
15-740/18-740
Computer Architecture
Lecture 6: Performance

Prof. Onur Mutlu
Carnegie Mellon University

Fall 2011, 9/23/2011

Review of Last Lectures
n  ISA Tradeoffs

q  Semantic gap, instruction length, uniform decode, register
count, addressing modes

n  "Row Buffer Locality-Aware Data Placement in
Hybrid Memories” SAFARI Tech Report, 2011.
q  Provide a review for next Friday

n  Project discussion

2

Today
n  More ISA tradeoffs
n  Performance metrics and evaluation
n  Pipelining basics

3

Other ISA-level Tradeoffs
n  Load/store vs. Memory/Memory
n  Condition codes vs. condition registers vs. compare&test
n  Hardware interlocks vs. software-guaranteed interlocking
n  VLIW vs. single instruction vs. SIMD
n  0, 1, 2, 3 address machines (stack, accumulator, 2 or 3-operands)

n  Precise vs. imprecise exceptions
n  Virtual memory vs. not
n  Aligned vs. unaligned access
n  Supported data types
n  Software vs. hardware managed page fault handling
n  Granularity of atomicity
n  Cache coherence (hardware vs. software)
n  …

4

Programmer vs. (Micro)architect
n  Many ISA features designed to aid programmers
n  But, complicate the hardware designer’s job

n  Virtual memory
q  vs. overlay programming
q  Should the programmer be concerned about the size of code

blocks?

n  Unaligned memory access
q  Compile/programmer needs to align data

n  Transactional memory?
n  VLIW vs. SIMD? Superscalar execution vs. SIMD?

5

Transactional Memory

6

enqueue (Q, v) {
 Node_t node = malloc(…);
 node->val = v;
 node->next = NULL;
 acquire(lock);
 if (Q->tail)
 Q->tail->next = node;
 else
 Q->head = node;
 Q->tail = node;
 release(lock);

}

begin-transaction

…
enqueue (Q, v); //no locks
…
end-transaction

THREAD 1 THREAD 2

enqueue (Q, v) {
 Node_t node = malloc(…);
 node->val = v;
 node->next = NULL;
 acquire(lock);
 if (Q->tail)
 Q->tail->next = node;
 else
 Q->head = node;
 Q->tail = node;
 release(lock);

}

enqueue (Q, v) {
 Node_t node = malloc(…);
 node->val = v;
 node->next = NULL;
 acquire(lock);
 if (Q->tail)
 Q->tail->next = node;
 else
 Q->head = node;
 release(lock);
 Q->tail = node;

}

enqueue (Q, v) {
 Node_t node = malloc(…);
 node->val = v;
 node->next = NULL;
 acquire(lock);
 if (Q->tail)
 Q->tail->next = node;
 else
 Q->head = node;
 release(lock);
 Q->tail = node;

}

begin-transaction

…
enqueue (Q, v); //no locks
…
end-transaction

Transactional Memory
n  A transaction is executed atomically: ALL or NONE

n  If there is a data conflict between two transactions, only
one of them completes; the other is rolled back
q  Both write to the same location
q  One reads from the location another writes

n  Herlihy and Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” ISCA 1993.

7

ISA-level Tradeoff: Supporting TM
n  Still under research
n  Pros:

q  Could make programming with threads easier
q  Could improve parallel program performance vs. locks. Why?

n  Cons:
q  Complexity
q  What if it does not pan out?
q  All future microarchitectures might have to support the new

instructions (for backward compatibility reasons)

n  How does the architect decide whether or not to support
TM in the ISA? (How to evaluate the whole stack)

8

ISA-level Tradeoffs: Instruction Pointer
n  Do we need an instruction pointer in the ISA?

q  Yes: Control-driven, sequential execution
n  An instruction is executed when the IP points to it
n  IP automatically changes sequentially (except control flow

instructions)

q  No: Data-driven, parallel execution
n  An instruction is executed when all its operand values are

available (data flow)
n  Dennis, ISCA 1974.

n  Tradeoffs: MANY high-level ones
q  Ease of programming (for average programmers)?
q  Ease of compilation?
q  Performance: Extraction of parallelism?
q  Hardware complexity?

