
The Journal of Supercomputing, 7, 9-50 (1993)
@ 1993 Kluwer Academic Publishers, Boston. Manufidctured in The Netherlands.

Instruction-Level Parallel Processing:
History, Overview, and Perspective

B. RAMAKRISHNA RAU AND JOSEPH A. FISHER
Hewleii-Packard Loborarories, 1501 Page Mill Road. Bldg. 3U, Palo Alto, CA 94304

(October 20, 1992)

Abstract. Instruction-level parallelism (d ~) is a family of processor and compiler design techniques that speed
up execution by causing Individual machine operations to execute rn parallel. Although ILP has appeared in the
highest performance uniprocessors for the past 30 years, the 19805 saw it become a much more significant force
in computer design. Several systems were bu~l t and sold commercially. which pushed ILP far beyond where ~t
had been before, both In terms of the amount of ILP offered and In the central role ILP played in the design
of the system. By the end of the decade, advanced microprocessor design at all major CPU manufacturers had
incorporated ILP. and new techniques for ILP had become a popular topic at academic conferences. This art~cle
prov~des an overview and h~stor~cal perspective of the field of ILP and its development over the past three decades.

Keywords. Instmaion-level parallelism, VLIW processors, superscalar processors, pipelining, multiple operation
issue, speculative execution, scheduling, reglster allotation.

1. Introduction

Instruction-level parallelism (ILP) is a family of processor and compiler design techniques
that speed up execution by causing individual machine operations, such as memory loads
and stores, integer additions, and floating point multiplications, to execute in parallel. The
operations involved are normal RISC-style operations, and the system is handed a single
program written with a sequential processor in mind. Thus an important feature of these
techniques is that like circuit speed improvements, but unlike traditional multiprocessor
parallelism and massive parallel processing, they are largely transparent to users. VLIWs
and superscalars are examples of processors that derive their benefit from instruction-level
parallelism, and software pipelining and trace scheduling are example software techniques
that expose the parallelism that these processors can use.

Although small amounts of ILP have been present in the highest performance uniproc-
essors of the past 30 years, the 1980s saw it become a much more significant force in com-
puter design. Several systems were built and sold commercially, which pushed ILP far beyond
where it had been before, both in terms of the amount of ILP offered and in the central
role ILP played in the design of the system. By the early 1990s, advanced microprocessor
design at all major CPU manufacturers incorporated ILP, and new techniques for ILP became
a popular topic at academic conferences. With all of this activity we felt that, in contrast
to a report on suggested future techniques, there would be great value in gathering, in an
archival reference, reports on experience with real ILP systems and reports on the measured
potentia\ of ILP. Thus this special issue of 7he Journal of Supercomputing.

1.1. ILP Erecurion 7 a3

4
9

A typical ILP processor has the same type of execution hardware as a normal RISC machine. a

The differences between a machine with ILP and one without is that there may be more 2
of that hardware, for example, several integer adders instead of just one, and that the con-
trol will allow, and possibly arrange, simultaneous access to whatever execution hardware z.
is present. o

3
Consider the execution hardware of a simplified ILP processor consisting of four func-

tional units and a branch unit connected to a common register file (Table 1). Typically 2
ILP execution hardware allows multiple-cycle operations to be pipelined, so we may assume 2
that a total of four operations can be initiated each cycle. If in each cycle the longest latency 2
operation is issued, this hardware could have ten operations "in flight" at once, which
would give it a maximum possible speedup of a factor of ten over a sequential processor 5
with similar execution hardware. As the papers in this issue show, this execution hardware
resembles that of several VLIW processors that have been built and used commercially, 3
though it is more limited in its amount of ILP. Several superscalar processors now being
built also offer a similar amount of ILP.

There is a large amount of parallelism available even in this simple processor. The chal-
lenge is to make good use of it-we will see that with the technology available today, an
ILP processor is unlikely to achieve nearly as much as a factor of ten on many classes
of programs, though scientific programs and others can yield far more than that on a proc-
essor that has more functional units. The first question that comes to mind is whether enough
ILP exists in programs to make this possible. Then, if this is so, what must the compiler
and hardware do to successfully exploit it? In reality, as we shall see in Section 4, the
two questions have to be reversed; in the absence of techniques to find and exploit ILP,
it remains hidden, and we are left with a pessimistic answer.

Figure la shows a very large expression taken from the inner loop of a compute-intensive
program. It is presented cycle by cycle as it might execute on a processor with functional
units similar to those shown in Table 1, but capable of having only one operation in flight

Zble I . Execution hardware for a simplified ILP processor.

Functional Unit Operations Performed Latency

Integer unlt I Integer ALU opcratlonb 1
Integer multiplication 2
Loads 2
Stores 1

Integer unit Zibranch unit Integer ALU operations 1
Integer multiplical~on 2
Loads 2
Stores 1
Test-and-branch 1

Floating point unit 1 Floating point operations 3
Floating point unit 2

CYCLE 1 xseedl = xseed 1309
CYCLE 2 nop
CYCLE 3 ncp
CYCLE 4 yseedl = yseed 1308
CYCLE 5 nop
CYCLE 6 nop
CYCLE 7 xseed2 = xseedl + 13849
CYCLE 8 yseed2 = yseedl + 13849
CYCLE 9 xseed = xseed2 & & 65535
CYCLE 0 yseed = yseed2 & & 65535
CYCLE 11 tseedl = tseed 1307
CYCLE 12 nop
CYCLE 13 nop
CYCLE 14 vseedl = vseed 1306
CYCLE 15 nop
CYCLE 16 nop
CYCLE 17 tseed2 = tseedl + 13849
CYCLE 18 vseed2 = vseedl + 13849
CYCLE 19 tseed = tseed2 && 65535
CYCLE 20 vseed = vseed2 & & 65535
CYCLE 21 xsq = xseed xseed
CYCLE 22 nop
CYCLE 23 nop
CYCLE 24 ysq = yseed . yseed
CYCLE 25 cop
CYCLE 26 nop
CYCLE 27 xysumsq = xsq + ysq
CYCLE 28 tsq = tseed - tseed
CYCLE 29 nop
CYCLE 30 nop
CYCLE 31 vsq = vseed4* vseed
CYCLE 32 nop
CYCLE 33 nop
CYCLE 34 tvsurnsq = tsq t vsq
CYCLE 35 p l c = plc t 1
CYCLE 36 tp = tp + 2
CYCLE 37 lf xysumsq > radius goto @w-no-hit

(a)

INT ALU INT ALU FLOAT ALU FLOAT ALU

CYCLE 1 tp=tpt2 plc-plctl vseedl=vseed*l306 tseedl=tseed.1307
CYCLE 2 yseedl=yseed.1308 xseedl=xseed'l309
CYCLE 3 nop
CYCLE 4 vseed2=vseedltl3849 tseed2=tseedlt13849
CYCLE 5 yseed2=yseedlt13849 xseed2=xseedl+l3849
CYCLE 6 yseed=yseed2&&65535 xseed=xseed2&&65535
CYCLE 7 vseed=vseed2&&65535 tseed=tseed2&&65535 ysq=yseed*yseed xsqzxseed'xseed
CYC1.E 8 vsq~vseed'vsood teq=tseed*tseed
CYC1.E 9 nop
CYCL,E 0 xysumsq=xsqtysq
CYCLE 11 tvsumsq=tsqtvsq lf xysumsq>radlus goto Oxy-no-hlt

I b)

Figure I. (a) A n example of the sequential record of execution for a loop. (b) The instruction-level parallel record
of execution for the same loop.

at a time. Figure Ib shows the same program fragment as it might be executed on the hard-
ware indicated in Table 1.

Note that several of the cycles in Figure la contain no-ops. This is because the sequential
processor must await the completion of the three-cycle latency multiply issued in cycle 1
before issuing the next operation. (These no-ops would not appear in the text of a program,
but are shown here as the actual record of what is executed each cycle.) Most instruction-
level parallel processors can issue operations during these no-op cycles, when previous
operations are still in flight, and many can issue more than one operation in a given cycle.

In our ILP record of execution (Figure lb), both effects are evident: In cycle 1, four opera-
tions are issued; in cycle 2, two more operations are issued even though neither multiply
in cycle 1 has yet completed execution.

This special issue of The Journal of Supercomputing concerns itself with the technology
of systems that try to attain the kind of record of execution in Figure lb, given a program
written with the record of execution in Figure la in mind.

1.2. Early History of Instruction-level Parallelism

In small ways, instruction-level parallelism factored into the thinking of machine designers
in the 1940s and 1950s. Parallelism that would today be called horizontal microcode ap-
peared in Turing's 1946 design of the Pilot ACE [Carpenter and Doran 19861 and was care-
fully described by Wiikes [1951]. Indeed, in 1953 Wilkes and Stringer wrote, "In some
cases i t may be possible for two or more micro-operations to take place at the same time"
[Wilkes and Stringer 19531.

The 1960s saw the appearance of transistorized computers. One effect of this revolution
was that it became practical to build reliable machines with far more gates than was necessary
to build a general-purpose CPU. This led to commercially successful machines that used
this available hardware to provide instruction-lea4el parallelism at the machine-language
level. In 1963 Control Data Corporation started delivering its CDC 6600 [Thornton 1964,
19701, which had ten functional units-integer add, shift, increment (2), multiply (2), logical
branch, floating point add and divide. Any one of these could start executing in a given
cycle whether or not others were still processing data-independent earlier operations. In
this machine the hardware decided, as the program executed, which operation to issue in
a given cycle; its model of execution was well along the way toward what we would today
call superscalar. Indeed, in many ways it strongly resembled its direct descendant, the scalar
portion of the CRAY-1. The CDC 6600 was the scientific supercomputer of its day.

Also during the 1960s, IBM introduced, and in 1967-68 delivered, the 360191 [EIM 19671.
This machine, based partly on IBM's instruction-level parallel experimental Stretch proc-
essor, offered less instruction-level parallelism than the CDC 6600, having only a single
integer adder, a floating point adder, and a floating point multiplyldivide. But it was far F
more ambitious than the CDC 6600 in its attempt to rearrange the instruction stream to -+
keep these functional units busy-a key technology in today's superscalar designs. For various

c nontechnical reasons the 360191 was not as commercially successful as it might have been,
with only about 20 machines delivered [Bell and Newell lrnl]. But its CPU architecture was 2
the start of a long line of successful high-performance processors. As with the CDC 6600, +
this ILP pioneer started a chain of superscalar architectures that has lasted into the 1990s. P

In the 1960s, research into "parallel processing" often was concerned with the ILP found $ 5
in these processors. By the mid-1970s the term was used more often for multiple processor 2
parallelism and for regular array and vector parallelism. In part, this was due to some very
pessimistic results about the availability of ILP in ordinary programs, which we discuss
below. P

1.3. Modem Instruction-Level Parallelism

In the late 1970s the beginnings of a new style of ILP, called very long instruction word
(VLIW), emerged on several different fronts. In many ways VLIWs were a natural outgrowth
of horizontal microcode, the first ILP technology, and they were triggered, in the 1980s,
by the same changes in semiconductor technology that had such a profound impact upon
the entire computer industry.

