R6

F D E WE E E E E E E

Handling Exceptions in Pipelining
� Exceptions versus interrupts

� Cause

� Exceptions: internal to the running thread

� Interrupts: external to the running thread

� When to Handle

� Exceptions: when detected (and known to be non-speculative)

� Interrupts: when convenient

� Except for very high priority ones

� Power failure

� Machine check

� Priority: process (exception), depends (interrupt)

� Handling Context: process (exception), system (interrupt)

11

Precise Exceptions/Interrupts

� The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

12

Why Do We Want Precise Exceptions?

� Aid software debugging

� Enable (easy) recovery from exceptions, e.g. page faults

� Enable (easily) restartable processes

� Enable traps into software (e.g., software implemented
opcodes)

13

Ensuring Precise Exceptions in Pipelining

� Idea: Make each operation take the same amount of time

� Downside

� What about memory operations?

� Each functional unit takes 500 cycles?

14

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

FMUL R3 � R1, R2
ADD R4 � R1, R2

Solutions

� Reorder buffer

� History buffer

� Future register file

� Checkpointing

� Reading

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors” IEEE Trans on Computers 1988 and ISCA 1985.

� Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

15

Solution I: Reorder Buffer (ROB)

� Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

� When instruction is decoded it reserves an entry in the ROB

� When instruction completes, it writes result into ROB entry

� When instruction oldest in ROB and it has completed, its
result moved to reg. file or memory

16

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

Reorder Buffer: Independent Operations

� Results first written to ROB, then to register file at commit
time

� What if a later operation needs a value in the reorder
buffer?

� Read reorder buffer in parallel with the register file. How?

17

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

� A register value can be in the register file, reorder buffer,
(or bypass paths)

18

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass path

Content
Addressable
Memory
(searched with
register ID)

Simplifying Reorder Buffer Access

� Idea: Use indirection

� Access register file first

� If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

� Mapping of the register to a ROB entry

� Access reorder buffer next

� What is in a reorder buffer entry?

� Can it be simplified further?

19

V DestRegID DestRegVal StoreAddr StoreData BranchTarget PC/IP Control/valid bits

What is Wrong with This Picture?

� What is R4’s value at the end?

� The first FMUL’s result

� Output dependency not respected

20

F D E W

F D E WE E E E E E EFMUL R4 � R1, R2
ADD R3 � R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 � R5, R6
ADD R4 � R5, R6

F D E WE E E E E E E

Register Renaming with a Reorder Buffer

� Output and anti dependencies are not true dependencies

� WHY? The same register refers to values that have nothing to
do with each other

� They exist due to lack of register ID’’’’s (i.e. names) in
the ISA

� The register ID is renamed to the reorder buffer entry that
will hold the register’s value

� Register ID � ROB entry ID

� Architectural register ID � Physical register ID

� After renaming, ROB entry ID used to refer to the register

� This eliminates anti- and output- dependencies

� Gives the illusion that there are a large number of registers

21

