
15-740/18-740 

Computer Architecture
Lecture 20: Caching III

Prof. Onur Mutlu

Carnegie Mellon University

Fall 2011, 11/2/2011



Announcements

� CALCM Seminar Today at 4pm

� Hamerschlag Hall, D-210

� Edward Suh, Cornell

� Hardware-Assisted Run-Time Monitoring for Trustworthy 
Computing Systems

� http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:semi
nar_11_11_02

� Milestone II

� Due November 4, Friday

� Please talk with us if you are not making good progress

2



Review Set 12

� Due Next Monday (Nov 7)

� Joseph and Grunwald, “Prefetching using Markov Predictors,”
ISCA 1997.

� Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware 
Prefetchers“, HPCA 2007.

3



Last Lecture

� More caching

� Write handling, sectored caches

� Inclusion vs. exclusion

� Multi-level caching in a pipelined design

� Miss types: Compulsory, conflict, capacity, 
coherence/communication

� Techniques to improve cache performance

� Victim caches, hashing, pseudo associativity

� Better data structure layout

� Blocking

4



Today

� More caching

5



Review: Improving Hit Rate via Software (II)

� Blocking

� Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

� Avoids cache conflicts between different chunks of 
computation

� Essentially: Divide the working set so that each piece fits in 
the cache

� But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

6



Improving Basic Cache Performance

� Reducing miss rate

� More associativity

� Alternatives to associativity 

� Victim caches, hashing, pseudo-associativity, skewed associativity

� Software approaches

� Reducing miss latency/cost

� Multi-level caches

� Critical word first

� Subblocking/sectoring

� Multiple outstanding accesses (Non-blocking caches)

� Multiple accesses per cycle

� Software approaches

7



Handling Multiple Outstanding Accesses 

� Non-blocking or lockup-free caches

� Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache 
Organization," ISCA 1981.

� Question: If the processor can generate multiple cache 
accesses, can the later accesses be handled while a 
previous miss is outstanding?

� Idea: Keep track of the status/data of misses that are being 
handled in Miss Status Handling Registers (MSHRs)

� A cache access checks MSHRs to see if a miss to the same 
block is already pending.

� If pending, a new request is not generated

� If pending and the needed data available, data forwarded to later 
load

� Requires buffering of outstanding miss requests

8



Non-Blocking Caches (and MLP)

� Enable cache access when there is a pending miss

� Enable multiple misses in parallel

� Memory-level parallelism (MLP)

� generating and servicing multiple memory accesses in parallel

� Why generate multiple misses? 

� Enables latency tolerance: overlaps latency of different misses

� How to generate multiple misses?

� Out-of-order execution, multithreading, runahead, prefetching

9

time

A
B

C

isolated miss parallel miss



Miss Status Handling Register

� Also called “miss buffer”

� Keeps track of

� Outstanding cache misses

� Pending load/store accesses that refer to the missing cache 
block

� Fields of a single MSHR

� Valid bit

� Cache block address (to match incoming accesses)

� Control/status bits (prefetch, issued to memory, which 
subblocks have arrived, etc)

� Data for each subblock

� For each pending load/store

� Valid, type, data size, byte in block, destination register or store 
buffer entry address

10



Miss Status Handling Register

11



MSHR Operation

� On a cache miss:

� Search MSHR for a pending access to the same block

� Found: Allocate a load/store entry in the same MSHR entry

� Not found: Allocate a new MSHR

� No free entry: stall

� When a subblock returns from the next level in memory

� Check which loads/stores waiting for it

� Forward data to the load/store unit

� Deallocate load/store entry in the MSHR entry

� Write subblock in cache or MSHR

� If last subblock, dellaocate MSHR (after writing the block in 
cache)

12



Non-Blocking Cache Implementation

� When to access the MSHRs? 

� In parallel with the cache?

� After cache access is complete?

� MSHRs need not be on the critical path of hit requests

� Which one below is the common case?

� Cache miss, MSHR hit

� Cache hit

13



Improving Basic Cache Performance

� Reducing miss rate

� More associativity

� Alternatives/enhancements to associativity 

� Victim caches, hashing, pseudo-associativity, skewed associativity

� Software approaches

� Reducing miss latency/cost

� Multi-level caches

� Critical word first

� Subblocking

� Non-blocking caches

� Multiple accesses per cycle

� Software approaches

14



Reducing Miss Cost/Latency via Software

� Enabling more memory-level parallelism

� Restructuring code

� E.g., Pai and Adve, “Code transformations to improve memory 
parallelism,” MICRO 1999.