For sequential processors, as the speed gap between writeable and read-only memory
narrowed, the advantages of a small, dedicated, read-only control store began to disappear.
One natural effect of this was to diminish the advantage of microcode; it no longer made
as much sense to define a complex language as a compiler target and then interpret this
in very fast read-only microcode. Instead, the vertical microcode interface was presented
as a clean, simple compiler target. This concept was called RISC [Hennessy, Jouppi, Baskett
et al. 1982; Patterson and Sequin 1981; Radin 19821. In the 1980s the general movement
of microprocessor products was towards the RISC concept, and instruction-level parallel
techniques fell out of favor. In the minisupercomputer price-bracket though, one innovative
superscalar product, the ZS-1, which could issue up to two instructions each cycle, was
built and marketed by Astronautics [Smith et al. 19871.

The same changes in memory technology were having a somewhat different effect upon
horizontally microcoded processors. During the 1970s a large market had grown in special-
ized signal processing computers. Not aimed at general-purpose use, these CPUs hard-
wired FFTs and other important algorithms directly into the horizontal control store, gaining
tremendous advantages from the instruction-level parallelism available there. When fast,
writeable memory became available, some of these manufacturers, most notably Floating
Point Systems ICharlesworth 19811, replaced the read-only control store with writeable mem-
ory, giving users access to instruction-level parallelism in far greater amounts than the early
superscalar processors had. These machines were extremely fast, the fastest processors
by far in their price ranges, for important classes of scientific applications. However, despite
attempts on the part of several manufacturers to market their products for more general,
everyday use, they were almost always restricted to a narrow class of applications. This
was caused by the lack of good system software, which in turn was caused by the idiosyn-
cratic architecture of processors built for a single application, and by the lack at that time
of good code generation algorithms for ILP machines with that much parallelism.

As with RISC, the crucial step was to present a simple, clean interface to the compiler.
However, in this case the clean interface was horizontal, not vertical, so as to afford greater
ILP [Fisher 1983; Rau, Glaeser, and Greenawalt 19821. This style of architecture was dubbed
VLIW [Fisher 19831. Code generation techniques, some of which had been developed for
generating horizontal microcode, were extended to these general-purpose VLIW machines
so that the compiler could specify the parallelism directly [Fisher 1981; Rau and Glaeser
19811.

In the 1980s VLIW CPUs were offered commercially in the form of capable, general-
purpose machines. Three computer start-ups-Culler, Multiflow, and Cydrome-built
VLIWs with varying degrees of parallelism [Colwell et al. 1988; Rau et al. 19891. As a
group these companies were able to demonstrate that it was possible to build practical ma-
chines that achieved large amounts of ILP on scientific and engineering codes. Although,

for various reasons, none was a lasting business success, several major computer manufac-
turers acquired access to the technoiogies developed at these start-ups and there are several
active VLIW design efforts underway. Furthermore, many of the compiler techniques devel-
oped with VLIWs in mind, and reported upon in this issue, have been used to compile
for superscalar machines as well.

L3.1. ILP in the 1990s. Just as had happened 30 years ago when the transistor became
available, CPU designers in the 1990s now have offered to them more silicon space on
a single chip than a RISC processor requires. Virtually all designers have begun to add
some degree of superscalar capability, and some are investigating VLIWs as well. It is a
safe bet that by 1995 virtually all new CPUs will embody some degree of ILP.

Fartly as a result of this commercial resurgence of interest in ILP, research into that area
has become a dominant feature of architecture and systems conferences of the 1990s. Unfor-
tunately, those researchers who found themselves designing state-of-the-art products at com-
puter start-ups did not have the time to document the progress that was made and the large
amount that was learned. Virtually everything that was done by these groups was relevant
to what designers wrestle with today.

2. ILP Architectures

The end result of instruction-level parallel execution is that multiple operations are simul-
taneously in execution, either as a result of having been issued simultaneously or because
the time to execute an operation is greater than the interval between the issuance of succes-
sive operations. How exactly are the necessary decisions made as to when an operation
should be executed and whether an operation should be speculatively executed? The alter-
natives can be broken down depending on the exlcnt to which thcse decisions are made
by the compiler rather than by the hardware and on the manner in which information regard-
ing parallelism is communicated by the compiler to the hardware via the program.

A computer architecture is a contract between the class of programs that are written for
the architecture and the set of processor implementations of that architecture. Usually this
contract is concerned with the instruction format and the interpretation of the bits that con-
stitute an instruction, but in the case of ILP architectures it extends to information embedded
in the program pertaining to the available parallelism between the instructions or operations
in the program. With this in mind, ILP architectures can be classified as follows.

Sequential architectures: architectures for which the program is not expected to convey
any explicit information regarding parallelism. Superscalar processors are representative
of ILP processor implementations for sequential architectures [Anderson et al. 1967;
Apollo Computer 1988; Bahr et al. 1991; Blanck and Krueger 1992; DeLano et al. 1992;
Diefendorff and Allen 1992; IBM 1990; Intel 1989b; Keller et al. 195; Popescu et al.
1991; Smith et al. 1987; Thompson 1964).
Dependence architectures: architectures for which the program explicitly indicates the
dependences that exist between operations. Dataflow processors [Awind and Gostelow
1982; Arvind and Kathail 1981; Gurd et al. 19851 are representative of this class.

Independence architectures: architectures for which the program provides information
as to which operations are independent of one another. Very long instruction word (VLIW)
processors [Charlesworth 1981; Colwell et al. 1988; Rau et al. 19891 are examples of
the class of independence architectures.

In the context of this taxonomy, vector processors [Hintz and Tate 1972; Russell 1978;
Watson 19721 are best thought of as processors for a sequential, CISC (complex instruction
set computer) architkture. The complex instructions are the vector instructions that do
possess a stylized form of instruction-level parallelism internal to each vector instruction.
Attempting to execute multiple instructions in parallel, whether scalar or vector, incurs
all of the same problems that are faced by a superscalar processor. Because of their stylized
approach to parallelism, vector processors are less general in their ability to exploit all
forms of instruction-level parallelism. Nevertheless, vector processors have enjoyed great
commercial success over the past decade. Not being true ILP processors, vector processors
are outside the scope of this special issue. (Vector processors have received a great deal
of attention elsewhere over the past decade and have been treated extensively in many books
and articles, for instance, the survey by Dongarra [I9861 and the book by Schneck [I9871 .)
Also, certain hybrid architectures [Danelutto and Vanneschi 1990; Franklin and Sohi 1992;
Wolfe and Shen 19911, which also combine some degree of multithreading with ILP, fall
outside of this taxonomy for uniprocessors.

If ILP is to be achieved, between the compiler and the run-time hardware, the following
functions must be performed:

1. The dependences between operations must be determined.
2. The operations that are independent of any operation that has not as yet completed must

be dctcrm incd.
3. These independent operations must be scheduled to execute at some particular time,

on some specific functional unit, and must be assigned a register into which the result
may be deposited.

Figure 2 shows the breakdown of these three tasks, between the compiler and run-time
hardware, for the three classes of architecture.

2.1. Sequential Architectures and Superscalar Processors

The program for a sequential architecture contains no explicit information regarding the
dependences that exist between instructions. Consequently, the compiler need neither identify
parallelism nor make scheduling decisions since there is no explicit way to communicate
this information to the hardware. (It is true, nevertheless, that there is value in the com-
piler performing these functions and ordering the instructions so as to facilitate the hard-
ware's task of extracting parallelism.) In any event, if instruction-level parallelism is to
be employed, the dependences that exist between instructions must be determined by the
hardware. It is only necessary to determine dependences with sequentially preceding opera-
tions that are in flight, that is, those that have been issued but have not yet completed.

Figure 2. Division of responsibilities between the compiler and the hardware for the three classes of architecture.

When the operation is independent of all other operations it may begin execution. At this
point the hardware must make the scheduling decision of when and where this operation
is to execute.

A superscalar processor' strives to issue an instruction every cycle so as to execute many
instructions in parallel, even though the hardware is handed a sequential program. The
problem is that a sequential program is constructed with the assumption only that it will
execute correctly when each instruction waits for the previous one to finish, and that is
the only order that the architecture guarantees to be correct. The first task, then, for a
superscalar processor is to understand, for each instruction, which other instructions it
actually is dependent upon. With every instruction that a superscalar processor issues, it
must check whether the instruction's operands (registers or memory locations that the in-
struction uses or modifies) interfere with the operands of any other instruction in flight,
that is, one that is either

already in execution or
has been issued but is waiting for the completion of interfering instructions that would
have been executed earlier in a sequential execution of the program.

If either of these conditions is true, the instruction in question must be delayed until
the instructions on which it is dependent have completed execution. For each waiting opera-
tion, these dependences must be monitored to determine the point at which neither condi-
tion is true. When this happens, the instruction is independent of all other uncompleted
instructions and can be allowed to begin executing at any time thereafter. In the meantime
the processor may begin execution of subsequent instructions that prove to bc independent

of all sequentially preceding instructions in flight. Once an instruction is independent of
all other ones in flight, the hardware must also decide exactly when and on which available
functional unit to execute the instruction. The Control Data CDC 6600 used a mechanism,
called the scoreboard, to perform these functions [Thornton 19641. The IBM System1360
Model 91, built in the early 1960s, used an even more sophisticated method known as
Tomasulo's algorithm to carry out these functions [Tomasulo 19671.

The further goal of a superscalar processor is to issue multiple instructions every cycle.
The most problematic aspect of doing so is determining the dependences between the opera-
tions that one wishes to issue simultaneously. Since the semantics of the program, and
in particular the essential dependences, are specified by the sequential ordering of the opera-
tions, the operations must be processed in this order to determine the essential dependences.
This constitutes an unacceptable performance bottleneck in a machine that is attempting
parallel execution. On the other hand, eliminating this bottleneck can be very expensive,
as is always the case when attempting to execute an inherently sequential task in parallel.
An excellent reference on superscalar processor design and its complexity is the book by
Johnson [1991].

A number of superscalar processors have been built during the past decade including
the Astronautics' ZS-1 decoupled access minisupercomputer [Smith 1989; Smith et al. 19871,
Apollo's DNlOOOO personal supercomputer'[Apollo 1988; Bahr et al. 19911, and, most re-
cently, a number of microprocessors [Blanck and Krueger 1992; DeLano et al. 1992;
Diefendorff and Allen 1992; IBM 1990; Intel 1989b; Popescu et al. 19911.

Note that an ILP processor need not issue multiple operations per cycle in order to achieve
a certain level of performance. For instance, instead of a processor capable of issuing five
instructions pe? cycle, the same performance could be achieved by pipelining the functional
units and instruction issue hardware five times as deeply, speeding up the clock rate by
a factor of five but issl~ing only one instruction per cycle. This strategy, which has been
termed superpipelining [Jouppi 19891, goes full circle back to the single-issue, superscalar
processing of the 1960s. Superpipelining may result in some parts of the processor (such
as the instruction unit and communications buses) being less expensive and better utilized
and other parts (such as the execution hardware) being more costly and less well used.

