
15-740/18-740
Computer Architecture

Lecture 11: More Out-of-Order Execution

Prof. Onur Mutlu
Carnegie Mellon University

Fall 2011, 10/5/2011

Last Lecture
 Downsides of static scheduling
 Out of order execution (Dynamic scheduling)

 Data stored in many places (reservation stations) vs.
 Central physical register file

2

Today
 More on out-of-order execution
 An example code execution
 Issues in out-of-order processing

3

Reviews
 Due next Monday

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory
Latency Tolerance,” IEEE Micro Top Picks 2006.

 Due next Wednesday
 Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

4

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones
 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction
 Instructions dispatched in dataflow (not control-flow) order

 Benefit:
 Latency tolerance: Allows independent instructions to execute

and complete in the presence of a long latency operation

5

In-order vs. Out-of-order Dispatch
 In order dispatch:

 Tomasulo + precise exceptions:

 16 vs. 12 cycles
6

F D WE E E E R
F D E R W

F

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R3 R6, R8
ADD R7 R3, R9

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution
1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready

 Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)
 What if more instructions become ready than available FUs?

7

Summary of OOO Execution Concepts
 Renaming eliminates false dependencies

 Tag broadcast enables value communication between
instructions dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program
 which piece?

 Limited to the instruction window

 Can we do it for the whole program? Why would we like to?
 How can we have a large instruction window efficiently?

8

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

9

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

10

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available
 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)
 Reclaim rename tag

 no valid copy of tag in system!

11

Register Renaming and OoO Execution
 Architectural registers dynamically renamed

 Mapped to reservation stations

12

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1
1

1

1

1

1
1

1
1
1

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R3 R6, R8
ADD R7 R3, R9

IMUL S0 V1, V2

S0

S1

S2

S3

S4

1 1V1 V2- - mul

-

-

-
-
-

-
-
-

-

-

V0

V1
V2

V3

V4

V5
V6

V7

V8

V9

S0 0

ADD S1 S0, V4

0 1V3 V1S0 - add

Src1 tag Src1 value V? Src2 tag Src2 value V? Ctl

S1

1 1V6 V7- - add

ADD S2 V6, V7S2

1

1

S?

0
IMUL S3 V6, V8

1 1V6 V8- - add

S3

1
BROADCAST S2 and new1V1

1new1V1

ADD S4 S3, V9

Completed --- Wait for Retirement

0 1V3 V9S3 - add

S4 0

BROADCAST S0 and new1V3
1new2V3

Completed --- Wait for Retirement
1BROADCAST S1 and new2V3

Retired --- Entry Deallocated

BROADCAST S3 and new3V3

Completed --- Wait for RetirementRetired --- Entry Deallocated

1new3V3

1new3V3

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with future file and

reorder buffer
 in an out-of-order dispatch pipelined machine with future file

and reorder buffer
13

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

F D E R W

An Exercise (II)
 Execution of the previous example on a machine with

register data values distributed across future file,
reservation stations, reorder buffer, and architectural
register files

 Execution of the previous example on a machine with
register data values consolidated in a centralized physical
register file

 Think of the tradeoffs between the two designs
 Understand how each design works

14

