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Announcements for This Week

� December 2: 

� Midterm II

� Comprehensive

� 2 letter-sized cheat sheets allowed

� Sample exams and solutions are all posted

� December 1:

� Homework 6 due
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Project Schedule

� December 6 and 8

� Milestone III meetings

� Signup sheets will be posted online

� December 13

� Project poster session

� Location and time TBD

� December 18

� Final project report due

� Strive for a good conference paper (in terms of insight, 
explanations, writing, and formatting)

� Address comments from the poster session and milestone III
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Readings

� Required:

� McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993.

� Carmean and Sprangle, “Increasing Processor Performance by 
Implementing Deeper Pipelines,” ISCA 2002.

� Recommended:
� Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work,” ISCA 1998.

� Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch 
Prediction,” ISCA 1992.

� Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 
2001.

� Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution 
of Complex Control-Flow Graphs Based on Frequently Executed Paths,”
MICRO 2006.
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Approaches to Conditional Branch Handling

� Branch prediction
� Static

� Dynamic

� Eliminating branches
I. Predicated execution

� Static

� Dynamic

� HW/SW Cooperative

II. Predicate combining (and condition registers)

� Multi-path execution

� Delayed branching (branch delay slot)

� Fine-grained multithreading
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Fine-Grained Multithreading

� Idea: Hardware has multiple thread contexts. Each cycle, 
fetch engine fetches from a different thread.

� By the time the fetched branch resolves, there is no need to 
fetch another instruction from the same thread

� Branch resolution latency overlapped with execution of other 
threads’ instructions

+ No logic needed for  branch prediction, 

(also for dependency checking)

-- Single thread performance suffers 

-- Does not overlap latency if not enough 

threads to cover the whole pipeline

-- Extra logic for keeping thread contexts
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Approaches to Conditional Branch Handling

� Branch prediction
� Static

� Dynamic

� Eliminating branches
I. Predicated execution

� Static

� Dynamic
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II. Predicate combining (and condition registers)

� Multi-path execution

� Delayed branching (branch delay slot)

� Fine-grained multithreading
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D D

Predication (Predicated Execution)
� Idea: Compiler converts control dependency into a data 
dependency � branch is eliminated
� Each instruction has a predicate bit set based on the predicate computation

� Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)
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p1 = (cond)
branch p1, TARGET

mov b, 1 
jmp JOIN
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mov b, 0
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if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Conditional Move Operations

� Very limited form of predicated execution

� CMOV R1 � R2

� R1 = (ConditionCode == true) ? R2 : R1

� Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)

� Predicated execution can be high performance and energy-
efficient
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Predicated Execution (III)
� Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

+ Can move instructions more freely within predicated code

+ Vectorization with control flow

+ Reduces fetch breaks (straight-line code)

� Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch 
behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support (complicates renaming and OOO)

-- Cannot eliminate all hard to predict branches 

-- Complex control flow graphs, function calls, and loop branches

-- Additional data dependencies delay execution (problem esp. for easy branches)
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Approaches to Conditional Branch Handling

� Branch prediction
� Static

� Dynamic

� Eliminating branches
I. Predicated execution

� Static

� Dynamic

� HW/SW Cooperative

II. Predicate combining (and condition registers)

� Multi-path execution

� Delayed branching (branch delay slot)

� Fine-grained multithreading
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Multi-Path Execution
� Idea: Execute both paths after a conditional branch

� For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

� For a hard-to-predict branch: Use dynamic confidence estimation

� Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

� Disadvantages:

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own register alias table, PC, GHR

-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Approaches to Conditional Branch Handling
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Branch Prediction

Fetch  Decode  Rename  Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A
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D
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F

AB1 AB1 AD B1 ADE B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEFB3

What to fetch next?Fetch from the correct target

� Processors are pipelined to increase concurrency

� How do we keep the pipeline full in the presence of branches?

� Guess the next instruction when a branch is fetched

� Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction



Branch Prediction

� Idea: Predict the next fetch address (to be used in the next 
cycle) when the branch is fetched

� Requires three things to be predicted:

� Whether the fetched instruction is a branch

� Conditional branch direction

� Branch target address (if taken)

� Target addresses remain the same for conditional direct 
branches across dynamic instances

� Idea: Cache the target address from previous instance

� Called Branch Target Buffer (BTB) or Branch Target Address 
Cache
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Branch Target Buffer
� Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage

� Updated only by taken branches

� If BTB hit and the instruction is a predicted-taken branch

� target from the BTB (assuming hit) is used as fetch address in the next cycle

� If BTB miss or the instruction is a predicted-not-taken branch

� PC+N is used as the next fetch address in the next cycle

19

ICACHE

PC

k

entry PC predicted
target

=

hit? target

BTB



Branch Target Buffer in Fetch Stage
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target address

A Frontend with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

Global branch 
history

XOR

PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the 
current branch



Direction Prediction

� Compile time (static)

� Always not taken

� Always taken

� BTFN (Backward taken, forward not taken)

� Profile based (likely direction)

� Program analysis based  (likely direction)

� Run time (dynamic)

� Last time (single-bit)

� Two-bit counter based

� Two-level (global vs. local)

� Hybrid
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Static Branch Prediction (I)
� Always not-taken

� Simple to implement: no need for BTB, no direction prediction

� Low accuracy: ~40%

� Compiler can layout code such that the likely path is the “not-
taken” path: Good for wide fetch as well!

