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Reminder: Papers to Read and Review

� Review Set 5 – due October 3 Monday

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Transactions on Computers 1988 (earlier version: 
ISCA 1985).

� Sprangle and Carmean, “Increasing Processor Performance by 
Implementing Deeper Pipelines,” ISCA 2002.

� Review Set 6 – due October 7 Friday

� Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic 
Units,” IBM Journal of R&D, Jan. 1967.

� Smith and Sohi, “The Microarchitecture of Superscalar Processors,”
Proc. IEEE, Dec. 1995.
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Review of Last Lecture

� More performance metrics

� Microcoded machines

� Pipelining

� Issues in pipelining
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Today

� More issues in pipelining

� Precise exceptions
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Causes of Pipeline Stalls

� Data dependencies

� Control dependencies

� Resource contention
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� Data dependency stall: what if the next ADD is dependent

� Solution: data forwarding. Can this always work? 

� How about memory operations? Cache misses?

� If data is not available by the time it is needed: STALL

� What if the pipeline was like this?

� R3 cannot be forwarded until read from memory

� Is there a way to make ADD not stall?

Review: Issues in Pipelining: Increased CPI
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Review: Implementing Stalling

� Hardware based interlocking

� Common way: scoreboard

� i.e. valid bit associated with each register in the register file

� Valid bits also associated with each forwarding/bypass path
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� Control dependency stall: what to fetch next

� Solution: predict which instruction comes next

� What if prediction is wrong?

� Another solution: hardware-based fine-grained multithreading

� Can tolerate both data and control dependencies

� Read: James Thornton, “Parallel operation in the Control Data 
6600,” AFIPS 1964.

� Read: Burton Smith, “A pipelined, shared resource MIMD 
computer,” ICPP 1978.

Issues in Pipelining: Increased CPI
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Issues in Pipelining: Increased CPI

� Resource Contention Stall

� What if two concurrent operations need the same resource?

� Examples:

� Instruction fetch and data fetch both need memory. Solution?

� Register read and register write both need the register file

� A store instruction and a load instruction both need to access 
memory. Solution?
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Issues in Pipelining: Multi-Cycle Execute

� Instructions can take different number of cycles in 
EXECUTE stage

� Integer ADD versus FP MULtiply

� What is wrong with this picture?

� What if FMUL incurs an exception?

� Sequential semantics of the ISA NOT preserved!
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Handling Exceptions in Pipelining
� Exceptions versus interrupts

� Cause

� Exceptions: internal to the running thread

� Interrupts: external to the running thread

� When to Handle

� Exceptions: when detected (and known to be non-speculative)

� Interrupts: when convenient

� Except for very high priority ones

� Power failure

� Machine check 

� Priority: process (exception), depends (interrupt)

� Handling Context: process (exception), system (interrupt)
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Precise Exceptions/Interrupts

� The architectural state should be consistent when the 
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Why Do We Want Precise Exceptions?

� Aid software debugging

� Enable (easy) recovery from exceptions, e.g. page faults

� Enable (easily) restartable processes

� Enable traps into software (e.g., software implemented 
opcodes)
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Ensuring Precise Exceptions in Pipelining

� Idea: Make each operation take the same amount of time

� Downside

� What about memory operations?

� Each functional unit takes 500 cycles?
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Solutions

� Reorder buffer

� History buffer

� Future register file

� Checkpointing

� Reading

� Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors” IEEE Trans on Computers 1988 and ISCA 1985.

� Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987.
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Solution I: Reorder Buffer (ROB)

� Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state

� When instruction is decoded it reserves an entry in the ROB

� When instruction completes, it writes result into ROB entry

� When instruction oldest in ROB and it has completed, its 
result moved to reg. file or memory
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Reorder Buffer: Independent Operations

� Results first written to ROB, then to register file at commit 
time

� What if a later operation needs a value in the reorder 
buffer?

� Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?

� A register value can be in the register file, reorder buffer, 
(or bypass paths)
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Simplifying Reorder Buffer Access

� Idea: Use indirection

� Access register file first

� If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register

� Mapping of the register to a ROB entry

� Access reorder buffer next

� What is in a reorder buffer entry?

� Can it be simplified further? 
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What is Wrong with This Picture?

� What is R4’s value at the end?

� The first FMUL’s result

� Output dependency not respected
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Register Renaming with a Reorder Buffer

� Output and anti dependencies are not true dependencies

� WHY? The same register refers to values that have nothing to 
do with each other

� They exist due to lack of register ID’’’’s (i.e. names) in 
the ISA

� The register ID is renamed to the reorder buffer entry that 
will hold the register’s value

� Register ID � ROB entry ID

� Architectural register ID � Physical register ID

� After renaming, ROB entry ID used to refer to the register

� This eliminates anti- and output- dependencies

� Gives the illusion that there are a large number of registers
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