15-740/18-740
Computer Architecture
Lecture 20: Caching 111

Prof. Onur Mutlu
Carnegie Mellon University
Fall 2011, 11/2/2011

Announcements

= CALCM Seminar Today at 4pm
o Hamerschlag Hall, D-210
o Edward Suh, Cornell

o Hardware-Assisted Run-Time Monitoring for Trustworthy
Computing Systems

o http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:semi
nar 11 11 02

= Milestone II
o Due November 4, Friday
o Please talk with us if you are not making good progress

Review Set 12

Due Next Monday (Nov 7)

o Joseph and Grunwald, “Prefetching using Markov Predictors,”
ISCA 1997.

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers”, HPCA 2007.

l.ast Lecture

More caching

g

d
d
d

Write handling, sectored caches
Inclusion vs. exclusion
Multi-level caching in a pipelined design

Miss types: Compulsory, conflict, capacity,
coherence/communication

Techniques to improve cache performance
Victim caches, hashing, pseudo associativity

Better data structure layout

Blocking

Today

= More caching

Review: Improving Hit Rate via Software (II)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

Improving Basic Cache Performance

Reducing miss rate
o More associativity

o Alternatives to associativity
Victim caches, hashing, pseudo-associativity, skewed associativity

o Software approaches

Reducing miss latency/cost

Multi-level caches

Critical word first

Subblocking/sectoring

Multiple outstanding accesses (Non-blocking caches)
Multiple accesses per cycle

Software approaches

o 0o o0 o0 o o

Handling Multiple Outstanding Accesses

Non-blocking or lockup-free caches

a Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRS)
o A cache access checks MSHRs to see if a miss to the same
block is already pending.
If pending, a new request is not generated

If pending and the needed data available, data forwarded to later
load

o Requires buffering of outstanding miss requests

Non-Blocking Caches (and MLP)

Enable cache access when there is a pending miss

Enable multiple misses in parallel
o Memory-level parallelism (MLP)

generating and servicing multiple memory accesses in parallel

o Why generate multiple misses?

A

Isolated miss

parallel miss

4

=

/
v

, time

Enables latency tolerance: overlaps latency of different misses

o How to generate multiple misses?

Out-of-order execution, multithreading, runahead, prefetching

Miss Status Handling Register

Also called “miss buffer”
Keeps track of

g

g

Outstanding cache misses

Pending load/store accesses that refer to the missing cache
block

Fields of a single MSHR

g

g

g

Valid bit
Cache block address (to match incoming accesses)

Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

Data for each subblock

For each pending load/store

Valid, type, data size, byte in block, destination register or store
buffer entry address
10

Miss Status Handling Register

1 27 1 1 3 5 5
Valid | Block Address (Issued| |Valid| Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

Load/store 0
Load/store 1

Load/store 2

Load/store 3

11

MSHR Operation

On a cache miss:

o Search MSHR for a pending access to the same block
Found: Allocate a load/store entry in the same MSHR entry
Not found: Allocate a new MSHR
No free entry: stall

When a subblock returns from the next level in memory

o Check which loads/stores waiting for it
Forward data to the load/store unit
Deallocate load/store entry in the MSHR entry

o Write subblock in cache or MSHR

o If last subblock, dellaocate MSHR (after writing the block in
cache)

12

Non-Blocking Cache Implementation

When to access the MSHRs?
o In parallel with the cache?
o After cache access is complete?

MSHRs need not be on the critical path of hit requests

2 Which one below is the common case?
Cache miss, MSHR hit
Cache hit

13

Improving Basic Cache Performance

Reducing miss rate
o More associativity
o Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

o Software approaches

Reducing miss latency/cost
Multi-level caches

Critical word first
Subblocking

Non-blocking caches
Multiple accesses per cycle
Software approaches

o 0o o0 o0 o o

14

Reducing Miss Cost/Latency via Software

Enabling more memory-level parallelism

o Restructuring code

E.g., Pai and Adve, "Code transformations to improve memory
parallelism,” MICRO 1999.

o Taking advantage of stall-on-use policy in hardware

Inserting prefetch instructions

15

Enabling High Bandwidth Caches

Multiple Instructions per Cycle

Can generate multiple cache accesses per cycle

How do we ensure the cache can handle multiple accesses
in the same clock cycle?

