
15-740/18-740
Computer Architecture

Lecture 11: More Out-of-Order Execution

Prof. Onur Mutlu
Carnegie Mellon University

Fall 2011, 10/5/2011

Last Lecture
 Downsides of static scheduling
 Out of order execution (Dynamic scheduling)

 Data stored in many places (reservation stations) vs.
 Central physical register file

2

Today
 More on out-of-order execution
 An example code execution
 Issues in out-of-order processing

3

Reviews
 Due next Monday

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory
Latency Tolerance,” IEEE Micro Top Picks 2006.

 Due next Wednesday
 Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

4

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones
 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction
 Instructions dispatched in dataflow (not control-flow) order

 Benefit:
 Latency tolerance: Allows independent instructions to execute

and complete in the presence of a long latency operation

5

In-order vs. Out-of-order Dispatch
 In order dispatch:

 Tomasulo + precise exceptions:

 16 vs. 12 cycles
6

F D WE E E E R
F D E R W

F

IMUL R3  R1, R2
ADD R3  R3, R1
ADD R1  R6, R7
IMUL R3  R6, R8
ADD R7  R3, R9

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready

 Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)
 What if more instructions become ready than available FUs?

7

Summary of OOO Execution Concepts
 Renaming eliminates false dependencies

 Tag broadcast enables value communication between
instructions  dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program
 which piece?

 Limited to the instruction window

 Can we do it for the whole program? Why would we like to?
 How can we have a large instruction window efficiently?

8

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

9

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

10

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available
 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
 Reclaim rename tag

 no valid copy of tag in system!

11

Register Renaming and OoO Execution
 Architectural registers dynamically renamed

 Mapped to reservation stations

12

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1
1

1

1

1

1
1

1
1
1

IMUL R3  R1, R2
ADD R3  R3, R1
ADD R1  R6, R7
IMUL R3  R6, R8
ADD R7  R3, R9

IMUL S0  V1, V2

S0

S1

S2

S3

S4

1 1V1 V2- - mul

-

-

-
-
-

-
-
-

-

-

V0

V1
V2

V3

V4

V5
V6

V7

V8

V9

S0 0

ADD S1  S0, V4

0 1V3 V1S0 - add

Src1 tag Src1 value V? Src2 tag Src2 value V? Ctl

S1

1 1V6 V7- - add

ADD S2  V6, V7S2

1

1

S?

0
IMUL S3  V6, V8

1 1V6 V8- - add

S3

1
BROADCAST S2 and new1V1

1new1V1

ADD S4  S3, V9

Completed --- Wait for Retirement

0 1V3 V9S3 - add

S4 0

BROADCAST S0 and new1V3
1new2V3

Completed --- Wait for Retirement
1BROADCAST S1 and new2V3

Retired --- Entry Deallocated

BROADCAST S3 and new3V3

Completed --- Wait for RetirementRetired --- Entry Deallocated

1new3V3

1new3V3

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with future file and

reorder buffer
 in an out-of-order dispatch pipelined machine with future file

and reorder buffer
13

MUL R3  R1, R2
ADD R5  R3, R4
ADD R7  R2, R6
ADD R10  R8, R9
MUL R11  R7, R10
ADD R5  R5, R11

F D E R W

An Exercise (II)
 Execution of the previous example on a machine with

register data values distributed across future file,
reservation stations, reorder buffer, and architectural
register files

 Execution of the previous example on a machine with
register data values consolidated in a centralized physical
register file

 Think of the tradeoffs between the two designs
 Understand how each design works

14

