FastHASH: A new algorithms for fast and comprehensive next generation sequence mapping

Hongyi Xin
Computer Science Department of School of
Computer Science, CMU

Donghyuk Lee
Electrical and computer engineering department
of School of Engineering, CMU

DNA sequencing & mrFAST

Background: DNA sequencing
- **Goal:** People want to know their DNA at a cheap cost
- **Mechanism:** Read short fragments and reconstruct them
 - Via aligning them against a Reference DNA
 - String Mapping
- **Difficulties:** Individuals have mutations including
 - Mismatch, Insertion, and Deletions

mrFAST: Hash table for fast location look up
- Hash table -- fast lookup
- String comparison -- detailed mutation information

String comparison -- Expensive function

mrFAST flow chart

Problem of mrFAST
- Too slow: 5 hours 40 min for 1M reads
- String Compare is expensive: over 9 µs each
- Extra memory access further slows down the program

Adjacency Filtering

Observation
- String comparison takes too much time
 - Most string compares are useless
 - Lots of memory accesses

Mechanism
- Adjacency Filtering -- Reducing String Comparison
 - If perfect match, consecutive segments should be at consecutive locations!

Evaluation
- Filter out less relevant coordinates: -- Reducing Edit-distance calculation

Cheap Key Selection

Observation
- Load imbalance of Hash Table
 - Longer entries ➔ more computation, higher frequency

Mechanism
- Selecting e+1 keys for full coverage: Pigeon Hole Theorem
 - Search for e+1 key is sufficient:
 - At least one of them has no error
 - Sort them based on their coordinate list's size,
 - Shorter, the cheaper
 - Select the cheapest e+1 keys
- Benefits of Cheap Key Selection:
 - Reducing the number searching in Adjacency Filtering

Evaluation
- Selecting cheapest e+1 keys: Reduce searching

Methodology

- **Input fragment set:**
 - Fragment length: 108 base-pairs
 - Fragment size: 1 million
 - Fragment composition: first 1 million fragments from the first chromosome of reference DNA
 - Endurance: 3 mismatches or insertions or deletions
- **Processing Platform:**
 - CPU: Intel Sandybridge i7 with 16 GB main memory
 - GPU: Nvidia Tesla 2070C with 6 GB local memory (GDDR5)

Evaluation & Conclusion

- **CPU Run time Comparison**
 - CPU Run time Comparison
 - CPU GPU Comparison
- **Conclusion**
 - Adjacency Filtering Provides 1.87x speed up
 - Adjacency Filtering + Check Key Selection Provides 14x speed up
- **Explanation**
 - The code does not explore enough parallelism
 - Bad communication to computation ratio