Solutions:

o true multi-porting

o virtual multi-porting (time sharing a port)
o multiple cache copies

o banking (interleaving)

17

Handling Multiple Accesses per Cycle (I)

True multiporting

o Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)
-- Expensive in terms of area, power, and delay

o What about read and write to the same location at the same
time?
Peripheral logic needs to handle this

Virtual multiporting
o Time-share a single port

o Each access needs to be (significantly) shorter than clock cycle
o Used in Alpha 21264
Q

Is this scalable?

18

Handling Multiple Accesses per Cycle (I11)

Multiple cache copies
o Stores update both caches
o Loads proceed in parallel

Used in Alpha 21164

Scalability?

o Store operations form a
bottleneck

o Area proportional to “ports”

Port 1
—
Load Port 1
Cache —
Copy 1 Data
Store |
Cache m
Port 2 Copy 2 Data
Load

19

Handling Multiple Accesses per Cycle (I11)

Banking (Interleaving)

o Bits in address determines which bank an address maps to
Address space partitioned into separate banks
Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot always satisfy multiple accesses Bank O:
hy? Even
Why: addresses

-- Crossbar interconnect in input/output

Bank conflicts
o Two accesses are to the same bank BC(‘)”; dl‘

o How can these be reduced? addresses
Hardware? Software?

20

Evaluation of Design Options

Which alternative is better?

o true multi-porting

o virtual multi-porting (time sharing a port)
o multiple cache copies

o banking (interleaving)

o How do we answer this question?

Simulation

o See Juan et al.” s evaluation of above options: “Data caches
for superscalar processors,” ICS 1997.

2 What are the shortcomings of their evaluation?
o Can one do better with sole simulation?

21

Caches 1n Multi-Core Systems

Multi-Core Issues 1n Caching

Multi-core

a

o O O O

More pressure on the memory/cache hierarchy - cache efficiency a
lot more important

Private versus shared caching
Providing fairness/QoS in shared multi-core caches
Migration of shared data in private caches
How to organize/connect caches:
Non-uniform cache access and cache interconnect design

Placement/insertion

Q

Q

Identifying what is most profitable to insert into cache
Minimizing dead/useless blocks

Replacement

Q

Cost-aware: which block is most profitable to keep?

23

Cache Coherence

Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

[Interconnection Network J

1000

X

Main Memory

The Cache Coherence Problem

Id r2, X
|

1000

Interconnection Network]

X

1000

Main Memory

25

The Cache Coherence Problem

Id r2, X

Id r2, X
|

1000 1000
Interconnection Network]
1000
X]

Main Memory

26

The Cache Coherence Problem

Id r2, X
addrl, r2, r4
stx, rl

Id r2, X
|

2000 1000
Interconnection Network]
1000
X]

Main Memory

27

The Cache Coherence Problem

Id r2, X
addrl, r2, r4
stx, rl

2000

Id r2, X
|

1000

Interconnection Network

1000
X —

Main Memory

Should NOT
load 1000

Id r5, X

28

Cache Coherence: Whose Responsibility?

Software

o Can the programmer ensure coherence if caches are invisible to
software?

o What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’ s local cache

When does the programmer need to FLUSH-LOCAL an address?

o What if the ISA provided the following instruction?

FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches

When does the programmer need to FLUSH-GLOBAL an address?

Hardware
o Simplifies software’ s job

o One idea: Invalidate all other copies of block A when a processor writes
to it
29

Snoopy Cache Coherence

Caches “snoop” (observe) each other’ s write/read

operations
A simple protocol:

PrRd/-- PrWr / BusWr

Q PrwWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions: PrRd,
PrWr, BusRd,
BusWr

30

Multi-core Issues 1n Caching

How does the cache hierarchy change in a multi-core
system?
Private cache: Cache belongs to one core

Shared cache: Cache is shared by multiple cores

™~

COREO

CORE 1

CORE 3

A

A 4

A

\ 4

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

\

/

K DRAM MEMORY CONTROLLER

31

Shared Caches Between Cores

Advantages:
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
o Easier to maintain coherence
o Shared data and locks do not ping pong between caches

Disadvantages
a Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference

Some cores can destroy the hit rate of other cores
0 What kind of access patterns could cause this?

o Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)

o High bandwidth harder to obtain (N cores - N ports?)
o Potentially higher latency (interconnect between cores-cache)

32