� Taking advantage of stall-on-use policy in hardware

� Inserting prefetch instructions

15



Enabling High Bandwidth Caches



Multiple Instructions per Cycle

� Can generate multiple cache accesses per cycle

� How do we ensure the cache can handle multiple accesses 
in the same clock cycle? 

� Solutions:

� true multi-porting

� virtual multi-porting (time sharing a port)

� multiple cache copies

� banking (interleaving)

17



Handling Multiple Accesses per Cycle (I)

� True multiporting

� Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of area, power, and delay

� What about read and write to the same location at the same 
time?

� Peripheral logic needs to handle this

� Virtual multiporting

� Time-share a single port

� Each access needs to be (significantly) shorter than clock cycle

� Used in Alpha 21264

� Is this scalable?

18



Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

� Multiple cache copies

� Stores update both caches

� Loads proceed in parallel

� Used in Alpha 21164

� Scalability?

� Store operations form a 
bottleneck

� Area proportional to “ports”

19

Port 1

Load

Store

Port 1

Data

Cache
Copy 2Port 2

Load

Port 2

Data



Handling Multiple Accesses per Cycle (III)

� Banking (Interleaving)

� Bits in address determines which bank an address maps to

� Address space partitioned into separate banks

� Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot always satisfy multiple accesses

Why?

-- Crossbar interconnect in input/output

� Bank conflicts

� Two accesses are to the same bank

� How can these be reduced?

� Hardware? Software?

20

Bank 0:
Even 

addresses

Bank 1:
Odd

addresses



Evaluation of Design Options

� Which alternative is better?

� true multi-porting

� virtual multi-porting (time sharing a port)

� multiple cache copies

� banking (interleaving)

� How do we answer this question?

� Simulation 

� See Juan et al.’s evaluation of above options: “Data caches 
for superscalar processors,” ICS 1997.

� What are the shortcomings of their evaluation? 

� Can one do better with sole simulation?

21



Caches in Multi-Core Systems

22



Multi-Core Issues in Caching

� Multi-core

� More pressure on the memory/cache hierarchy � cache efficiency a 
lot more important

� Private versus shared caching

� Providing fairness/QoS in shared multi-core caches

� Migration of shared data in private caches

� How to organize/connect caches:

� Non-uniform cache access and cache interconnect design

� Placement/insertion

� Identifying what is most profitable to insert into cache

� Minimizing dead/useless blocks

� Replacement

� Cost-aware: which block is most profitable to keep?

23



Cache Coherence 

� Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?

24

P1 P2

x

Interconnection Network

Main Memory

1000



The Cache Coherence Problem

25

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000



The Cache Coherence Problem

26

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000



The Cache Coherence Problem

27

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000



The Cache Coherence Problem

28

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 
load 1000



Cache Coherence: Whose Responsibility?

� Software

� Can the programmer ensure coherence if caches are invisible to 
software?

� What if the ISA provided the following instruction?
� FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a 

processor’s local cache

� When does the programmer need to FLUSH-LOCAL an address?

� What if the ISA provided the following instruction?
� FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all 

other processors’ caches

� When does the programmer need to FLUSH-GLOBAL an address?

� Hardware

� Simplifies software’s job

� One idea: Invalidate all other copies of block A when a processor writes 
to it

29



Snoopy Cache Coherence

� Caches “snoop” (observe) each other’s write/read 
operations

� A simple protocol:

30

� Write-through, no-
write-allocate 
cache

� Actions: PrRd, 
PrWr, BusRd, 
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Multi-core Issues in Caching

� How does the cache hierarchy change in a multi-core 
system?

� Private cache: Cache belongs to one core

� Shared cache: Cache is shared by multiple cores

31

CORE 0 CORE 1 CORE 2 CORE 3

L2 
CACHE

L2 
CACHE

L2 
CACHE

DRAM MEMORY CONTROLLER

L2 
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2 
CACHE



Shared Caches Between Cores
� Advantages:

� Dynamic partitioning of available cache space

� No fragmentation due to static partitioning

� Easier to maintain coherence

� Shared data and locks do not ping pong between caches

� Disadvantages

� Cores incur conflict misses due to other cores’ accesses

� Misses due to inter-core interference

� Some cores can destroy the hit rate of other cores

� What kind of access patterns could cause this?

� Guaranteeing a minimum level of service (or fairness) to each 
core is harder (how much space, how much bandwidth?)

� High bandwidth harder to obtain (N cores � N ports?)

� Potentially higher latency (interconnect between cores-cache)
32