2.2 . Dependence Architectures and Datajlow Processors

In the case of dependence architectures the compiler or the programmer identifies the paral-
lelism in the program and communicates it to the hardware by specifying, in the executable
program, the dependences between operations. The hardware must still determine, at run
time, when each operation is independent of all other operations and then perform the
scheduling. However, the inherently sequential task, of scanning the sequential program
in its original order to determine the dependences, has been eliminated.

The objective of a dataflow processor is to execute an instruction at the earliest possible
time subject only to the availability of the input operands and a functional unit upon which
to execute the instruction [Arvind and Gostelow 1982; Arvind and Kathail 19811. To do
so, it counts on the program to provide information about the dependences between instruc-
tions. Typically, this is accomplished by including in each instruction a list of successor

h)

instructions. (An instruction is a successor of another instruction if it uses as one of its '
input operands the result of that other instruction.) Each time an instruction completes,
it creates a copy of its result for each of its successor instructions. As soon as all of the
input operands of an instruction are available, the hardware fetches the instruction, which 9
specifies the operation to be performed and the list of successor instructions. The instruc-
tion is then executed as soon as a functional unit of the requisite type is available. This 2
property, whereby the availability of the data triggers the fetching and execution of an in- 5 -
struction, is what gives rise to the name of this type of processor. Because of this property, 3

I",
it is redundant for the instruction to specify its input operands. Rather, the input operands 2
specify the instruction! If there is always at least one instruction ready to execute on every 2.
functional unit, the dataflow processor achieves peak performance. 3

r
Computation within a basic block typically does not provide adequate levels of parallelism.

Superscalar and VLIW processors use control parallelism and speculative execution to keep 'D

the hardware fully utilized. (This is discussed in greater detail in Sections 3 and 4 .) Dataflow
processors have traditionally counted on using control parallelism alone to fully utilize the
functional units. A dataflow processor is more successful than the others at looking far '

2 down the execution path to find abundant control parallelism. When successful, this is a -
better strategy than speculative execution since every instruction executed is a useful one -
and the processor does not have to deal with error conditions raised by speculative operations.

As far as the authors are aware, there have been no commercial products built based on
the dataflow architecture, except in a limited sense [Schmidt and Caesar 19911. There have,
however, been a number of research prototypes built, for instance, the ones built at the
University of Manchester [Gurd et al. 19851 and at MIT [Papadopoulos and Culler 19901.

2.3. Independence Architectures and VLIW Processors

In order to execute operations in parallel, the system must determine that the operations
are independent of one another. Superscalar processors and dataflow processors represent
two ways of deriving this information at run time. In the case of the dataflow processor
the explicitly provided dependence information is used to determine when an instruction
may be executed so that it is independent of all other concurrently executing instructions.
The superscalar processor must do the same, but since programs for it lack any explicit
information, it must also first determine the dependences between instructions. In contrast,
for an independence architecture the compiler identifies the parallelism in the program
and communicates it to the hardware by specifying which operations are independent of
one another. This information is of direct value to the hardware, since it knows with no
further checking which operations it can execute in the same cycle. Unfortunately, for any
given operation, the number of operations of which it is independent is far greater than
the number of operations on which it is dependent, so it is impractical to specify all inde-
pendence~. Instead, for each operation, independences with only a subset of all independent
operations (those operations that the compiler thinks are the best candidates to execute
concurrently) are specified.

By listing operations that could be executed simultaneously, code for an independence
architecture may be very close to the record of execution produced by an implementation

of that architecture. If the architecture additionally requires that programs specify where
(on which functional unit) and when (in which cycle) the operations are executed, then
the hardware makes no run time decisions at all and the code is virtually identical to the
desired record of execution. The VLIW processors that have been built to date are of this
type and represent the predominant examples of machines with independence architectures.
The program for a VLIW processor speci.fies exactly which functional unit each operation
should be executed on and exactly when each operation should be issued so as to be inde-
pendent of all operations that are being issued at the same time as well as of those that
are in execution. A particular processor implementation of a VLIW architecture could choose
to disregard the scheduling decisions embedded in the program, making them at run time
instead. In doing so, the processor would still benefit from the independence information
but would have to perform all ofthe scheduling tasks of a superscalar processor. Further-
more, when attempting to execute concurrently two operations that the program did not
specify as being independent of each other, it must determine independence, just as a super-
scalar processor must.

With a VLIW processor it is important to distinguish between an instruction and an opera-
tion. An operation is a unit of computation, such as an addition, memory load, or branch,
which would be referred to as an instruction in the context of a sequential architecture.
A VLIW instruction is the set of operations that are intended to be issued simultaneously.
It is the task of the compiler to decide which operations should go into each instruction.
This process is termed scheduling. Conceptually, the compiler schedules a program by
emulating at compile time what a dataflow processor, with the same execution hardware,
would do at run time. All operations that are supposed to begin at the same time are packaged
into a single VLIW instruction. The order of the operations within the instruction specifies
the functional unit on which each operation is to execute. A VLIW program is a translitera-
tion of a desired record of execution that is'feasible in the context of the given execution
hardware.

The compiler for a VLIW machine specifies that an operation be executed speculatively
merely by performing speculative code motion, that is, scheduling an operation before the
branch that determines that i t should, in fact, be executed. At run time, the VLIW proc-
essor blindly executes this operation exactly as specified by the program, just as it would
for a nonspeculative operation. Speculative execution is virtually transparent to the VLIW
processor and requires little additional hardware. When the compiler decides to schedule
an operation for speculative exe'cution, it can arrange to leave behind enough of the state
of the computation to assure correct results when the flow of the program requires that
the operation be ignored. The hardware required for the support of speculative code motion
consists of having some extra registers, of fetching some extra instructions, and of sup-
pressing the generation of spurious error conditions. The VLIW compiler must perform
many of the same functions that a superscalar processor performs at run time to support
speculative execution, but it does so at compile time.

The ear1iest;VLIW processors built were the so-called attached array processors [Charles-
worth 1981; Floating Point Systems 199; IBM 1976; Intel 1989a; Ruggiero and Coryell
19691 of which the best known were the Floating Point Systems products, the AP-120B,

and Cydrome's Cydra 5 [Beck et al. 1993; Rau 1988; Rau et al. 19891 and the Culler machine
for which, as far as we are aware, there is no published description in the literature. Over
the last few years the VLIW architecture has begun to show up in microprocessors [Kohn
and Margulis 1989; Labrousse and Slavenburg 1988, 1990a, 1990b; Peterson et al. 19811.

Other types of processors with independence architectures have been built or proposed.
A superpipelined machine may issue only one operation per cycle, but if there is no super-
scalar hardware devoted to preserving the correct execution order of operations, the com-
piler will have to schedule them with full knowledge of dependences and latencies. From
the compiler's point of view these machines are virtually the same as VLIWs, though the
hardware design of such a processor offers some tradeoffs with respect to VLIWs. Another
proposed independence architecture, dubbed Horizon [Thistle and Smith 19881, encodes
an integer H into each operation. The architecture guarantees that all of the next H opera-
tions in the instruction stream are data-independent of the current operation. All the hard-
ware has to do to release an operation, then, is to assure itself that no more than H subse-
quent operations are allowed to issue before this operation has completed. The hardware
does all of its own scheduling, unlike the VLIWs and deeply pipelined machines that rely
on the compiler, but the hardware is relieved of the task of determining data dependence.
The key distinguishing features of these three ILP architectures are summarized in Table 2.

Toblc 2. A comparison of the instruction-level parallel architecture discussed in this paper.

Sequential Dependence Independence
Architecture Architecture Architecture

Additional information None
required in the program

Complete specification Minimally, a partial list of
of dependences independences. %pically,
between operations a complcte spccificntion of

when and where each
operation is to be executed

m i c a 1 kind of ILP Superscalar Dataflow
processor

Analysis of dependences Performed by hardware Performed by the Performed by the compiler
between operations compiler

Analysis of independent Performed by hardware Performed by hardware Performed by the compiler
operations m

P
Final operation Performed by hardware Performed by hardware Typically, performed by w m
scheduling the compiler c

w
3

Role of compiler n
Rearranges the code to Replaces some analysis Replaces virtually all the
make the analysis and hardware analysis and scheduling

C

schedultng hardware hardware P
I!

more successhl WJ I
(D
-I

the FPS-164, and thc'FPS-264. The next generation of products were the minisupercom-
puters: Multiflow's Trace series of machines [Colwell et al. 1988; Colwell et al. 1990)

3. Hardware and Software Techniques for ILP Execution

Regardless of which ILP architecture is considered, certain functions must be performed
if a sequential program is to be executed in an ILP fashion. The program must be analyzed
to determine the dependences; the point in time at which an operation is independent, of
all operations that are as yet not complete, must be determined; scheduling and register
allocation must be performed; often, operations must be executed speculatively, which in
turn requires that branch prediction be performed. All these functions must be performed.
The choice is, first, whether they are to be performed by the compiler or by run-time hard-
ware and, second, which specific technique is to be used. These alternatives are reviewed
in the rest of this section.

3.1. Hardware Features to Support ILP Erecution

Instruction-level parallelism involves the existence of multiple operations in flight at any
one time, that is, operations that have begun, but not completed, executing. This implies
the presence of execution hardware that can simultaneously process multiple operations.
This has, historically, been achieved by two mechanisms: first, providing multiple, parallel
functional units and, second, pipelining the functional units. Although both are fairly similar
from a compiler's viewpoint-the compiler must find enough independent operations to
keep the functional units busy-they have their relative strengths and weaknesses from a
hardware viewpoint.

In principle, pipelining is the more cost-effective way of building ILP execution hardware.
For the relatively low cost of adding pipeline latches within each functional unit, the amount
of ILP can be doubled, tripled, or more. The limiting factors in increasing the performance
by this means are the data and clock skews and the latch setup and hold times. These issues
were studied during the 1960s and 1970s, and the upper limits on the extent of pipelining
were determined [Chen 1971; Cotten 1965, 1969; Fawcett 1975; Hallin and Flynn lw].
However, the upper limit on pipelining is not necessarily the best from the viewpoint of
achieved performance. Pipelining adds delays to the execution time of individual operations
(even though multiples of them can be in flight on the same functional unit). Beyond a
certain point, especially on computations that have small amounts of parallelism, the in-
crease in the latency counterbalances the benefits of the increase in ILP, yielding lower
performance [Kunkel and Smith 19861. Parallelism achieved by adding more functional
units does not suffer from this drawback, but has its own set of disadvantages. First, the
amount of functional unit hardware goes up in linear proportion to the parallelism. Worse,
the cost of the interconnection network and the register files goes up proportional to the
square of the number of functional units since, ideally, each functional unit's output bus
must communicate with every functional unit's input buses through the register file. Also,
as the number of loads on each bus increases, so must the cycle time or the extent of pipe-
lining, both of which degrade performance on computation with little parallelism.

The related techniques of pipelining and overlapped execution were employed as early
as in the late 1950s in computers such as BM's STRETCH computer [Bloch 1959; Buchholz
1962) and UNIVAC's LARC [Eckert et al. 1959). Traditionally. overlapped execution refers

to the parallelism that results from multiple active instructions, each in a different one of
the phases of instruction fetch, decode, operand fetch, and execute, whereas pipelining
is used in the context of functional units such as multipliers and floating point adders [Chen
1975; Kogge 19811. (A potential source of confusion is that, in the context of RISC proc-
essors, overlapped execution and pipelining, especially when the integer ALU is pipelined,
have been referred to as pipelining and superpipelining, respectively [Jouppi 19891.)

