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Abstract

A machine’s performance is the product of its IPC
(Instructions Per Cycle) and clock frequency. Recently,
Palacharla, Jouppi, and Smith [3] warned that the dynamic
instruction scheduling logic for current machines performs
an atomic operation. Either you sacrifice IPC by pipelin-
ing this logic, thereby eliminating its ability to execute de-
pendent instructions in consecutive cycles. Or you sacrifice
clock frequency by not pipelining it, performing this atomic
operation in a single long cycle. Both alternatives are un-
acceptable for high performance.

This paper offers a third, acceptable, alternative:
pipelined scheduling with speculative wakeup. This tech-
nique pipelines the scheduling logic without eliminating its
ability to execute dependent instructions in consecutive cy-
cles. With this technique, you sacrifice little IPC, and no
clock frequency. Our results show that on the SPECint95
benchmarks, a machine using this technique has an average
IPC that is 13% greater than the IPC of a baseline machine
that pipelines the scheduling logic but sacrifices the ability
to execute dependent instructions in consecutive cycles, and
within 2% of the IPC of a conventional machine that uses
single cycle scheduling logic.

1. Introduction

To achieve higher levels of performance, processors are
being built with deeper pipelines. Over the past twenty
years, the number of pipeline stages has grown from 1 (In-
tel 286), to 5 (Intel486), to 10 (Intel Pentium Pro), to 20
(Intel Willamette) [2, 6]. This growth in pipeline depth will
continue as processors attempt to exploit more parallelism.

As pipeline depths grow, operations that had previously
taken only a single pipeline stage are pipelined. Recently,
Palacharla, Jouppi, and Smith [3] stated: “Wakeup and se-
lect together constitute what appears to be an atomic op-
eration. That is, if they are divided into multiple pipeline
stages, dependent instructions cannot issue in consecutive

cycles.” They use the word atomic here to imply that the
entire operation must finish before the wakeup/select oper-
ations for dependent instructions can begin. Thus, if depen-
dent instructions are to be executed in consecutive cycles—
which is necessary for achieving the highest performance—
the scheduling logic performs this operation in one cycle.

This paper demonstrates that this logic can be pipelined
without sacrificing the ability to execute dependent instruc-
tions in consecutive cycles. It introduces pipelined schedul-
ing with speculative wakeup, which pipelines this logic over
2 cycles while still allowing back-to-back execution of de-
pendent instructions. With this technique, deeper pipelines
and/or bigger instruction windows can be built. This will
allow processors to exploit more parallelism, and therefore,
allow processors to achieve higher performance.

The paper describes two implementations of pipelined
scheduling with speculative wakeup for a generic dynami-
cally scheduled processor: the budget implementation and
the deluxe implementation. The budget model has a lower
implementation cost than the deluxe model, but not as great
an improvement in performance. The generic processor
and these two implementations are examples only. There
are many processor microarchitectures, and many possible
implementations of pipelined scheduling with speculative
wakeup. We could not model all of them. Nevertheless, we
hope that by examining these simple examples, microarchi-
tects will be able to implement pipelined scheduling with
speculative wakeup on real-world microarchitectures.

The paper then compares the IPC (Instructions Per Cy-
cle) of machines using these two implementations to the
IPC of a baseline machine that pipelines the scheduling
logic but sacrifices the ability to execute dependent instruc-
tions in consecutive cycles. For the 8 SPECint95 bench-
marks, the average IPC of the machine using the budget
implementation is 12% higher than the IPC of the base-
line machine, and the IPC of the machine using the deluxe
implementation is 13% higher. This paper also compares
the IPC of machines using these two implementations to
the IPC of a conventional machine that does not pipeline



the scheduling logic. Both machines have IPCs that are
within 3% of the IPC of the conventional machine. If the
critical path through the scheduling logic limits the cycle
time for conventional machines, which is very likely if the
scheduling operation is considered an atomic unit, these two
implementations of pipelined scheduling with speculative
wakeup may allow a significant boost in clock frequency
with only a very minor impact on IPC.

This paper is divided into six sections. Section 2 presents
background information necessary for understanding this
study. Section 3 describes conventional instruction schedul-
ing logic. Section 4 describes pipelined scheduling with
speculative wakeup. Section 5 presents the experiments,
and Section 6 provides some concluding remarks.

2. Background

This section presents background information neces-
sary for understanding our study. Section 2.1 presents our
pipeline model. Section 2.2 introduces some terms. Sec-
tion 2.3 introduces the scheduling apparatus.

