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Review of Last Lectures 
n  ISA Tradeoffs 

q  Semantic gap, instruction length, uniform decode, register 
count, addressing modes 

n  "Row Buffer Locality-Aware Data Placement in 
Hybrid Memories” SAFARI Tech Report, 2011. 
q  Provide a review for next Friday 

n  Project discussion 
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Today 
n  More ISA tradeoffs 
n  Performance metrics and evaluation 
n  Pipelining basics 
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Other ISA-level Tradeoffs 
n  Load/store vs. Memory/Memory 
n  Condition codes vs. condition registers vs. compare&test 
n  Hardware interlocks vs. software-guaranteed interlocking 
n  VLIW vs. single instruction vs. SIMD 
n  0, 1, 2, 3 address machines (stack, accumulator, 2 or 3-operands) 

n  Precise vs. imprecise exceptions 
n  Virtual memory vs. not 
n  Aligned vs. unaligned access 
n  Supported data types 
n  Software vs. hardware managed page fault handling 
n  Granularity of atomicity 
n  Cache coherence (hardware vs. software) 
n  … 
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Programmer vs. (Micro)architect 
n  Many ISA features designed to aid programmers 
n  But, complicate the hardware designer’s job 

n  Virtual memory 
q  vs. overlay programming  
q  Should the programmer be concerned about the size of code 

blocks? 

n  Unaligned memory access 
q  Compile/programmer needs to align data 

n  Transactional memory? 
n  VLIW vs. SIMD? Superscalar execution vs. SIMD? 
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Transactional Memory 
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enqueue (Q, v) { 
  Node_t node = malloc(…); 
  node->val = v; 
  node->next = NULL; 
  acquire(lock); 
  if (Q->tail) 
    Q->tail->next = node; 
  else 
    Q->head = node; 
  Q->tail = node; 
  release(lock); 

} 
    

begin-transaction 

… 
enqueue (Q, v); //no locks 
… 
end-transaction    

THREAD 1 THREAD 2 

enqueue (Q, v) { 
  Node_t node = malloc(…); 
  node->val = v; 
  node->next = NULL; 
  acquire(lock); 
  if (Q->tail) 
    Q->tail->next = node; 
  else 
    Q->head = node; 
  Q->tail = node; 
  release(lock); 

} 
    

enqueue (Q, v) { 
  Node_t node = malloc(…); 
  node->val = v; 
  node->next = NULL; 
  acquire(lock); 
  if (Q->tail) 
    Q->tail->next = node; 
  else 
    Q->head = node; 
  release(lock); 
  Q->tail = node; 

} 
    

 

enqueue (Q, v) { 
  Node_t node = malloc(…); 
  node->val = v; 
  node->next = NULL; 
  acquire(lock); 
  if (Q->tail) 
    Q->tail->next = node; 
  else 
    Q->head = node; 
  release(lock); 
  Q->tail = node; 

} 
    
begin-transaction 

… 
enqueue (Q, v); //no locks 
… 
end-transaction    



Transactional Memory 
n  A transaction is executed atomically: ALL or NONE 

n  If there is a data conflict between two transactions, only 
one of them completes; the other is rolled back 
q  Both write to the same location 
q  One reads from the location another writes 

n  Herlihy and Moss, “Transactional Memory: Architectural 
Support for Lock-Free Data Structures,” ISCA 1993. 
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ISA-level Tradeoff: Supporting TM 
n  Still under research 
n  Pros: 

q  Could make programming with threads easier 
q  Could improve parallel program performance vs. locks. Why? 

n  Cons: 
q  Complexity 
q  What if it does not pan out? 
q  All future microarchitectures might have to support the new 

instructions (for backward compatibility reasons) 

n  How does the architect decide whether or not to support 
TM in the ISA? (How to evaluate the whole stack) 
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ISA-level Tradeoffs: Instruction Pointer 
n  Do we need an instruction pointer in the ISA? 

q  Yes: Control-driven, sequential execution 
n  An instruction is executed when the IP points to it 
n  IP automatically changes sequentially (except control flow 

instructions) 

q  No: Data-driven, parallel execution 
n  An instruction is executed when all its operand values are 

available (data flow) 
n  Dennis, ISCA 1974.  

n  Tradeoffs: MANY high-level ones 
q  Ease of programming (for average programmers)? 
q  Ease of compilation? 
q  Performance: Extraction of parallelism? 
q  Hardware complexity? 
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The Von-Neumann Model 