The organization of the register files becomes a major issue when there are multiple
functional units operating concurrently. For ease of scheduling, it is desirable that every
operation (except loads and stores) be register-register and that the register file be the hub
for communication between all the functional units. However, with each functional unit
performing two reads and one write per cycle from or to the register file, the implementa-
tion of the register file becomes problematic. The chip real estate of a multiported register
file is proportional to the product of the number of read ports and the number of write
ports. The loading of multiple read ports on each register cell slows down the access time.
For these reasons, highly parallel ILP hardware is structured as multiple clusters of func-
tional units, with all the functional units within a single cluster sharing the same multiported
register files [Colwell et al. 1988; Colwell et al. 1990; Fisher 1983; Fisher et al. 19841.
Communication between clusters is slower and occurs with lower bandwidth. This places
a burden upon the compiler to partition the computation intelligently across the clusters;
an inept partitioning can result in worse performance than if just a single cluster were used,
leaving the rest of them idle.

The presence of multiple, pipelined function units places increased demands upon the
instruction issue unit. In a fully sequential processor, each instruction is issued after the
previous one has completed. Of course, this totally defeats the benefits of parallel execution
hardware. However, if the instruction unit attempts to issue an instruction every cycle, care
must be taken not to do so if an instruction, upon which this one is dependent, is still
not complete. The scoreboard in the CDC 6600 [Thornton 19641 was capable of issuing
an instruction every cycle until an output dependence was discovered. In the process, in-
structions following one that was waiting on a flow dependence could begin execution.
This was the first implementation of an out-of-order execution scheme. Stalling instruction
issue is unnecessary on encountering an output dependence if register renaming is per-
formed. The Tomasulo algorithm [Tomasulo 19671, which was implemented in the IBM
System1360 Model 91 [Anderson et al. 19671, is the classical scheme for register renaming
and has served as the model for subsequent variations [Hwu and Patt 1986, 1987; Oehler
and Blasgen 1991; Popescu et al. 1991; Weiss and Smith 19841. A different, programmatically
controlled register renaming scheme is obtained by providing rotating register files, that
is, base-displacement indexing into the register file using an instruction-provided displace-
ment off a dedicated base register [Advanced Micro Devices 1989; Charlesworth 1981; Rau
1988; Rau et al. 19891. Although applicable only for renaming registers across multiple
iterations of a loop, rotating registers have the advantage of being considerably less expen-
sive in their implementation than are other renaming schemes.

The first consideration given to the possibility of issuing multiple instructions' per cycle
from a sequential program was by Tjaden and Flynn [1970]. This line of investigation into
the logic needed to perform multiple-issue was continued by various researchers [Acosta
et al. 1986; Dwyer and Torng 1992; Hwu and Patt 1986, 1987; Tjaden and Flynn 1973;

Uht 1986; Wedig 19821. This idea, of multiple instruction issue of sequential programs,
was probably first referred to as superscalar execution by Agerwala and Cocke [1987]. A
careful assessment of the complexity'of the control logic involved in superscalar processors
is provided by Johnson [1991]. An interesting variation on multiple-issue, which made use
of architecturally visible queues to simplify the,out-of-order execution logic, was the decou-
pled accessiexecute architecture proposed by Smith [I9821 and subsequently developed as
a commercial product [Smith 1989; Smith et al. 19871.

A completely different approach to achieving multiple instruction issue, which grew out
of horizontal microprogramming, was represented by attached-processor products such as
the Floating Point Systems AP-120B [Floating Point Systems 19791, the Polycyclic project
at ESL [Rau and Glaeser 1981; Rau, Glaeser, and Greenwalt 1982; Rau, Glaeser, and Picard
19821, the Stanford University MIPS project [Hennessy, Jouppi, Przyblski et al. 19821 and
the ELI project at Yale [Flsher 1983; Fisher et al. 19841. The concept is to have the compiler
decide which operations should be issued in parallel and to group them in a single, long
instruction. This style of architecture, which was dubbed a very long instruction word
(VLW) architecture [Fisher 19831, has the advantage that the instruction issue logic is trivial
in comparison to that for a superscalar machine, but suffers the disadvantage that the set
of operations that are to be issued simultaneously is fixed once and for all at compile time.
One of the implications of issuing multiple operations per instruction is that one needs
the ability to issue (and process) multiple branches per second. Various types of multiway
branches, each corresponding to a different detailed model of execution or compilation,
have been suggested [Colwell et al. 1988; Ebcioglu 1988; Fisher 1980; Nicolau 1985al.

The first obstacle that one encounters when attempting ILP computation is the generally
small size of basic blocks. In light of the pipeline latencies and the interoperation depend-
ences, little instruction-level parallelism is to be found. It is important that operations from
multiple basic blocks be executed concurrently if a parallel machine is to be fully utilized.
Since the branch condition, which determines which block is to be executed next, is often
resolved only at the end of a basic block, it is necessary to resort to speculative execution,
that is, continuing execution along one or more paths before it is known which way the
branch will go. Dynamic schemes for speculative execution [Hwu and Patt 1986, 1987;
Smith and Pleszkun 1988; Sohi and Vajapayem 19811 must provide ways to

terminate unnecessary speculative computation once the branch has been resolved,
undo the effects of the speculatively executed operations that should not been executed,
ensure that no exceptions are reported until it is known that the excepting operation should,
in fact, have been executed, and
preserve enough execution state at each speculative branch point to enable execution to
resume down the correct path if the speculative execution happened to proceed down
the wrong one.

All this can be expensive in hardware. The alternative is to perform speculative code
motion at compile time, that is, move operations from subsequent blocks up past branch
operations into preceding blocks. These operations will end up being executed before the
branch that they ;,:.rz :upposed to follow; hence, they are executed speculatively. Such
code motion is fundamental to global scheduling schemes such as trace scheduling [Ellis

1985; Fisher 1979, 19811. The hardware support needed is much less demanding: first, a
mechanism to ensure that exceptions caused by speculatively scheduled operations are
reported if and only if the flow of control is such that they would have been executed in
the nonspeculative version of the code [Mahlke, Chen et al. 19921 and, second, additional
architecturally visible registers to hold the speculative execution state. A limited form of
speculative code motion is provided by the "boosting" scheme [Smith et al. 1992; Smith
et al. 19901.

Since all speculative computation is wasted if the wrong path is followed, it is important
that accurate branch prediction be used to guide speculative execution. Various dynamic
schemes of varying levels of sophistication and practicality have been suggested that gather
execution statistics of one form or another while the program is running [Lee and Smith
1984; McFarling and Hennessy 1986; Smith 1981; Yeh and Patt 19921. The alternative is
to use profiling runs to gather the appropriate statistics and to embed the prediction, at
compile time, into the program. Trace scheduling and superblock scheduling [Hwu et al.
1989; Hwu et al. 19931 use this approach to reorder the control flow graph to reflect the
expected branch behavior. Hwu and others claim better performance than with dynamic
branch prediction [Hwu et al. 19891. Fisher and Freudenberger [I9921 have examined the
extent to which branch statistics gathered using one set of data are applicable to subsequent
runs with different data. Although static prediction can be useful for guiding both static
and dynamic speculation, it is not apparent how dymamic prediction can assist static spec-
ulative code motion.

Predicted execution is an architectural feature that permits the execution of individual
operations to be determined by an additional, Boolean input. It has been used to selectively
squash operations that have been moved up from successor blocks into the delay slots of
a branch operation [Ebcioglu 1988; Hsu and Davidson 19861. In its more general form
[Beck et al. 1993; Rau 1988; Rau et al. 19891 it is used to eliminate branches in their en-
tirety over an acyclic region of a control flow graph [Dehnert and Towle 1993; Dehnert
et al. 1989; Mahlke, Lin et al. 19921 that has been IF-converted [Allen et al. 19831.

3.2. ILP Compilation

3.2.1. Scheduling. Scheduling algorithms can be classified based on two broad criteria.
The first one is the nature of the control flow graph that can be scheduled by the algorithm.
The control flow graph can be described by the following two properties: ?'

P
whether it consists of a single basic block or multiple basic blocks, and m

w
C

whether it is an acyclic or cyclic control flow graph. w
x
0.
C

Algorithms that can only schedule single acyclic basic blocks are known as 1ocaIschedul- .
P

ing algorithms. Algorithms that jointly schedule multiple basic blocks (even if these are
multiple iterations of a single static basic block) are termed global scheduling algorithms.
Acyclic global scheduling algorithms deal either with control flow graphs that contain no 2
cycles or, more typically, cyclic graphs for which a self-imposed scheduling barrier exists

at each back edge in the control flow graph. As a consequence of these scheduling barriers,
back edges present no opportunity to the scheduler and are therefore irrelevant to it. Acyclic
schedulers can yield better performance on cyclic graphs by unrolling the loop, a transfor-
mation which though easier to visualize for cyclic graphs with a single back edge, can be
generalized to arbitrary cyclic graphs. The benefit of this transformation is that the acyclic
scheduler now has multiple iterations' worth of computation to work with and overlap.
The penalty of the scheduling barrier is amortized over more computation. Cyclic global
scheduling algorithms attempt to directly optimize the schedule across back edges as well.
Each class of scheduling algorithms is more general than the previous one and, as we shall
see, attempts to build on the intuition and heuristics of the simpler, less general algorithm.
As might be expected, the more general algorithms experience greater difficulty in achiev-
ing near-optimality or of even articulating intuitively appealing heuristics.

The second classifying criterion is the type of machine for which scheduling is being
performed, which in turn is described by the following assumed properties of the machine:

finite versus unbounded resources
unit latency versus multiple cycle latency execution, and
simple resource usage patterns for every operation (i.e., each operation uses just one
resource for a single cycle, typically during the first cycle of the operation's execution)
versus more complex resource usage patterns for some o r all of the operations.

Needless to say, real machines have finite resources, generally have at least a few opera-
tions that have latencies greater than one cycle, and often have at least a few operations
with complex usage patterns. We believe that the value of a scheduling algorithm is pro-
portional to the degree of realism of the assumed machine model.

Finally, the scheduling algorithm can also be categorized by the nature of the process
involved in generating the schedule. At one extreme are one-pass algorithms that schedule
each operation once and for all. At the other extreme are algorithms that perform an exhaus-
tive, branch-and-bounlj style of search for the schedule. In between is a spectrum of possi-
bilities such as itera~lvc but nonexhaustive search algorithms or incremental algorithms
that make a succession of elementary perturbations to an existing legal schedule to nudge
it toward the final solution. This aspect of the scheduling algorithm is immensely important
in practice. The further one diverges from a one-pass algorithm, the slower the scheduler
gets until, eventually, it is unacceptable in a real-world setting.