2.1. Pipeline Model

Figure 1 shows the pipeline of a generic dynamically
scheduled processor. The pipeline has 7 stages: fetch, de-
code, rename, wakeup/select, register read, execute/bypass,
and commit. Each stage may take more than one cycle.
For example, the execute/bypass stage usually takes two or
more cycles for loads: one cycle to calculate the load ad-
dress, and one or more cycles to access the cache.

BypassRead

wait in reservation stations

Fetch Decode Rename CommitSelect
Wakeup Register Execute

Figure 1. Processor Pipeline

In the fetch stage, instructions are fetched from the in-
struction cache. They are then decoded and their register
operands renamed. Next, they are written into the reserva-
tion stations where they wait for their source operands and a
functional unit to become available. When this occurs (that
is, an instruction wakes up and is selected), the instruction
is sent to a functional unit for execution. Its register val-
ues are either read from the register file or bypassed from
earlier instructions in the pipeline. After it completes ex-
ecution, it waits in the reservation stations until all earlier
instructions have completed execution. After this condition
is satisfied, it commits: it updates the architectural state and
is deallocated from the reservation stations. 1

1Conventional machines aggressively deallocate reservation stations.
We do not consider aggressive deallocation, and simply assume that reser-
vation stations are deallocated at commit.

Note that after an instruction is selected for execution,
several cycles pass before it completes execution. During
this time, instructions dependent on it may be scheduled
(woken up and selected) for execution. These dependent
instructions are scheduled optimistically. For example, if
they depend on a load, they are scheduled assuming the load
hits the cache. If the load misses, the dependent instruc-
tions execute—spuriously—without the load result. The
dependent instructions must be re-scheduled (and thus, re-
executed) once the load result is known.

2.2. Terminology

Figure 2 shows a partial data flow graph. Each node rep-
resents an operation. The arrows entering a node represent
the values consumed by the operation. The arrow exiting a
node represents the value produced by the operation.

ADD

NEGXOR AND

Parents:

NOT

SUB MUL

Grandparents:

Figure 2. Example Data Flow Graph

The ADD operation consumes the values produced by
its parents; i. e., the SUB and MUL operations. The ADD’s
parents consume the values produced by its grandparents;
i. e., the SUB consumes the values produced by the XOR
and NEG operations, and the MUL consumes the values
produced by the NOT and AND operations. The reverse
relationships also hold: the ADD is the child of the SUB
and MUL operations; and the grandchild of the XOR, NEG,
NOT, and AND operations.

2.3. Scheduling Apparatus

Three pieces of logic are needed to perform the dynamic
scheduling: rename logic, wakeup logic, and select logic.

The rename logic maps an instruction’s architectural reg-
ister identifiers to physical register identifiers. This elimi-
nates the anti and output register dependencies between in-
structions. We assume the map is stored in a register file,
as described by Palacharla, Jouppi, and Smith [3], and as
implemented in the MIPS R10000 [5]. Accessing this reg-
ister file with an architectural register identifier yields the
physical register identifier to which it is mapped.



The wakeup logic is responsible for waking up the in-
structions that are waiting for their source operands to be-
come available. For conventional scheduling, this is ac-
complished by monitoring each instruction’s parents. For
pipelined scheduling with speculative wakeup, it is accom-
plished by monitoring each instruction’s parents and grand-
parents. The wakeup logic is part of the reservation stations.
Each reservation station entry (RSE) has wakeup logic that
wakes up any instruction stored in it.

The select logic chooses instructions for execution from
the pool of ready instructions. We assume each functional
unit has a set of dedicated RSEs, as described by Toma-
sulo [4]. Select logic associated with each functional unit
selects the instruction that the functional unit will execute
next. The selection is performed by choosing one ready in-
struction from the functional unit’s set of dedicated RSEs.

Figure 3 will be used to further describe the operation of
the scheduling apparatus. It shows a microarchitecture that
has 8 functional units and 128 RSEs.
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Figure 3. Processor Microarchitecture

Each functional unit has a dedicated set of 16 RSEs, se-
lect logic, a tag bus, and a result bus. The select logic
chooses the instructions the functional unit executes from
the RSEs. After an instruction is chosen, a tag associated
with the instruction is broadcast over the tag bus to all 128
RSEs. This tag broadcast signals dependent instructions
that the instruction’s result will soon be available. After
an instruction executes, it broadcasts its result over the re-
sult bus to the register file and to any dependent instructions
starting execution.

