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Last Lecture
 Downsides of static scheduling
 Out of order execution (Dynamic scheduling)

 Data stored in many places (reservation stations) vs.
 Central physical register file
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Today
 More on out-of-order execution
 An example code execution
 Issues in out-of-order processing
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Reviews
 Due next Monday

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory 
Latency Tolerance,” IEEE Micro Top Picks 2006.

 Due next Wednesday
 Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998.
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Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of 
independent ones
 Rest areas for dependent instructions: Reservation stations 

 Monitor the source “values” of each instruction in the 
resting area

 When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction
 Instructions dispatched in dataflow (not control-flow) order 

 Benefit:
 Latency tolerance: Allows independent instructions to execute 

and complete in the presence of a long latency operation

5



In-order vs. Out-of-order Dispatch
 In order dispatch:

 Tomasulo + precise exceptions:

 16 vs. 12 cycles
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Enabling OoO Execution
1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value 
2. Need to buffer instructions until they are ready

 Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced
 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)
 What if more instructions become ready than available FUs?
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Summary of OOO Execution Concepts
 Renaming eliminates false dependencies

 Tag broadcast enables value communication between 
instructions  dataflow

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program
 which piece?

 Limited to the instruction window

 Can we do it for the whole program? Why would we like to?
 How can we have a large instruction window efficiently?
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Two Humps in a  Modern Pipeline

 Hump 1: Reservation stations (scheduling window)
 Hump 2: Reordering (reorder buffer, aka instruction window 

or active window)
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 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming
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Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station

 Only rename if reservation station is available
 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit)
 Reclaim rename tag

 no valid copy of tag in system!
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Register Renaming and OoO Execution
 Architectural registers dynamically renamed

 Mapped to reservation stations
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An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)
 Assume one adder and one multiplier
 How many cycles

 in a non-pipelined machine
 in an in-order-dispatch pipelined machine with future file and 

reorder buffer
 in an out-of-order dispatch pipelined machine with future file 

and reorder buffer
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An Exercise (II)
 Execution of the previous example on a machine with 

register data values distributed across future file, 
reservation stations, reorder buffer, and architectural 
register files

 Execution of the previous example on a machine with 
register data values consolidated in a centralized physical 
register file

 Think of the tradeoffs between the two designs
 Understand how each design works
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