3.2.1.1. Local Scheduling. Scheduling, as a part of the code generation process, was first
studied extensively in the context of microprogramming. Local scheduling is concerned
with generating as short a schedule as possible for the operations within a single basic
block; in effect a scheduling barrier is assumed to exist between adjacent basic blocks in
the control flow graph. Although it was typically referred to as local code compaction,2
the similarity to the job of scheduling tasks on processors was soon understood [Adam
et al. 1974; Baker 1974; Coffman 1976; Coffman and Graham 197'2; Fernandez and Bussel
19n; Gonzalez 1977 Hu 1961; Kasahara and Narita 1984; Kohler 1975; Ramamoorthy et al.
197'21, and a number of notions and algorithms from scheduling theory were borrowed by
the microprogramming community. Attempts at automating this task have been made since

at least the late 1960s [Agerwala 1976; Davidson et al. 1981; DeWitt 1975; Fisher 1979;
1981; Kleir and Ramamoorthy 1971; Landskov et al. 1989; Ramamoorthy and Gonzalez
1969; Tokoro et al. 1977; Tsuchiya and Gonzalez 1974, 1976; Wood 19781. Since scheduling is
known to be NP-complete [Coffman 19761, the initial focus was on defining adequate heu-
ristics [Dasgupta and Tartar 1976; Fisher 1979; Gonzalez 1977; Mallett 1978; Ramamoorthy
and Gonzalez 1969; Ramannoorthy and Tsuchiya 19741. The consensus was that list schedul-
ing using the highest-level-first priority scheme [Adam et al. 1974; Fisher 19791 is relatively
inexpensive computationally (a one-pass algorithm) and near-optimal most of the time.
Furthermore, this algorithm has no difficulty in dealing with nonunit execution latencies.

The other dimension in which local scheduling matured was in the degree of realism of
the machine model. From an initial model in which each operation used a single resource
for a single cycle (the simple resource usage model) and had unit latency, algorithms for
local scheduling were gradually generalized to cope with complex resource usage and arbi-
trary latencies [Dasgupta and Tartar 1976; DeWitt lq5; Kleir 1974; Mallett 1978; Ramamoor-
thy and Tsuchiya 1974; Tsuchiya and Gonzalez 1974; Yau et al. 19741 culminating in the
fully general resource usage "microtemplate" model proposed in [Tokoro et al. 19811, and
which was known in the hardware pipeline design field as a reservation table [Davidson
19711. In one form or another, this is now the commonly used machine model in serious
instruction schedulers. This machine model is quite compatible with the highest-level-first
list scheduling algorithm and does not compromise the near-optimality of this algorithm
[Fisher 19811.

3.2.1.2. Global Acyclic Scheduling. A number of studies have established that basic blocks
are quite short-typically about 5-20 instructions on the average-so whereas local schedul-
ing can generate a near-optimal schedule, data dependences and execution latencies con-
spire to make the optimal schedule itself rather disappointing in tcrins of its speedup over
the original sequential code. Further improvements require overlapping the execution of
successive basic blocks, which is achieved by global scheduling.

Early strategies for global scheduling attempted to automate and emulate the ad hoc tech-
niques that hand coders practiced of first performing local scheduling of each basic block
and then attempting to move operations from one block to an empty slot in a neighboring
block [Tokoro et al. 1981; Tokoro et al. 19781. The shortcoming of such an approach is
that, during local compaction, too many arbitrary decisions have already been made that
failed to take into account the needs of and opportunities in the neighboring blocks. Many
of these decisions might need to be undone before the global schedule can be improved.

In one very important way the mindset inherited from microprogramming was an obstacle
to progress in global scheduling. Traditionally, code compaction was focused on the objec-
tive of reducing the size of the microprogram so as to allow it to fit in the microprogram
memory. In the case of individual basic blocks the objectives of local compaction and local
scheduling are aligned. This alignment of objectives is absent in the global case. Whereas
global code compaction wishes to minimize the sum of the cotlc sizcs for the individual
basic blocks, global scheduling must attempt to minimize the total execution time of all
the basic blocks. In other words, global scheduling must minimize the sum of the code
sizes of the individual basic blocks weighted by the number of times each basic block is
executed. Thus, effective global scheduling might actually increase the size of the program

by greatly lengthening an infrequently visited basic block in order to slightly reduce the
length of a high-frequency basic block. This difference between global compaction and
global scheduling, which was captured neither by the early ad hoc techniques nor by the
syntactically-driven hierarchical reduction approach proposed by Wood [l w] , was noted
by Fisher [l979, 19811.

Furthermore, the focus of Fisher's work was on reducing the length of those sequences
of basic blocks that are frequently executed by the program. These concepts were captured
by Fisher in the global scheduling algorithm known as rrace scheduling [Fisher lm9, 19811.
Central to this procedure is the concept of a trace, which is an acyclic sequence of basic
blocks embedded in the control flow graph, that is, a path through the program that could
conceivably be taken for some set of input data. Traces are selected and scheduled in order
of their frequency of execution. The next trace to be scheduled is defined by selecting the
highest frequency basic block that has not yet been scheduled as the seed of the trace. The
trace is extended forward along the highest frequency edge out of the last block of the trace
as long as that edge is also the most frequent edge into the successor block and as long
as the successor block is not already part of the trace. Likewise, the trace is extended back-
wards, as well, from the seed block. The selected trace is then scheduled as if it were
a single block; that is, there is no special consideration given to branches, except that they
are constrained to remain in their original order. Implicit in the resulting schedule is inter-
block code motion along the trace in either the upward or downward direction. Matching
off-trace code motions must be performed as prescribed by the rules of interblock code
motion specified by Fisher. This activity is termed bookkeeping. Therafter, the next trace
is selected and scheduled. This procedure is repeated until the entire program has been
scheduled. The key property of trace scheduling is that, unlike previous approaches to global
scheduling, the decisions as to whether to move an operation from one block to another,
where to schedule it, and which regiater to allocate to hold its result (see Section 3.2.2
below) are all made jointly rather than in distinct compiler phases.

Fisher and his coworkers at Yale went on to implement trace scheduling in the Bulldog
compiler as part of the ELI project [Fisher 1983; Fisher et al. 19861. This trace scheduling
implementation and other aspects of the Bulldog compiler have been extensively documented
by Ellis [1986]. The motion of code downwards across branches and upwards across merges
results in code replication. Although this is generally acceptable as the price to be paid
for better global schedules, Fisher recognized the possibility that the greediness of highest-
level-first list scheduling could sometimes cause more code motion and, hence, replication
then is needed to achieve a particular schedule length [Fisher 19811. Su and his colleagues
have recommended certain heuristics for the list scheduling of traces to address this problem
[Grishman and Su 1983; Su and'Ding 1985; Su et al. 19841. Experiments over a limited
set of test cases indicate that these heuristics appear to have the desired effect.

The research performed in the ELI project formed the basis of the production-quality
compiler that was built at Multiflow. One bf the enhancements to trace scheduling imple-
mented in the Multiflow conlpiler was the elirhination of redundant copies of operations
caused by bookkeeping. When an off-trace path, emanating from a branch on the trace,
rejoins the trace lower down, an operation that is moved above the rejoin and all the way
to a point above the branch can make the off-trace copy redundant under the appropriate
circumstances. The original version of trace scheduling, oblivious to such situations, retains

two copies of the operation. Gross and Ward [I9901 describe an algorithm to avoid such
redundancies. Freudenberger and Ruttenberg [1992] discuss the integrated scheduling and
register allocation in the Multiflow compiler. Lowney and others provlde a comprehensive
description of the Multiflow compiler [1993].

Hwu and his colleagues on the IMPACT project have developed a variant of trace schedul-
ing that they term superblock scheduling [Chang, Mahlke et al. 1991; Hwu and Chang 19881.
In an attempt to facilitate the task of incorporating profile-driven global scheduling into
more conventional compilers, they separate the trace selection and code replication from
the actual scheduling and bookkeeping. To do this, they limit themselves to only moving
operations up above branches, never down, and never up past merges. To make this possi-
ble, they outlaw control flow into the interior of a trace by means of tail duplication, that
is, creating a copy of the trace below the entry point and redirecting the incoming control
flow path to that copy. Once this is done for each incoming path, the resulting trace con-
sists of a sequence of basic blocks with branches out of the trace but no incoming branches
except to the top of the trace. This constitutes a superblock, also known as an extended
bmic block in the compiler literature. Chang and Hwu [I9881 have studied different trace
selection strategies and have measured their relative effectiveness. A comprehensive discus-
sion of the results and insights from the IMPACT project are provided in this special issue
[Hwu et al. 19931.

Although the global scheduling of linear sequences of basic blocks represents a major
step forward, it has been criticized for its total focus on the current trace and neglect of
the rest of the program. For instance, if there are two equally frequent paths through the
program that have basic blocks in common, it is unclear as part of which trace these blocks
should be scheduled. One solution is to replicate the code as is done for superblock sched-
uling. The other is to generalize trace scheduling to deal with more general control flow
graphs. Linn [I9881 and Hsu and Davidson [I9861 proposed profile-driven algorithms for
scheduling trees of basic blocks in which all but the root basic block have a single incom-
ing path. Nicolau [1985a, 1985bl attempted to extend global scheduling to arbitrary, acyclic
control flow graphs using percolation scheduling. However, since percolation scheduling
assumes unbounded resources, it cannot realistically be viewed as a scheduling algorithm.
Percolation scheduling was then extended to nonunit execution latencies (but still with un-
bounded resources) [Nicolau and Potasman 19901.

The development of practical algorithms for the global scheduling of arbitrary, acyclic
control flow graphs is an area of active research. Preliminary algorithms, assuming finite
resources have been defined by Ebcioglu [Ebcioglu and Nicolau 1989; Moon and Ebcioglu
19921 and by Fisher [1992]. These are both generalizations of trace scheduling. However, 2
there are numerous difficulties in the engineering of a robust and efficient scheduler of r

0)

this sort. The challenges in this area of research revolve around finding pragmatic engineering 2
solutions to these problems. C

A rather different approach to global acyclic scheduling has been pursued in the IMPACT P
project [Mahlke, Lin et al. 19921. An arbitrary, acyclic control flow graph, having a single $
entry can be handled by this technique. The control flow graph is IF-converted [Allen et $
al. 1983; Park and Schlansker 19911 so as to eliminate all branches internal to the flow
graph. The resulting code, which is similar to a superblock in that it can only be entered
at the top but has multiple exits, is termed a hyperblock. This is scheduled in much the

3

same manner as a superblock except that two operations with disjoint predicates (i.e., opera-
tions that cannot both be encountered on any single path through the original flow graph)
may be scheduled to use the same resources at the same time. After scheduling, reverse
IF-conversion is performed to regenerate the control flow graph. Portions of the schedule
in which m predicates are active yield 2" versions of the code.

3.2.1.3. Cyclic Scheduling. As with acyclic flow graphs, instruction-level parallelism in
loops is obtained by overlapping the execution of multiple basic blocks. With loops, however,
the multiple basic blocks are the multiple iterations of the same piece of code. The most
natural extension of the previous global scheduling ideas to loops is to unroll the body
of the loop some number of times and to then perform trace scheduling, or some other
form of global scheduling, over the unrolled loop body. This approach was suggested by
Fisher [Fisher et al. 19811. A drawback of this approach is that no overlap is sustained
across the back edge of the unrolled loop. Fisher and others went on to propose a solution
to this problem, which is to continue unrolling and scheduling successive iterations until
a repeating pattern is detected in the schedule. The repeating pattern can be rerolled to
yield a loop whose body is the repeating schedule. As we shall see, this approach was
subsequently pursued by various researchers. In the meantime, loop scheduling moved off
in a different direction, which, as is true of most VLIW scheduling work, had its roots
in hardware design.