After an instruction is fetched, decoded, and renamed,
it is written into a RSE. Each RSE has wakeup logic that
monitors the tag buses. For conventional scheduling, when
the tags of all the instruction’s parents have been broadcast,

the RSE asserts its request line. (The request lines are la-
beled R1–R16.) For pipelined scheduling with speculative
wakeup, the RSE asserts its request line, if, for each of the
instruction’s parents, the parent’s tag has been broadcast or
all the parent’s parents’ tags have been broadcast. The se-
lect logic for each functional unit monitors the request lines
of the functional unit’s dedicated set of RSEs, and grants
up to one of these requests each cycle. (The grant lines are
labeled G1–G16.) After a request is granted, the instruction
that generated the request is sent to the functional unit for
execution. In addition, the tag for that instruction is broad-
cast over the tag bus. The instruction either reads its register
values from the register file or receives them from instruc-
tions just completing execution via bypasses.

3. Conventional Scheduling

Sections 3.1, 3.2, and 3.3 describe the implementations
of the rename, wakeup, and select logic for conventional
dynamic instruction scheduling. Section 3.4 gives an ex-
ample of the operation of conventional 1-cycle scheduling,
and Section 3.5 gives an example of the operation of con-
ventional scheduling pipelined over 2 cycles.

3.1. Rename Logic

Register renaming performs two primary tasks: allocat-
ing physical registers for the destinations of instructions,
and obtaining the physical register identifiers for the sources
of instructions. An instruction reads the rename map for
each architectural source register to obtain the physical reg-
ister identifier for that source. It also writes the identifier
of its allocated physical register into the rename map entry
associated with its architectural destination register.

In a superscalar processor, a group of instructions must
be renamed at the same time. To detect dependencies be-
tween instructions in the same group, the sources of each
instruction are compared to the destinations of all previous
instructions in the same group. If an instruction’s parent is
in its group, the identifier of the physical register allocated
to the parent overrides the identifier obtained from the re-
name map. Figure 4 shows the dependency analysis logic
for the first three instructions in a group.

3.2. Wakeup Logic

After instructions have been renamed, they wait in reser-
vation stations for their sources to become ready. Each RSE
contains information about each of the instruction’s sources,
such as the physical register identifier (tag) for the source,
whether the source is ready, and the number of cycles it
takes the producer of the source’s value to execute. Fig-
ure 5 shows the state information for one RSE. The fields
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Figure 4. Dependency Analysis Logic for Three Instructions

RSE SRC TAG M SHIFT R SRC TAG M SHIFT RDELAY DELAY

SELECT
LOGIC

DEST TAG

GrantRequest

Destination Tag Bus

Figure 5. Scheduling Logic for One Reservation Station Entry

labeled SRC TAG contain the tags of the source operands.
The R (READY) bit for each source is set if the data for
that source is available in the register file or is available for
bypass from a functional unit.

In our machine model, instructions broadcast their tags
in the same cycle they are selected for execution. Because
not all instructions have the same execution latency, the
number of cycles between the time their tags are broadcast
and the time their results are available is not constant. The
DELAY fields are used to handle this variability. 2 For each
source, the DELAY field encodes the number of cycles—
relative to some base—between when the tag for the source
is broadcast and when the associated result is available. We
will provide more details shortly about the actual number
that is encoded. For the logic implementation described in
this paper, this number is encoded as an inverted radix-1
value; e. g., 3 is represented by ‘1. . . 1000’.

Figure 6 shows the wakeup logic of one source tag for
our machine model. It is similar to the MIPS R10000
wakeup logic [5] but has been modified for handling multi-
cycle operations. When the destination tag of a parent is
broadcast, one of the tag comparators will indicate that a

2Alternative solutions exist. For example, if each functional unit only
executes instructions that all have the same latency, the tag broadcast can
simply be delayed so that it occurs a fixed number of cycles before the re-
sult broadcast. This eliminates the need for the DELAY fields. However,
if functional units can execute instructions of differing latencies, this solu-
tion is unsuitable at high clock frequencies: Multiple pipe stages may need
to broadcast tags, rather than just one. Either the pipe stages will need to
arbitrate for tag buses, or the number of tag buses will need to be increased.

match has occurred, and the M (MATCH) bit will be set.
The MATCH bit is a sticky bit that will remain set after the
tag match. On a tag match, the SHIFT field is loaded with
the value contained in the DELAY field. The SHIFT field is
actually contained in an arithmetic right shift register. The
MATCH bit is the shift enable for this register. The least sig-
nificant bit of the SHIFT field is the READY bit mentioned
above. After the READY bits for all source operands have
been set, the instruction requests execution.