10 

CONTROL UNIT 

IP Inst Register 

PROCESSING UNIT 

ALU TEMP 

MEMORY 

Mem Addr Reg 

Mem Data Reg 

INPUT OUTPUT 



The Von-Neumann Model 
n  Stored program computer (instructions in memory) 
n  One instruction at a time 
n  Sequential execution 
n  Unified memory 

q  The interpretation of a stored value depends on the control 
signals 

n  All major ISAs today use this model 
n  Underneath (at uarch level), the execution model is very 

different 
q  Multiple instructions at a time 
q  Out-of-order execution 
q  Separate instruction and data caches 
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Fundamentals of Uarch Performance Tradeoffs 
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Instruction 
Supply 

Data Path 
(Functional 

Units) 

Data 
Supply 

- Zero-cycle latency  
  (no cache miss) 
 
- No branch mispredicts 
 
-  No fetch breaks 

-  Perfect data flow  
  (reg/memory dependencies) 
 
-  Zero-cycle interconnect 
  (operand communication) 
 
-  Enough functional units 

-  Zero latency compute? 

-  Zero-cycle latency 
 
-  Infinite capacity 
 
-  Zero cost 

We will examine all these throughout the course (especially data supply) 



How to Evaluate Performance Tradeoffs 
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Algorithm 
Program 
ISA 
Compiler 

ISA 
Microarchitecture 

Microarchitecture 
Logic design 
Circuit implementation 
Technology 

# cycles 
instruction 

time 
cycle X X # instructions 

program 

time 
program 

= 

= Execution time 



Improving Performance 
n  Reducing instructions/program 

n  Reducing cycles/instruction (CPI) 

n  Reducing time/cycle (clock period) 
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Improving Performance (Reducing Exec Time) 

n  Reducing instructions/program 
q  More efficient algorithms and programs 
q  Better ISA? 

n  Reducing cycles/instruction (CPI) 
q  Better microarchitecture design 

n  Execute multiple instructions at the same time 
n  Reduce latency of instructions (1-cycle vs. 100-cycle memory 

access) 

n  Reducing time/cycle (clock period) 
q  Technology scaling 
q  Pipelining 
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Improving Performance: Semantic Gap 
n  Reducing instructions/program 

q  Complex instructions: small code size (+) 
q  Simple instructions: large code size (--) 

n  Reducing cycles/instruction (CPI) 
q  Complex instructions: (can) take more cycles to execute (--) 

n  REP MOVS 
n  How about ADD with condition code setting?  

q  Simple instructions: (can) take fewer cycles to execute (+) 

n  Reducing time/cycle (clock period) 
q   Does instruction complexity affect this? 

n  It depends 

16 



Other Performance Metrics: IPS 
n  Machine A: 10 billion instructions per second 
n  Machine B: 1 billion instructions per second 
n  Which machine has higher performance? 
 
n  Instructions Per Second (IPS, MIPS, BIPS) 

q  How does this relate to execution time? 
q  When is this a good metric for comparing two machines? 

n  Same instruction set, same binary (i.e., same compiler), same 
operating system 

n  Meaningless if “Instruction count” does not correspond to “work” 
q  E.g., some optimizations add instructions, but do not change “work” 
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# of instructions 
cycle 

cycle 
time X 



Other Performance Metrics: FLOPS 
n  Machine A: 10 billion FP instructions per second 
n  Machine B: 1 billion FP instructions per second 
n  Which machine has higher performance? 

n  Floating Point Operations per Second (FLOPS, MFLOPS, 
GFLOPS) 
q  Popular in scientific computing 
q  FP operations used to be very slow (think Amdahl’s law) 

n  Why not a good metric? 
q  Ignores all other instructions  

n  what if your program has 0 FP instructions? 

q  Not all FP ops are the same 
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Other Performance Metrics: Perf/Frequency 
n  SPEC/MHz 
n  Remember  
n  Performance/Frequency 

 
n  What is wrong with comparing only “cycle count”? 

q  Unfairly penalizes machines with high frequency 

n  For machines of equal frequency, fairly reflects 
performance assuming equal amount of “work” is done 
q  Fair if used to compare two different same-ISA processors on the same binaries  
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time 
program = Execution time 1 

Performance = 

# cycles 
instruction 

time 
cycle X X # instructions 

program 

= 

time 
cycle 

= # cycles 
program 1 / { } 



An Example Use of Perf/Frequency Metric 

n  Ronen et al, IEEE Proceedings 2001 
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