Researchers concerned with the design of pipelined functional units, most notably David-
son and coworkers, had developed the theory of and algorithms for the design of hardware
controllers for pipelines to maximize the rate at which functions could be evaluated [Davidson
1971, 1974; Davidson et al. 1975; Patel 1976; Patel and Davidson 1976; Thomas and Davidson
19743. The issues considered here were quite similar to those faced by individuals program-
ming the innermost loops of signal processing algorithms [Cohen 1978; Kogge 1973, 1974,
l977a, 1977b; Kogge and Stone 19731 on the early peripheral array processors [Floating
Point Systems 1979; IBM 1976; Ruggiero and Coryell 19691. In both cases the objective
was to sustain the initiation of successive function evaluations (loop iterations) before prior
ones had completed. Since this style of computation is termed pipelining in the hardware
context, it was dubbed sofnvare pipelining in the programming domain [Charlesworth 19811.

Early work in software pipelining consisted of ad hoc hand-coding techniques [Charles-
worth 1981; Cohen 19781. Both the quality of the schedules and the attempts at automating
the generation of software pipelined schedules were hampered by the architecture of the
early array processors. Nevertheless, Floating Point Systems developed, for the FPS-164
array processor, a compiler that could software pipeline a loop consisting of a single basic
block [Touzeau 19841. Weiss and Smith [I9871 note that a limited form of software pipelin-
ing was present both in certain hand-coded libraries for the CDC 6600 and also as a capabil-
ity in the Fortran compiler for the CDC 6600.

The general formulation of the software pipelining process for single basic block loops
was stated by Rau and others [Rau and Glaeser 1981; Rau, Glaeser, and Picard 19821 draw-
ing upon and generalizing the theory developed by Davidson and his coworkers on the
design of hardware pipelines. This work identified the attributes of a VLIW architecture
that make it amenable to software pipelining, most importantly, the availability of conflict-
free access to register storage between the output of a functional unit producing a result

and the functional unit that uses that result. This provides freedom in scheduling each opera- !!
tion and is in contrast to the situation in array processors where, due to limited register
file bandwidth, achieving peak performance required that a majority of the operations be
scheduled to start at the same instant that their predecessor operations completed so that 9
they could pluck their operands right off the result buses. u

2
Rau and others also presented a condition that has to be met by any legal software pipe-

lined schedule-the modulo constraint-and derived lower bounds on the rate at which* 5
successive iterations of the loop can be started, that is, the initiation interval (11). (I1 is F
also the length of the software pipelined loop, measured in VLIW instructions, when no 2
loop unrolling is employed.) This lower bound on 11, the minimum initiation interval (MII), 2.

0
is the maximum of the lower bound due to the resource usage constraints (ResMII) and the =,

rD lower bound due to the cyclic data dependence constraints caused by recurrences (RecMII). 2
This lower bound is applicable both to vectorizable loops as well as those with arbitrary
recurrences and for operation latencies of arbitrary length. A simple, deterministic soft-
ware pipelining algorithm based on list scheduling, the modulo scheduling algorithm, was %
shown to achieve the MII, thcreby yielding an asymptotically optimal schedule. This algo-
rithm was restricted to DO loops whose body is a single basic block being scheduled on 5
a machine in which each operation has a simple pattern of resource usage, viz., the resource
usage of each operation can be abstracted to the use of a single resource for a single cycle -
(even though the latency of the operation is not restricted to a single cycle). The task of
generating an optimal, resource-constrained schedule for loops with arbitrary recurrences
is known to be NP-complete [Hsu 1986; Lam 19873 and any practical algorithm must utilize
heuristics to guide a generally near-optimal process. These heuristics were only broadly
outlined in this work.

Three independent sets of activity took this work and extended i t in various directions.
The first one was the direct continuation at Cydrome, over the period 1984-88, of the work
done by Rau and others [Dehnert et al. 1989; Dehnert and Towle 19931. In addition to
enhancing the modulo scheduling algorithm to handle loops with recurrences and arbitrary
acyclic control flow in the loop body, attention was paid to coping with the very complex
resource usage patterns that were the result of compromises forced by pragmatic implemen-
tation considerations. Complex recurrences and resource usage patterns make i t unlikely
that a one-pass scheduling algorithm, such as list scheduling, will be able to succeed in
finding a near-optimal modulo schedule, even when one exists, and performing an exhaustive
search was deemed impractical. Instead, an iterative scheduling algorithm was used that
could unschedule and reschedule operations. This iterative algorithm is guided by heuristics
based on dynamic slack-based priorities. The initial attempt is to schedule the loop with
the I1 equal to the MII. If unsuccessful, the I1 is incremented until a modulo schedule is
achieved.

Loops with arbitrary acyclic control flow in the loop body are dealt with by performing
IF-conversion [Allen et al. 19831 to replace all branching by predicated (guarded) opera-
tions. This transformation, which assumes the hardware capability of predicated execution
[Rau 1988; Rau et al. 19891, yields a loop with a single basic block that is then amenable
to the modulo scheduling algorithm [Dehnert et al. 19891. A disadvantage of predicated
modulo scheduling is that the ResMII must be computed as if all the operations in the
body of the loop are executed each iteration, whereas, in reality, only those along one of

the control flow paths are actually executed. As a result, during execution, some fraction
of the operations in an instruction are wasted. Likewise, the RecMII is determined by the
worst-case dependence chain across all paths through the loop body. Both contribute to
a degree of suboptimality that depends on the structure of the loop.

Assuming the existence of hardware to support both predicated execution and speculative
execution [Mahlke, Chen et al. 19921, Cydrome's modulo scheduling algorithm has been
further extended to handle WHILE loops and loops with conditional exits [Tirumalai et al.
19901. The problem that such loops pose is that it is not known until late in one iteration
whether the next one should be started. This eliminates much of the overlap between suc-
cessive iterations. The solution is to start iterations speculatively, in effect, by mating opera-
tions from one iteration into a prior one. The hardware support makes it possible to avoid
observing exceptions from operations that should not have been executed, without overlook-
ing exceptions from nonspeculative operations.

Independently of the Cydrome work, Hsu [I9861 proposed a modulo scheduling algorithm
for single basic block loops with general recurrences that recognizes each strongly con-
nected class (SCC) of nodes in the cyclic dependence graph as a distinct entity. Once the
nodes in all the SCCs have been jointly scheduled at the smallest possible I1 using a com-
binatorial search, the nodes in a given SCC may only be rescheduled as a unit and at a
time that is displayed by a multiple of 11. This rescheduling is performed to enable the
remaining nodes that are not part of any SCC to be inserted into the schedule. Hsu also
described an I1 extension technique that can be used to take a legal modulo schedule for
one iteration and trivially convert i t into a legal modulo schedule for a larger I1 without
performing any scheduling. This works with simple resource usage patterns. With com-
plex patterns a certain amount of rescheduling would be required, but less than starting
from scratch.

Lam's algorithm, too, utilizes the SCC structure but list schedules each SCC separately,
ignoring the inter-iteration dependences [Lam 1987, 19881. Thereafter, an SCC is treated
as a single pseudo-operation with a complex resource usage pattern, employing the tech-
nique of hierarchical reduction proposed by Wood [1979]. After this hierarchical reduction
has been performed, the dependence graph of the computation is acyclic and can be scheduled
using modulo scheduling. With an initial value equal to the MII, the II is iteratively increased
until a legal modulo schedule is obtained. By determining and fixing the schedule of each
SCC in isolation, Lam's algorithm can result in SCCs that cannot be scheduled together
at the minimum achievable 11.

On the other hand, the application of hierarchical reduction enables Lam's algorithm
to cope with loop bodies containing structured control flow graphs without any special
hardware support such as predicated execution. Just as with the SCCs, structured constructs
such as IF-THEN-ELSE are list scheduled and treated as atomic objects. Each leg of the
IF-THEN-ELSE is list scheduled separately and the union of the resource usages represents
that of the reduced IF-THEN-ELSE construct. This permits loops with structured flow
of control to be modulo scheduled. After modulo scheduling, the hierarchically reduced
IF-THEN-ELSE pseudo-operations must be expanded. Each portion of the schedule in which
rn IF-THEN-ELSE pseudo-operations are active must be expanded into 2" control flow
paths with the appropriate branching and merging between the paths.

Since Lam takes the union of the resource usages in a conditional construct while predi-
cated modulo scheduling takes the sum of the usages, the former approach should yield
the smaller MII. However, since Lam separately list schedules each leg of the conditional
creating pseudo-operations with complex resource usage patterns, the I1 that she actually
achieves should deviate from the MI1 to a greater extent. Warter and others have implemented
both techniques and have observed that, on the average, Lam's approach results in smaller
MlIs but larger 11s [Warter et al. 19921. This effect increases for processors with higher
issue rates. Warter and others go on to combine the best of both approaches in their enhanced
modulo scheduling algorithm. They derive the modulo schedule as if predicated execution
were available, except that two operations from the same iteration arc allowed to be scheduled
on the same resource at the same time if their predicates are mutually exclusive, that is,
they cannot both be true. This is equivalent to taking the union of the resource usages.
Furthermore, it is applicable to arbitrary, possibly unstructured, acyclic flow graphs in
the loop body. After modulo scheduling, the control flow graph is regenerated much as
in Lam's approach. Enhanced modulo scheduling results in MIIs that are as small as for
hierarchical reduction, but as with predicated modulo scheduling, the achieved I1 is rarely
more than the MII.

Yet another independent stream of activity has been the work of Su and his colleagues
[Su et al. 1984; Su et al. 19861. When limited to loops with a single basic block, Su's
URPR algorithm is an ad hoc approximation to modulo scheduling and is susceptible to
significant suboptimality when confronted by nonunit latencies and complex resource usage
patterns. The essence of the URPR algorithm is to unroll and schedule successive iterations
until the first iteration has completed. Next the smallest contiguous set of instructions,
which contain at least one instance of each operation in the original loop, is identified.
After deleting multiple instances of all operations, this constitutes the software pipelined
schedule. This deletion process introduced "holes" in the achcdulc and the attendant subop-
timality. Also, for nonunit latencies, there is no guarantee that the schedule, as constructed,
can loop back on itself without padding the schedule out with no-op cycles. This introduces
further degradation.

Subsequently, Su extended URPR to the GURPR* algorithm for software pipelining loops
containing control flow [Su et al. 1987; Su and Wang 1991a, 1991bl. GURPR* consists of
first performing global scheduling on the body of the loop and then using a URPR-like
procedure, as if each iteration was IF-converted, to derive the repeating pattern. Finally,
as with enhanced modulo scheduling, a control flow graph is regenerated. The shortcom-
ings of URPR are inherited by GURPR*. Warter and others, who have implemented GURPR* m

P
within the IMPACT compiler, have found that GURPR* performs significantly worse than
hierarchical reduction, predicated modulo scheduling, or enhanced module scheduling c

[Warter et al. 19921.
rn
2
0.