= OR

=

load

shift
SRC TAG M SHIFT R

Source is Ready

DELAY

Destination Tag Bus
Tag 1

Tag 8

Figure 6. Conventional Wakeup Logic

For a source whose producer has an N-cycle execution
latency, the DELAY field contains N-1 zeros in the least
significant bits of the field. The remaining bits are all set to
1. This allows the READY bit to be set N-1 cycles after the
match. For example, in our model, a load instruction that
hits in the data cache takes three cycles to execute. Sup-



pose the DELAY field is four bits. The DELAY field for
an instruction dependent on a load would contain the value
‘1100’. When the tag match for the load occurs, this value
will be loaded into the SHIFT field, and the MATCH bit
will be set. After two more cycles, the SHIFT field will
contain the value ‘1111’, and, assuming the load hit in the
cache, this source will be ready. For a source operand with
a 1-cycle latency, the DELAY field will be ‘1111’. As soon
as there is a tag match, the READY bit will be set, allowing
the instruction to request execution.

The value for the DELAY field is obtained from a table
in the rename stage. The table also provides values for the
MATCH bit and SHIFT field for when the tag for a source
is broadcast before the instruction is written into the reser-
vation stations. This table is the analogue of the busy-bit
table in the MIPS R10000 [5]. For each physical register,
an entry in the table stores its DELAY field, MATCH bit,
and SHIFT field. When a destination tag is broadcast, the
MATCH bit and SHIFT field of the entry corresponding to
the tag is updated just like the MATCH bit and SHIFT field
of the wakeup logic for a matching source operand.

During decode, an instruction’s execution latency is de-
termined. After the instruction’s register operands have
been renamed, the table entry corresponding to the instruc-
tion’s physical destination register is updated. Its DELAY
field is set to a value derived from the instruction’s execu-
tion latency, its MATCH bit is reset, and its SHIFT field
is set to 0. Each of the instruction’s physical source regis-
ters then accesses the table to determine its DELAY field,
MATCH bit, and SHIFT field.

3.3. Select Logic

The select logic for each functional unit grants execu-
tion to one ready instruction. If more than one instruc-
tion requests execution, heuristics may be used for choosing
which instruction receives the grant [1]. The inputs to the
select logic are the request signals from each of the func-
tional unit’s RSEs, plus any additional information needed
for scheduling heuristics such as priority information. Im-
plementations of the select logic are discussed elsewhere [3]
and will not be covered in this paper. As shown in Figure 5,
when both READY bits are set, the instruction requests exe-
cution. If the instruction receives a grant, its destination tag
is broadcast on the tag bus. The execution grant must also
be able to clear the MATCH, SHIFT, and READY fields
of the RSE so that the instruction does not re-arbitrate for
selection.

3.4. Dependent Instruction Execution

In this implementation of conventional scheduling logic,
an instruction wakes up in the last half of a clock cycle, and

is potentially selected in the first half of the next clock cycle.
Note that the wakeup and selection of the instruction strad-
dles a clock edge. If the instruction is selected, the grant
from the select logic gates the instruction’s destination tag
onto the tag bus, which is then fed to the tag comparators
of the wakeup logic. Thus, the tasks of selection, tag broad-
cast, and wakeup must all occur within in one cycle in order
for dependent instructions to wakeup in consecutive cycles.

Figure 7 is an example of the conventional scheduling
operation. It shows the pipeline diagram for the execution
of the left three instructions of the data flow graph in Fig-
ure 2. This schedule assumes each instruction has a 1-cycle
latency, and all other parents and grandparents of the ADD
are already done. In cycle 1, the READY bit for the XOR’s
last source is loaded with a 1. In cycle 2, the XOR is se-
lected for execution. Its destination tag is broadcast on the
tag bus, and the MATCH, SHIFT, and READY fields of its
RSE are cleared so that it does not request execution again.
In this same cycle, the SUB matches the tag broadcast by
the XOR, and a 1 is loaded into its READY bit. In cycle
3, the SUB is selected, it broadcasts its destination tag, and
wakes up the ADD.. . .

Select/
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Execute/
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Select/
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Figure 7. Execution of a Dependency Chain
Using 1-Cycle Conventional Scheduling

3.5. Pipelined Conventional Scheduling Logic

To break the conventional scheduling logic into a 2-cycle
pipeline, a latch must be added in the path of the select
logic, tag broadcast, and wakeup logic. We will assume
the execution grant from the select logic is latched. Hence
the select logic takes one cycle, and the tag broadcast and
wakeup logic take one cycle.

Because a latch has been inserted in what was previously
an atomic operation, there is a minimum of 2 cycles be-
tween the wakeup of dependent instructions. If a parent
instruction has a 1-cycle execution latency, this will create
a 1-cycle bubble in the execution of the dependency chain.
If the parent takes two or more cycles to execute, the bub-
ble can be avoided by using a different encoding for the
DELAY field. For 2-stage pipelined scheduling logic, the
DELAY field for any 1-cycle or 2-cycle operation should
be encoded as all 1s. For a latency of N (N � 1) cycles, the
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DELAY field should contain N-2 zeros in the least signifi-
cant bits, and the upper bits would be set to 1.