� Always taken

� No direction prediction

� Better accuracy: ~60% 

� Backward branches (i.e. loop branches) are usually taken

� Backward branch: target address lower than branch PC

� Backward taken, forward not taken (BTFN)

� Predict backward (loop) branches as taken, others not-taken
23



Static Branch Prediction (II)

� Profile-based

� Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide)

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN � 50% accuracy 
TNTNTNTNTNTNTNTNTNTN � 50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)

� Program-based

� Idea: Use heuristics based on program analysis to determine 
statically-predicted direction

� Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs)

� Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop)

� Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires ISA support

� Ball and Larus, ”Branch prediction for free,” PLDI 1993.

� 20% misprediction rate
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Dynamic Branch Prediction

� Idea: Predict branches based on dynamic information 
(collected at run-time)

� Advantages

+ No need for profiling: input set representativeness problem 
goes away

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

� Disadvantages

-- More complex (requires additional hardware)
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Last Time Predictor

� Last time predictor

� Single bit per branch (stored in BTB)

� Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN � 90% accuracy

� Always mispredicts the last iteration and the first iteration 
of a loop branch

� Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN � 0% accuracy
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Two-Bit Counter Based Prediction

� Counter using saturating arithmetic

� There is a symbol for maximum and minimum values
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Two-Bit Counter Based Prediction

� Each branch associated with a two-bit counter

� One more bit provides hysteresis

� A strong prediction does not change with one single 
different outcome

� Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN � 50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)
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Can We Do Better?

� McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993.
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Two Level Branch Predictors

� First level: Branch history register (N bits)

� The direction of last N branches

� Second level: Table of saturating counters for each history entry

� The direction the branch took the last time the same history was 
seen?
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Prediction and Update Functions

� Prediction

� Pattern History Table accessed at fetch time to generate a 
prediction

� Top bit of the 2-bit counter determines predicted direction

� Update

� Pattern History Table accessed when the branch is retired to 
update the counters that generated the prediction

� If branch 

� actually taken: increment the counter

� actually not-taken: decrement the counter
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Two-Level Predictor Variations

� BHR can be global (G), per set of branches (S), or per branch (P)

� PHT counters can be adaptive (A) or static (S)

� PHT can be global (g), per set of branches (s), or per branch (p)

� Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.
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Global Branch Correlation (I)

� GAg: Global branch predictor (commonly called)

� Exploits global correlation across branches

� Recently executed branch outcomes in the execution path 
is correlated with the outcome of the next branch

� If first branch not taken, second also not taken

� If first branch taken, second definitely not taken
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Global Branch Correlation (II)

� If Y and Z both taken, then X also taken

� If Y or Z not taken, then X also not taken

� Only 3 past branches’ directions 
really matter (not necessarily the 
last 3 past branches)

� Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998.
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Global Two-Level Prediction

� Idea: Have a single history register for all branches (called 
global history register)

+ Exploits correlation between different branches (as well as the instances 
of the same branch)

-- Different branches interfere with each other in the history register �
cannot separate the local history of each branch
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How Does the Global Predictor Work?
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Pentium Pro Branch Predictor

� GAs

� 4-bit global history register

� Multiple pattern history tables (of 2 bit counters)

� PHT determined by lower order bits of the branch address
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Local Two-Level Prediction

� PAg, Pas, PAp

� Global history register produces interference

� Different branches can go different ways for the same history

� Idea: Have a per-branch history register

+ No interference in the history register between branches

-- Cannot exploit global branch correlation
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Hybrid Branch Predictors

� Idea: Use more than one type of predictors (i.e., 
algorithms) and select the “best” prediction

� E.g., hybrid of 2-bit counters and global predictor

� Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

� Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

� McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

� Minimum branch penalty: 7 cycles

� Typical branch penalty: 11+ cycles

� 48K bits of target addresses stored in I-cache

� 32-entry return address stack

� Predictor tables are reset on a context switch
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Effect on Prediction Accuracy

� Bimodal: table of 2bc indexed by branch address
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The remaining slides are not covered 

in lecture. They are for your benefit.
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Interference in the PHTs

� Sharing the PHTs between histories/branches leads to interference

� Different branches map to the same PHT entry and modify it

� Can be positive, negative, or neutral

� Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

� How else can you eliminate interference?
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Reducing Interference in PHTs (II)

� Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces

� Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT   

+ More context information

-- Increases access latency

� McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

45



Reducing Interference in PHTs (III)

� Idea 2: Agree prediction

� Each branch has a “bias” bit associated with it in BTB

� Ideally, most likely outcome for the branch

� High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)
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Sprangle et al., “The Agree Predictor:
A Mechanism for Reducing Negative 
Branch History Interference,” ISCA 
1997.