The idea proposed by Fisher and others of incrementally unrolling and scheduling a loop +
until the pattern repeats [Fisher et al. 19811 was pursued by Nicolau and his coworkers, P
assuming unbounded resources, initially for single basic block loops IAiken and Nicolau $
1988b) and then, under the title of perfect pipelining, for multiple basic block loops [Aiken
and Nicolau 1988a; Nicolau and Potasman 19901. The latter was subsequently extended
tc yield a more realistic algorithm assuming finite resources [Aiken and Nicolau 19911.
For single basic block loops the incremental unrolling yields a growing linear trace, the

B

expansion of which is terminated once a repeating pattern is observed. In practice there
are complications since the various SCCs might proceed at different rates, never yielding
a repeating pattern. For multiple basic block loops, the unrolling yields a growing tree
of schedules, each leaf of which spawns two further leaves when a conditional branch is
scheduled. A new leaf is not spawned if the (infinite) tree, of which it would be the root,
is identical to another (infinite) tree (of which it might be the leaf) whose root has already
been generated.

This approach addresses a shortcoming of all the previously mentioned approaches to
software pipelining multiple basic block loops. In general, both RecMII and ResMII are
dependcnt upon the specific control flow path followed in each iteration. Whereas the pre-
vious approaches had to use a single, constant, conservative value for each one of these
lower bounds, the unrolling approach is able to take advantage of the branch history of
previous iterations in deriving the schedule for the current one. However, there are some
drawbacks as well. One handicap that such unrolling schemes have is a lack of control
over the greediness of the process of initiating 'iterations. Starting successive iterations as
soon as possible, rather than at a measured rate that is in balance with the completion
rate, cannot.reduce the average initiation interval but can increase the time to enter the
repeating pattern and the length of the repeating pattern. Both contribute to longer com-
pilation times and larger code size. A second problem with unrolling schemes lies in their
implementation; recognizing that one has arrived at a previously visited state, to which
one can wrap back instead of further expanding the search tree, is quite complicated, espe-
cially in the context of finite resovrces, nonunit latencies, and complex resource usage
patterns.

The cyclic scheduling algorithm developed by the IBM VLIW research project [Ebcioglu
and Nakatani 1989; Gasperoni 1989; Moon ,and Ebcioglu 1992; Nakatani and Ebcioglu
1990) might represent a good compromise between the ideal and the practical. Stripped
to the essentials, this algorithm applies a cut set, termed a fence, to the cyclic graph, which
yields an acyclic graph. This reduces the problem to that of scheduling a general, acyclic
graph-a simpler problem. Once this is done the fence is moved and the acyclic scheduling
is repeated. As <his process is repeated, all the cycles in the control flow graph acquire
increasingly tight schedules. The acyclic scheduling algorithm used by Ebcioglu and others
is a resource-constrained version of percolation scheduling [Ebcioglu and Nicolau 1989;
Moon and Ebcioglu 19921.

Software pipelining was also implemented in the compiler for the product line marketed
by another minisupercomputer company, Culler Scientific. Unfortunately, we do not believe
that any publication describing their implementation of software pipelining exists. Quite
recently, software pipelining has been implemented in the compilers for HP's PA-RISC
line of computers [Rarnakrishnan 19921.

3.2.1.4. Scheduling for RISC and Superscalar Processors. Seemingly conventional scalar
processors can sometimes benefit from scheduling techniques. This is due to small amounts
of ILP in the form of, for instance, branch delay slots and shallow pipelines. Scheduling
for such processors, whether RISC or CISC, has generally been less ambitious and more
ad hoc than that for VLIW processors [Auslander and Hopkins 1982; Gross and Hennessy
1982; Hennessy and Gross 1983; Hsu 1987; McFarling and Hennessy 19861. This was a

direct consequence of the lack of parallelism in those machines and the corresponding lack
of opportunity for the scheduler to make a big difference. Furthermore, the limited number
of registers in those architectures made the use of aggressive scheduling rather unattractive.
As a result, scheduling was viewed as rather peripheral to the compilation process, in con-
trast to the central position it occupied for VLIW processors and, to a lesser extent, for
more highly pipelined processors [Rymarczyk 1982; Sites 3978; Weiss and Smith 19871.
Now, with superscalar processors growing in popularity, the importance of scheduling,
as a core part of the compiler, is better appreciated and a good deal of activity has begun
in this area [Bernstein and Rodeh 1991; Bernstein et al. 1991; Golumbic and Rainish 1990;
Jain 1991; Smotherman et al. 19911, unfortunately, sometimes unaware of the large body
of literature that already exists.

3.2.2. Register Allocation. In conventional, sequential processors, instruction scheduling
is not an issue. The program's execution time is barely affected by the order of the instruc-
tion, only by the number of instructions. Accordingly, the emphasis of the code generator
is on generating the minimum number of instructions and using as few registers as possible
[Aho and Johnson 1976; Aho et al. l977a, 1977b; Bruno and Sethi 1976; Sethi 1975; Sethi
and Ullman 19701. However, in the context of pipelined or multiple-issue processors, where
instruction scheduling is important, the issue of the phase-ordering between it and register
allocation has been a topic of much debate. There are advocates both for performing register
allocation before scheduling [Gibbons and Muchnick 1986; Hennessy and Gross 1983; Jain
19911 as well as for performing it after scheduling [Auslander and Hopkins 1982; Chang,
Lavery, and Hwu 1991; Goodman and Hsu 1988; Warren 19901. Each phase-ordering has
its advantages and neither one is completely satisfactory.

The most important argument in favor of performing register allocation first is that whereas
a better schedule may be desirable, code that requires more registers than are ava~lable
is just unacceptable. Clearly, achieving a successful register allocation must supersede the
objective of constructing a better schedule. The drawback of performing scheduling first,
oblivious of the register allocation, is that shorter schedules tend to yield greater register
pressure. If a viable allocation cannot be found, spill code must be inserted. At this point,
in the case of a statically scheduled processor, the schedule just constructed may no longer
be correct. Even if it is, it may be far from the best one possible, for either a VLIW-or
superscalar machine, since the schedule was built without the spill code in mind. In machines
whose load latency is far greater than that of the other operations, the time penalty of the
spill code may far exceed the benefits of the better schedule obtained by performing sched-
uling first.

Historically, the merit of performing register allocation first was that processors had little
instruction-level parallelism and few registers, so whereas there was much to be lost by
a poor register allocation, there was liale to be gained by good scheduling. It was customary,
therefore, to perform register allocation first, for instance using graph coloring [Chaitin
1982; Chow and Hennessy 1984, 19901 followed by a postpass scheduling stcp that con-
sidered individual basic blocks [Gibbons and Muchnick 1986; Hennessy and Gross 19831.

From the viewpoint of instruction-level parallel machines, the major problem with per-
forming register allocation first is that it introduces antidependences and output dependences
that can constrain parallelism and the ability to construct a good schedule. To some extent

this is inevitable; the theoretically optimal combination of schedule and allocation might
contain additional arcs due to the allocation. The real concern is that, when allocation
is done first, an excessive number of ill-advised and unnecessary arcs might be introduced
due to the insensitivity of the register allocator to the scheduling task. On pipelined machines,
whose cache access time is as short as or shorter than the functional unit latencies, the
benefits of a schedule unconstrained by register allocation may outweigh the penalties of
the resulting spill code.

Scheduling prior to register allocation, known as prepass scheduling, was used in the
PL.8 compiler [Auslander and Hopkins 19821. In evolving this compiler to become the
compiler for the superscalar IBM RISC Systemi6000, the suboptimality of inserting spill
code after the creation of the schedule became clear and a second, postpass scheduling
step was added after the register allocation [Warren 19901. During the postpass the scheduler
honors all the dependences caused by the register allocation, which in turn was aware of
the preferred instruction schedule provided by the prepass scheduler. The IMPACT project
at the University of Illinois has demonstrated the effectiveness of this strategy for multiple-
issue processors [Chang, Lavery, and Hwu 19911. Instead of employing the graph coloring
paradigm, Hendren and others make use of the richer information present in interval graphs,
which are a direct temporal representation of the span of the lifetimes [Hendren et al. 19921.
This assumes that the schedule or, at least, the instruction order has already been deter-
mined and that a postpass scheduling step will follow.

Irrespective of which one goes first, a shortcoming of all strategies discussed so far is
that the first phase makes its decisions with no consideration of their impact on the subse-
quent phase. Goodman and Hsu [I9881 have addressed this problem by developing two
algorithms-one, a scheduler that attempts to keep the register pressure below a limit pro-
vided to it, and the second, a register allocation algorithm that is sensitive to its effect
on the critical path length of the DAG and thus to the effect on the eventual schedule.

For any piece of code on a given processor, there is some optimal schedule for which
register allocation is possible. Scheduling twice, once before and then after register alloca-
tion, is an approximation of achieving this ideal. Simultaneous scheduling and register alloca-
tion is another strategy for attempting to find a near-optimal schedule and register allocation.
Simultaneous scheduling and register allocatipn is currently understood only in the context
of acyclic code, specifically, a single basic block or a linear trace of basic blocks. The
essence of the idea is that each time an operation is scheduled, an available register is allo-
cated to hold the result. Also, if this operation constitutes the last use of the contents of
one of the source registers, that register is made available once again for subsequent alloca-
tion. When no register is available to receive the result of the operation being scheduled,
a register must be spilled. The register holding the datum whose use is furthest away in
the future is spilled. This approach was used in the FPS-164 compiler at the level of indi-
vidual basic blocks [Touzeau 19841 as well as across entire traces [Ellis 1985; Freudenberger
and Ruttenberg 1992; Lowney et al. 19931. An important concept developed by the ELI
project at Yalc and by Multiflow was that of performing hierarchical, profile-driven, in-
tegrated global scheduling and register allocation. Traces are picked in decreasing order
OF frequency and integrated scheduling and allocation are performed on each. The scheduling
and allocation decisions made for traces that have been processed form constraints on the
correspond~ng decisions for the remaining code. This is a far more systematic approach

than other ad hoc, priority-based schemes with the same objective. A syntax-based hierarchi-
cal approach to global register allocation has been suggested by Callahan and Koblenz [1991].

If a loop is unrolled some number of times and then treated as a linear trace of basic
blocks [Fisher et al. 19811, simultaneous traqe scheduling and register allocation can be
accomplished, but with some loss of performance due to the emptying of pipelines across
the back edge. In the case of modulo scheduling, which avoids this performance penalty,
no approach has yet been advanced for simultaneous register allocation. Since doing register
allocation in advance is unacceptably constraining on the schedule, it must be performed
following modulo scheduling. A unique situation encountered with modulo scheduled loops
is that the lifetimes are often much longer than the initiation interval. Normally, this would
result in a value being overwritten before its last use has occurred. One solution is to unroll
the kernel of a modulo scheduled loop a sufficient number of times to ensure that no lifetime
is longer than the length of the replicated kernel [Lam 1987, 19881. This is known as modulo
variable expansion. In addition to techniques such as graph coloring, the heuristics pro-
posed by Hendren and others [I9921 and by Rau and others [I9921 may be applied after
modulo variable expansion. The other solution for register allocation is to assume the
dynamic register renaming provided by the rotating register capability of the Cydra 5. The
entity that the register allocator works with are vector lifetimes, that is, the entire sequence
of (scalar) lifetimes defined by a particular operation over the execution of the loop [Dehnert
and Towle 1993; Dehnert et al. 1989; Rau et al. 19921. Lower bounds on the number of
registers needed for a modulo scheduled loop have been developed by Mangione-Smith
and others [1992]. The strategy for recovering from a situation, in which no allocation
can be found for the software pipelined loop, is not well understood. Some options have
been outlined [Rau et al. 19921, but their detailed implementation, effectiveness, and relative
merits have as yet to be investigated.