Figure 8 shows an example of executing the depen-
dency chain ADD� LOAD� OR using 2-cycle pipelined
scheduling logic. The ADD instruction wakes up in cycle 1
and is selected for execution in cycle 2. The ADD is the par-
ent of the LOAD, and has a 1-cycle latency, so the LOAD’s
DELAY field is ‘1111’. In cycle 3, the ADD broadcasts
its tag. The LOAD matches, loads its SHIFT field with the
contents of the DELAY field, and thus wakes up. The load
instruction is selected for execution in cycle 4, and broad-
casts its tag in cycle 5. The tag match triggers the OR to set
its MATCH bit and load the SHIFT field with the contents
of the DELAY field. Since the LOAD is a 3-cycle opera-
tion, the contents of the DELAY field for the OR’s source
would be ‘1110’. At the end of cycle 6, the value ‘1111’ is
shifted into the OR’s SHIFT field, and the OR wakes up. In
cycle 7, the OR is selected for execution. Note that because
the ADD is a 1-cycle operation, there is a 1-cycle bubble be-
tween the ADD and the LOAD. However, there is no bubble
between the LOAD and the OR since the extra scheduling
cycle is hidden by the execution latency of the LOAD.

4. Pipelined Scheduling with Speculative
Wakeup

In the last section, we showed that pipelining the con-
ventional scheduling logic introduces pipeline bubbles be-
tween dependent instructions. In this section, we show how
to pipeline this logic over two cycles without having these
bubbles.

Here is a brief overview of this technique: If the par-
ents of an instruction’s parent have been selected, then it is
likely that the parent will be selected in the following cy-
cle (assuming the parent’s parents are 1-cycle operations).
Thus, for scheduling logic pipelined over 2 cycles, the child
can assume that when the tags of the grandparent pair have
been received, the parent is probably being selected for exe-
cution and will broadcast its tag in the following cycle. The
child can then speculatively wakeup and be selected the cy-
cle after its parent is selected. Because it is not guaranteed
that the parent will be selected for execution, the wakeup is
only speculative.

Sections 4.1, 4.2, and 4.3 describe implementations of
the rename, wakeup, and select logic for this scheduling
mechanism. Section 4.4 gives an example of the schedul-
ing operation. Section 4.5.1 discusses an implementation
that reduces the amount of logic and state that is kept in the
reservation stations. Section 4.5.2 shows that scheduling
with speculative wakeup also works for machines that have
instruction re-execution.

4.1 Rename Logic

For pipelined scheduling with speculative wakeup, the
rename logic is responsible for determining the destination
tags of the instruction’s grandparents as well as the desti-
nation tags of its parents. The grandparents are required
for speculative wakeup, which will be described in the next
section. At the end of rename, each of the instruction’s ar-
chitectural source register identifiers has been replaced by
a parent’s destination tag, and the set of destination tags of
that parent’s parents.

To do this, the rename map must be modified. Each map
entry is extended so that, in addition to the original phys-
ical register identifier, it contains the set of identifiers of
the physical registers that are needed to compute the value
of the physical register specified by the original identifier.
That is, for the instruction that updated the entry, the en-
try contains the instruction’s destination tag, and the set of
destination tags of the instruction’s parents.

At the beginning of rename, an instruction’s architectural
source register identifiers are used to index the rename map.
Each rename map lookup yields one of the instruction’s par-
ent’s destination tag, and the set of destination tags of that
parent’s parents. At the end of rename, the instruction’s
destination tag is known, and the destination tags of the in-
struction’s parents are known. This information is used to
update the map entry whose index is equal to the instruc-
tion’s architectural destination register identifier.

The dependency analysis logic also needs to be modified.
For conventional scheduling, when there is a dependency
between two instructions in the group of instructions being
renamed, the destination tag of the earlier instruction must
be selected as the source tag of the later, dependent instruc-
tion. This ensures that the dependent instruction has the



correct destination tag for its parent. For pipelined schedul-
ing with speculative wakeup, the logic must also ensure that
the dependent instruction has the correct destination tags for
that parent’s parents. Note that the correct destination tags
for that parent’s parents are simply the parent’s source tags.