9

The Von-Neumann Model

10

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von-Neumann Model
n  Stored program computer (instructions in memory)
n  One instruction at a time
n  Sequential execution
n  Unified memory

q  The interpretation of a stored value depends on the control
signals

n  All major ISAs today use this model
n  Underneath (at uarch level), the execution model is very

different
q  Multiple instructions at a time
q  Out-of-order execution
q  Separate instruction and data caches

11

Fundamentals of Uarch Performance Tradeoffs

12

Instruction
Supply

Data Path
(Functional

Units)

Data
Supply

- Zero-cycle latency
 (no cache miss)

- No branch mispredicts

-  No fetch breaks

-  Perfect data flow
 (reg/memory dependencies)

-  Zero-cycle interconnect
 (operand communication)

-  Enough functional units

-  Zero latency compute?

-  Zero-cycle latency

-  Infinite capacity

-  Zero cost

We will examine all these throughout the course (especially data supply)

How to Evaluate Performance Tradeoffs

13

Algorithm
Program
ISA
Compiler

ISA
Microarchitecture

Microarchitecture
Logic design
Circuit implementation
Technology

cycles
instruction

time
cycle X X # instructions

program

time
program

=

= Execution time

Improving Performance
n  Reducing instructions/program

n  Reducing cycles/instruction (CPI)

n  Reducing time/cycle (clock period)

14

Improving Performance (Reducing Exec Time)

n  Reducing instructions/program
q  More efficient algorithms and programs
q  Better ISA?

n  Reducing cycles/instruction (CPI)
q  Better microarchitecture design

n  Execute multiple instructions at the same time
n  Reduce latency of instructions (1-cycle vs. 100-cycle memory

access)

n  Reducing time/cycle (clock period)
q  Technology scaling
q  Pipelining

15

Improving Performance: Semantic Gap
n  Reducing instructions/program

q  Complex instructions: small code size (+)
q  Simple instructions: large code size (--)

n  Reducing cycles/instruction (CPI)
q  Complex instructions: (can) take more cycles to execute (--)

n  REP MOVS
n  How about ADD with condition code setting?

q  Simple instructions: (can) take fewer cycles to execute (+)

n  Reducing time/cycle (clock period)
q  Does instruction complexity affect this?

n  It depends

16

Other Performance Metrics: IPS
n  Machine A: 10 billion instructions per second
n  Machine B: 1 billion instructions per second
n  Which machine has higher performance?

n  Instructions Per Second (IPS, MIPS, BIPS)

q  How does this relate to execution time?
q  When is this a good metric for comparing two machines?

n  Same instruction set, same binary (i.e., same compiler), same
operating system

n  Meaningless if “Instruction count” does not correspond to “work”
q  E.g., some optimizations add instructions, but do not change “work”

17

of instructions
cycle

cycle
time X

Other Performance Metrics: FLOPS
n  Machine A: 10 billion FP instructions per second
n  Machine B: 1 billion FP instructions per second
n  Which machine has higher performance?

n  Floating Point Operations per Second (FLOPS, MFLOPS,
GFLOPS)
q  Popular in scientific computing
q  FP operations used to be very slow (think Amdahl’s law)

n  Why not a good metric?
q  Ignores all other instructions

n  what if your program has 0 FP instructions?

q  Not all FP ops are the same

18

Other Performance Metrics: Perf/Frequency
n  SPEC/MHz
n  Remember
n  Performance/Frequency

n  What is wrong with comparing only “cycle count”?

q  Unfairly penalizes machines with high frequency

n  For machines of equal frequency, fairly reflects
performance assuming equal amount of “work” is done
q  Fair if used to compare two different same-ISA processors on the same binaries

19

time
program = Execution time 1

Performance =

cycles
instruction

time
cycle X X # instructions

program

=

time
cycle

= # cycles
program 1 / { }

An Example Use of Perf/Frequency Metric

n  Ronen et al, IEEE Proceedings 2001

20