Why Does Agree Prediction Make Sense?
� Assume two branches (b1, b2) have taken rates of 85% and 15%.

� Assume they conflict in the PHT

� Probability they have opposite outcomes

� Baseline predictor:

� P (b1 T, b2 NT) + P (b1 NT, b2 T) = (85%*85%) + (15%*15%) = 
74.5%

� Agree predictor:

� Assume bias bits are set to T (b1) and NT (b2)

� P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree) 

= (85%*15%) + (15%*85%) = 25.5%

� Agree prediction reduces the probability that two branches have 
opposite predictions in the PHT entry

� Works because most branches are biased (not 50% taken)
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Improved Branch Prediction Algorithms
� Perceptron predictor

� Learns the correlations between branches in the global history register and 
the current branch using a perceptron

� Past branches that are highly correlated have larger weights and influence 
the prediction outcome more

� Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 
2001.

� Enhanced hybrid predictors
� Multi-hybrid with different history lengths

� Seznec, “Analysis of the O-GEometric History Length Branch Predictor,”
ISCA 2005.

� Pre-execution
� Similar to pre-execution based prefetching

� Chappell et al., “Difficult-Path Branch Prediction Using Subordinate 
Microthreads,” ISCA 2002. 48



Call and Return Prediction

� Direct calls are easy to predict

� Always taken, single target

� Call marked in BTB, target predicted by BTB

� Returns are indirect branches 

� A function can be called from many points in code

� A return instruction can have many target addresses

� Next instruction after each call point for the same function

� Observation: Usually a return matches a call

� Idea: Use a stack to predict return addresses (Return Address Stack)

� A fetched call: pushes the return (next instruction) address on the stack

� A fetched return: pops the stack and uses the address as its predicted 
target

� Accurate most of the time: 8-entry stack � > 95% accuracy
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Indirect Branch Prediction (I)

� Register-indirect branches have multiple targets

� Used to implement 

� Switch-case statements

� Virtual function calls

� Jump tables (of function pointers)

� Interface calls 
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Indirect Branch Prediction (II)

� No direction prediction needed

� Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

� Idea 2: Use history based target prediction 

� E.g., Index the BTB with GHR XORed with Indirect Branch PC

� Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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Indirect Branch Prediction (III)

� Idea 3: Treat an indirect branch as “multiple virtual 
conditional branches” in hardware

� Only for prediction purposes

� Predict each “virtual conditional branch” iteratively

� Kim et al., “VPC prediction,” ISCA 2007.
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VPC Prediction (I)
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1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Next iteration



VPC Prediction (II)
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1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration



VPC Prediction (III)
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cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3 

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L 
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3



VPC Prediction (IV)

� Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also 
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number 
of target addresses seen

� Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target 
address 

-- More interference in direction predictor and BTB
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Issues in Branch Prediction (I)

� Need to identify a branch before it is fetched

� How do we do this?

� BTB hit � indicates that the fetched instruction is a branch

� BTB entry contains the “type” of the branch

� What if no BTB?

� Bubble in the pipeline until target address is computed

� E.g., IBM POWER4
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Issues in Branch Prediction (II)

� Latency: Prediction is latency critical

� Need to generate next fetch address for the next cycle

� Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???



Issues in Branch Prediction (III)

� State recovery upon misprediction

� Misprediction detected when branch executes

� Need to flush all instructions younger than the branch

� Easy to invalidate instructions not yet renamed

� Need to invalidate instructions in reservation stations and reorder 
buffer

� Need to recover the Register Alias Table

� Pentium 4: Retirement RAT copied to Frontend RAT

+ Simple

-- Increases recovery latency (Branch has to be the oldest instruction in 
the machine!)

� Alpha 21264: Checkpoint RAT when branch is renamed, recover 
to checkpoint when misprediction detected

+ Immediate recovery of RAT

-- More expensive (multiple RATs)
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Why is this not as bad???



Open Research Issues in Branch Prediction

� Better algorithms

� Machine learning techniques? 

� Needs to be low cost and *fast*

� Progressive evaluation of earlier prediction for a branch

� As branch moves through the pipeline, more information 
becomes available � can we use this to override earlier 

prediction?

� Falcon et al., “Prophet-critic hybrid branch prediction,” ISCA 
2004.
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Perceptron Branch Predictor (I)
� Idea: Use a perceptron to learn the correlations between branch history 

register bits and branch outcome

� A perceptron learns a target Boolean function of N inputs

� Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

� Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi
� Each weight corresponds to a bit in 

the GHR 
�How much the bit is correlated with the 

direction of the branch
� Positive correlation: large + weight
� Negative correlation: large - weight

Prediction:
� Express GHR bits as 1 (T) and -1 (NT)
� Take dot product of GHR and weights
� If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight
(bias of branch independent of 
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)

� Advantages

+ More sophisticated learning mechanism � better accuracy

� Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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