To account for this, the set of destination tags for a partic-
ular parent’s parents is determined by a MUX. An example
of one of these MUXes is shown in Figure 9. The MUX in
this figure selects the source tags of the third instruction’s
first parent; i. e., it selects the first two grandparent tags.
The inputs to this MUX come from the rename map and the
outputs of the MUXes shown in Figure 4. The first input
to the MUX is the set of destination tags for the parent’s
parents that were read from the rename map, and is selected
when the parent is not in the group. In Figure 9, this input,
labeled Parent IDs(Op3 src1), comes from the same entry
of the rename table as Phy ID(Op3 src1) shown in Figure 4.
The second input to the MUX is the set of source tags for
the first instruction in the group, and is selected if the par-
ent is the first instruction in the group. The third input to the
MUX is the set of source tags for the second instruction in
the group, and is selected if the parent is the second instruc-
tion in the group. The control for this MUX is the same as
the control used for the MUX to select the third instruction’s
first source tag shown in Figure 4. Hence, this MUX adds
at most one input-to-output delay to the critical path of the
rename logic. (The control for the MUX is determined well
before the input arrives.)

{Op1_src1 Tag, Op1_src2 Tag}

{Op2_src1 Tag, Op2_src2 Tag}

Parent_IDs(Op3_src1)

{Op3_GP1 Tag, Op3_GP2 Tag}

Control
Op3_src1 MUX

Figure 9. A Grandparent MUX

4.2. Wakeup Logic

The reservation stations contain wakeup logic for par-
ents and grandparents. The wakeup logic for each source is
identical to that explained in Section 3.2. As in the conven-
tional 2-cycle pipelined scheduling logic, the DELAY field
for each parent contains N-2 zeros in the least significant
bits, and ones in the other bits, where N is the execution la-
tency of the parent. The DELAY field for each grandparent
contains N-1 zeros in the least significant bits, and ones in
the other bits, where N is the latency of the grandparent.

Not all parent and grandparent fields are used for
wakeup. If a parent instruction is a multi-cycle operation,
then the fields for its parents can be ignored; that is, their

RSE fields can be marked invalid. Instead only the tag of
the multi-cycle parent will be used. As explained in Sec-
tion 3.5, there is no pipeline bubble between the execution
of a multi-cycle parent and its child for 2-cycle pipelined
scheduling logic.

Figure 10 shows how the READY bits for the parent and
grandparent tags are used to form the request sent to the se-
lect logic. A request is generated when the instruction is
speculatively ready. As shown, an instruction is specula-
tively ready when, for each parent, the parent’s parents are
ready or the parent is ready.

GP1 R GP2 R P1 R GP3 R GP4 R P2 R DEST TAG

LOGIC
SELECT

Destination Tag Bus

Request
Grant

LATCH

Confirm

Figure 10. Speculative Wakeup Logic

Although the logic path to the request line shown in this
figure has two additional gates compared to the implemen-
tation shown in Figure 5, this path could be shortened by
taking advantage of the fact that no more than four sources
are needed for wakeup. If a parent is a multi-cycle opera-
tion, then the RSE field for the parent can be copied into
one of the grandparent fields before placing the instruction
in the reservation station. In this case, a 4-input AND gate
would replace the AND-OR-AND path.

4.3 Select Logic

The request line shown in Figure 10 only indicates that
the instruction is speculatively ready, so the confirm line is
used to verify that the instruction is ready to execute. The
confirm line is only asserted when all of the instruction’s
parents are ready, and is typically asserted one cycle after
the request line. If the request has the highest priority, and
the confirm line is asserted, which means the instruction
is really (non-speculatively) ready, the request is granted.
Otherwise, the request is not granted.

False selection occurs whenever a request is not con-
firmed. That is, if the request line is asserted, and the con-
firm line is not asserted one cycle later, false selection oc-
curs. False selection is a performance problem when it pre-
vents a really ready instruction from being selected. This
only occurs when the request that wasn’t confirmed had the
highest priority and there were really ready instructions that
could have been selected.

For pipelined scheduling with speculative wakeup, an in-
struction and its parents can assert their request lines at the



same time. The machine must guarantee that the parents
are eventually selected for execution, otherwise, deadlock
can occur. There are many ways to provide this guarantee.
The most obvious is to use instruction age to assign selec-
tion priorities; i. e., older instructions (instructions that oc-
cur earlier in the dynamic instruction stream) have priority
over younger instructions. Another is to use a round robin
scheme to assign selection priorities.

4.4. Dependent Instruction Execution

To illustrate the operation of pipelined scheduling with
speculative wakeup, consider the dependency graph in Fig-
ure 11a. All instructions are 1-cycle operations except for
the LOAD, which takes 3 cycles. The SUB instruction will
wakeup on the tag broadcasts of the OR, XOR, and LOAD
instructions since the AND is a 1-cycle operation and the
LOAD is a 3-cycle operation. The DELAY field for the
SUB’s first parent, the AND, will contain the value ‘1111’.
This field will only be used for confirmation after selec-
tion has occurred. The DELAY fields for the SUB’s first
two grandparents, the OR and XOR, will contain the value
‘1111’. The DELAY field for the SUB’s second parent will
be encoded as ‘1110’ so that the SUB will delay its wakeup
for at least 1 cycle after the tag of the LOAD is broadcast.
The last two grandparent fields for the SUB are marked as
invalid, since they will not be used.
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Figure 11. Example of Speculative Wakeup

Figure 11b shows an example of the scheduling opera-
tion of this data flow graph when false selection occurs. For
this example, assume that the XOR, ADD, and LOAD in-
structions have already executed by cycle 1. Also assume
that all instructions except the SUB are in the same set of

reservation stations (designated by���), and the SUB is in
a second set (���). (There are no extra delays for broad-
casting tags or data between sets of reservation stations in
this example.) In cycle 1, the OR is selected for execution
and the AND and NOT wakeup on the tag broadcast by the
OR’s last parent. In cycle 2, the SUB wakes up after match-
ing the tag broadcast by the OR. The AND and NOT both
request execution in this cycle, but only the NOT receives
an execution grant. The NOT and AND also match the tag
broadcast by the OR instruction. In cycle 3, the AND and
SUB are both selected for execution. In cycle 4, the AND’s
selection is confirmed and its tag is broadcast, but the SUB’s
selection is not confirmed. This false selection may have
prevented the selection of another instruction in ��� in cy-
cle 3. The SUB requests execution again, and the selection
is confirmed in cycle 5.

4.5. Implementation Considerations

4.5.1. Reducing the Cost of the Wakeup Logic. We as-
sume the tag buses running through each RSE set the size
of the reservation stations, and that the wakeup logic asso-
ciated with each RSE can easily be hidden underneath all
these wires. If that is not the case, it is possible to reduce
the number of tags—and thus, size of the wakeup logic—
required to perform pipelined scheduling with speculative
wakeup. Two observations are required to understand how
this can be done.

The first: An instruction can always wake up using its
parent tags. The grandparent tags are only provided for per-
formance reasons. If some (or all) of them are missing, the
machine still functions correctly.

The second: An instruction becomes ready for execution
only after all its parents’ destination tags have been broad-
cast. If the machine can predict which parent will finish last,
it can use only the destination tags of that parent’s parents
to become speculatively ready. That is, each RSE will have
the tags of all the instruction’s parents, and, for the parent
that was predicted to be last, the tags of its parents. If the
prediction is wrong, the machine still functions correctly:
the instruction just isn’t selected as soon as it could be.

We used a simple scheme to predict the last parent. A 2-
bit saturating counter was stored along with each instruction
in the instruction cache. When an instruction was fetched,
the upper bit of the counter specified whether the first or
second parent would finish last. During rename, only the
parents of the parent that was predicted to finish last were
stored in the grandparent fields. While an instruction was
in the reservation stations, it recorded which parent finished
last. 3 When the instruction committed, it decremented the

3Actually, the only time the grandparent fields are used is when the
parent has a latency of 1 cycle. The instruction actually recorded which
parent with a 1 cycle latency finished last.



counter if the first parent finished last, and incremented it if
the second parent finished last.

4.5.2. Operation of Instruction Re-execution. The
scheduling logic presented can handle instruction re-
execution without any modification. As mentioned in Sec-
tion 2.1, the child of a load instruction is scheduled assum-
ing the load hits the cache. If the load misses, or if the load
is found to have a memory dependency on an earlier store
instruction, the load result may be delayed. When this hap-
pens, the chain of instructions dependent on the load must
be re-scheduled. This is accomplished by rebroadcasting
the load’s destination tag on the tag bus. When the tag is
rebroadcast, all children of the load will rewake since loads
are multi-cycle operations. All grandchildren of the load
will either rewake immediately, or if the dependent parent is
a multi-cycle operation, will rewake after that parent broad-
casts its tag. Hence there is never a situation where a de-
pendent of the load is not rewakened.

5. Experiments

To measure the impact of pipelining the scheduling
logic, we modeled four machines: a baseline machine,
which uses conventional scheduling pipelined over 2 cycles;
a budget and a deluxe machine, which use 2-cycle pipelined
scheduling with speculative wakeup; and an ideal machine,
which uses conventional 1-cycle scheduling logic. The bud-
get machine uses RSEs that can hold only two grandparent
tags. Last parent prediction is used to select which two.
The deluxe machine uses RSEs that can hold all grandpar-
ent tags. As mentioned in Section 3.5, the baseline machine
only introduces pipeline bubbles when scheduling single-
cycle instructions, not when scheduling multi-cycle instruc-
tions.

All machines were 8-wide superscalar processors with
out-of-order execution, configured as shown in Table 1.
They required 2 cycles for fetch, 2 for decode, 2 for rename,
1 for register read, and 1 for commit. The ideal machine re-
quired 1 cycle for wakeup/select. The others required 2.
The execution latencies are shown in Table 2. An instruc-
tion with a 1-cycle execution latency requires a minimum of
10 cycles to progress from the first fetch stage to commit.

The machines were simulated using a cycle-accurate,
execution-driven simulator for the Alpha ISA. Figure 12
shows the IPC of the four machines over the SPECint95
benchmarks. The 15% IPC difference between the baseline
and ideal machines represents the amount of performance
that can be gained by using pipelined scheduling with spec-
ulative wakeup. The deluxe machine gains 86% of this dif-
ference. On average, the deluxe machine performs 13% bet-
ter than the baseline machine, and within 2% of the ideal
machine. The budget machine performs within 1% of the

Branch Predictor 15-bit gshare, 2048-entry BTB
Instruction Cache 64KB 4-way set associative (pipelined)

2-cycle directory and data store access
Instruction Window 128 RSE (16 for each functional unit)
Execution Width 8 multi-purpose functional units, only four

of which support load/store operations
Data Cache 64KB 2-way set associative (pipelined)

2-cycle directory and data store access
Unified L2 Cache 1MB, 8-way, 7-cycle access

2 banks, contention is modeled

Table 1. Machine Configuration

Instruction Class Latency (Cycles)

integer arithmetic 1
integer multiply 8, pipelined
fp arithmetic 4, pipelined
fp divide 16
loads 1 + dcache latency
all others 1

Table 2. Instruction Class Latencies

gcc go ijpeg li m88ksim perl comp vortex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

baseline model
budget model
deluxe model
ideal model

Figure 12. Comparison of the Four Machines

deluxe machine.
The IPC differences between the budget, deluxe, and

ideal machines are primarily due to false selections caused
by speculative wakeup. False selections only impact IPC if
other instructions that were ready to execute were prevented
from executing due to a false selection. Figure 13 shows the
amount of false selections and scheduling opportunities lost
due to false selections for the budget and deluxe machines.
This graph shows the fraction of scheduling opportunities
in which a selection resulted in: (1) a false selection that
prevented a ready instruction from receiving an execution
grant, (2) a false selection, but no instructions were ready,
and (3) a correct selection. The fourth case—the only other
possible case—is when no instructions request execution.
The first of each pair of bars (bars with solid colors) show
the cycle breakdown for the budget machine. The second of
each pair (striped bars) show the breakdown for the deluxe
machine. As the graph shows, the selection logic for a given
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Figure 14. Comparison of the Four Machines
for Different Window Sizes

functional unit awarded an execution grant 35% to 55% of
the time. A ready instruction was prevented from executing
due to a false selection only 1% to 7% of the time. Note that
these metrics cannot be compared to IPC since they measure
both non-speculative and speculative instructions.

The frequency of false selections is quite sensitive to the
amount of functional unit contention. Simulations of the
four machines using both 8 and 16 functional units and sev-
eral instruction window sizes were run to demonstrate the
effect of this contention on IPC. The simulation parameters
of the 16-wide issue machines are similar to those of the 8-
wide machines except that 8 of the 16 functional units are
capable of executing load and store instructions. Figure 14
shows the harmonic mean of the IPC of the SPECint95
benchmarks for all models using both issue widths when the
number of RSEs for each functional unit is varied from 8 to
64. The machine model with the most contention for exe-
cution resources is the 8-wide machine with a 512-entry in-
struction window. For this configuration, pipelined schedul-
ing with speculative wakeup gains 65% of the difference
between the baseline and ideal machines.

6. Conclusion

This paper demonstrates that the dynamic instruction
scheduling logic can be pipelined without sacrificing the
ability to execute dependent instructions in consecutive cy-
cles. It introduced pipelined scheduling with speculative
wakeup, which pipelines this logic over 2 cycles. This
technique significantly reduces the critical path through this
logic while having only a minor impact on IPC. If the crit-
ical path through this logic limits the processor cycle time,
this technique allows microarchitects to build higher per-
formance machines by enabling higher clock frequencies,
deeper pipelines, and larger instruction windows.
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