3.2.3. Other ZLP Compiler Topics. Although scheduling and register allocation are at the
heart of ILP compilation, a number of other analyses, optimizations, and transformations
are crucial to the generation of high-quality code. Currently, schedulers treat a procedure
call as a barrier to code motion. Thus, in-lining of intrinsics and user procedures is very
important in the high frequency portions of the program [Dehnert and Towle 1993; Linn
1988; Lowney et al. 19931.

Certain loop-oriented analyses and optimizations are specific to modulo scheduling. IF-
conversion and the appropriate placement of predicate-setting operations are needed to
modulo schedule loops with control flow [Allen et al. 1983; Dehnert and Towle 1993;
Dehnert et al. 1989; Park and Schlansker 19911. The elimination of subscripted loads and
stores that are redundant across multiple iterations of a loop can have a significant effect
upon both the ResMII and the RecMII [Callahan et al. 1990; Dehnert and Towle 1993;
Rau 19921. This is important for trace scheduling unrolled loops as well [Lowney et al.
19931. Recurrence back-substitution, and other transformations that reduce the RecMII
have a major effect on the performance of all software pipelined loops [Dehnert and Towle
19931. Most of these transformations and analyses are facilitated by the dynamic single-
assignment representation for inner loops [Dehnert and Towle 1993; Rau 19921.

On machines with multiple, identical clusters, such as the Multiflow Trace machines, it
is necessary to decide which part of the computation will go on each cluster. This is a

nontrivial task; whereas increased parallelism argues in favor of spreading the computation
over the clusters, this also introduces intercluster move operations into the computation,
whose latency can degrade performance if the partitioning of the computation across clusters
is not done carefully. An algorithm for performing this partitioning was developed by Ellis
[I9861 and was incorporated into the Multiflow compiler [Lowney et al. 19931.

An issue of central importance to all ILP compilation is the disambiguation of memory
references, that is, deciding whether two memory references definitely are to the same mem-
ory location or definitely are not. Known as dependence analysis, this has become a very
well developed topic in the area of vector computing over the past twenty years [Zima and
Chapman 19901. For vector computers the compiler is attempting to prove that two references
in different iterations are not to the same location. No benefit is derived if it is determined
that they are to the same location since such loops cannot be vectorized. Consequently,
the nature of the analysis, especially in the context of loops containing conditional branch-
ing, has been approximate. This is a shortcoming from the point of view of ILP processors
that can benefit both if the two references are or are not to the same location. A more
precise analysis than dependence analysis, involving data flow analysis, is required. Also,
with ILP processors, memory disambiguation is important outside of loops as well as within
them. Memory disambiguation within traces was studied in the ELI project [Ellis 1985;
Nicolau 19841 and was implemented in the Multiflow compiler [Lowney et al. 19931. Mem-
ory disambiguation, in the context of innermost loops, was implemented in the Cydra 5
compiler [Dehnert and Towle 1993; Rau 19921 and was studied by Callahan and Koblenz
[1991].

4. Available ILP

4.1. Limit Studies and Their Shortcomings

Many experimenters have attempted to measure the maximum parallelism available in pro-
grams. The goal of such limit studies is to

throw away all considerations of hardware and compiler practicality and measure the
greatest possible amount of ILP inherent in a program.

Limit studies are simple enough to describe: Take an execution trace of the program, and
build a data precedence graph on the operations, eliminating false antidependences caused
by the write-after-read usage of a register or other piece of hardware storage. The length
in cycles of the serial execution of the trace gives the serial execution time on hardware
with the given latencies. The length in cycles of the critical path though the data dependence
graph gives the shortest possible execution time. The quotient of these two is the available
speedup. (In practice, an execution trace is not always gathered. Instead, the executed stream
is processed as the code runs, greatly reducing the computation or storage required, or both.)

These are indeed maximum parallelism measures in some sense, but they have a critical
shortcoming that causes them to miss accomplishing their stated goal; they do not consider
transformations that a compiler might make to enhance ILP. Although we mostly mean

=
transformations of a yet-unknown nature that researchers may develop in the future, even
current state-of-the-art transformations are rarely reflected in limit studies. Thus we have
had, in recent years, the anomalies of researchers stating an "upper limit" on available
parallelism in programs that is lower than what has already been accomplished with those 9
same programs, or of new results that show the maximum available parallelism to be sig-
nificantly higher than it was a few yeals ago, before a new set of code transformations
was considered. . P

There is a somewhat fatuous argument that demonstrates just how imprecise limit studies F
must be: recalling that infinite hardware is available, we can replace computations in the $
code with table lookups. In each case we will replace a longer-perhaps very long-com- a,
putation with one that takes a single step. While this is obviously impractical for most com- 2
putations with operands that span the (finite, but large) range of integers or floating point 5
numbers representable on a system, it is only impractical in the very sense in which prac-
ticality is to be discarded in limit studies. And even on practicality grounds, one cannot
dismiss this argument completely; in a sense it really does capture what is wrong with %
these experiments. There are many instances of transformations, some done by hand, others
automatically, that reduce to this concept. Arithmetic and transcendental functions are often
sped up significantly by the carefully selected use of table lookups at critical parts of the
computation. Modern compilers can often replace a nested set of IF-THEN tests with a
single lookup in which hardware does an indirect jump through a lookup table. Limit studies
have no way of capturing these transformations, the effect of which could be a large improve-
ment in available ILP.

Even in current practice the effect of ignoring sophisticated compiling is extreme. Trans-
formations such as tree height reduction, loop conditioning, loop exchange, and so forth
can have a huge effect on the parallelism available in code. A greater unknown is the research
future of data structure selection to improve ILP. A simple cxarnple can show this effcct.
The following code finds the maximum element of a linked list of data:

t h i s - p t r = h e a d - p t r ;
m a x - s o - f a r = m o s t - n e g - n u m b e r ;
w h i l e t h i s - p t r {

i f t h i s - p t r . d a t a > m a x - s o - f a r
t h e n m a x - s o - f a r = t h i s - p t r . d a t a ;

t h i s - p t r = t h i s - p t r . n e x t)

From simple observation the list of elements chained from head - p t r cannot be circular.
If the compiler had judged it worthwhile, it could have stored these elements in an array
and done the comparisons pairwise, in parallel, without having to chase the pointers linearly.
This example is not as farfetched as it might seem. Vectorization took 20 years to go from
the ability to recognize the simplest loop to the sophisticated vectorizers we have today.
There has been virtually no work done on compiler transformations to enhancc ILP.

Limit studies, then, are in some sense finding the maximun~ parallelism available, but
in other ways are finding the minimum. In these senses they find the maximum parallelism:

Disambiguation can be done perfectly, well beyond what is practical.
There are infinitely many functional units available.

b There are infinitely many registers available.
Rejoins can be completely unwound.

In other senses, they represent a minimum, or an existence proof that at least a certain
amount of parallelism exists, since potentially important processes have been left out:

Compiler transformations to enhance ILP have not been done.
Intermediate code generation techniques that boost ILP have not been done.

Perhaps it is more accurate to say that a limit study shows that the maximum parallelism
available, in the absence of practicality considerations, is at least the amount measured.

4.1.1. Early Experiments. The very first ILP limit studies demonstrated the effect we wrote
of above: The es?erimentersl view of the techniques by which one could find parallelism
was limited to the current state of the art, and the experimenters missed a technique that
is now known to provide most of the available ILP, the motion of operations between basic
blocks of code. Experiments done by Tjaden and Flynn [1970] and by Foster and Riseman
[I9721 (and, anecdotally, elsewhere) found that there was only a small amount (about a
factor of two to three) of improvement due to ILP available in real programs. This was
dubbed the Flynn bottleneck. By all accounts, these pessimistic and, in a sense, erroneous
experiments had a tremendous dampening effect on the progress of 1LP research. The ex-
periments were only erroneous in the sense of missing improvements; certainly they did
correctly what they said they did.

Interestingly, one of the research teams doing these experiments saw that under the hy-
pothesis of free and infinite hardware, one would not necessarily have to stop finding ILP
at basic block boundaries. In a companion paper to the one mentioned above, Riseman
and Foster [l972] put forward a hardware-intensive solution to the problem of doing opera-
tions speculatively: They measured what would happen if one used duplicate hardware
at conditional jumps, and disregarded the one that went in the wrong direction. They found
a far larger amount of parallelism: Indeed, they found more than an order of magnitude
more than they could when branches were a barrier. Some of the programs they measured
could achieve arbitrarily large amounts of parallelism, depending only on data set size.
But in an otherwise insightful and visionary piece of work, the researchers lost sight of
the fact that they were doing a limit study, and in their tone and abstract emphasized how
impractical it would be to implement the hardware scheme they had suggested. (They found
that to get a factor-of-ten ILP speedup, one had to be prepared to cope with 16 unresolved
branches at the worst point of a typical program. Their scheme would require, then, 216
sets of hardware to do so. Today, as described in most of the papers in this issue, we try
to get much of the benefit of the same parallelism without the hardware cost by doing code
motions that move opcrations bctwccn blocks and having the code generator make sure
that the correct computation is ultimately done once the branches settle.)

4.1.2. Contemporary Experiments. We know of no other ILP limit studies published be-
tween then and the 1980s. In 1981 Nicolau and Fisher [1981, 19841 used some of the

apparatuses being developed for the Yale Bulldog compiler to repeat the experiment done
by Riseman and Foster, and found virtually the same results.

In the late 1980s architects began to look at superscalar microprocessors and again started
a series of limit studies. Interestingly, the most notorious of these [Jouppi and Wall 19891
again neglected the possibility of code motions between blocks. Unsurprisingly, the Flynn
bottleneck appeared again, and only the factor of 2-3 parallelism found earlier was found.
Two years later Wall [I9911 did the most thorough limit study to date and accounted for
speculative execution, memory disambiguation, and other factors. He built an elaborate
model and published available ILP speedup under a great many scenarios, yielding a wealth
of valuable data but no simple answers. The various scenarios allow one to try to bracket
what really might be practical in the near future, but are subject to quite a bit of interpreta-
tion. In examining the various scenarios presented, we find that settings that a sophisticated
compiler might approach during the coming decade could yield speedups ranging from
7 to 60 on the sample programs, which are taken from the SPEC suite and other standard
benchmarks. (It is worth noting that Wall himself is much more pessimistic. In the same
results he sees an average ceiling of about 5, and the near impossibility of attaining even
that much.) Lam and Wilson (19921 did an experiment to measure the effects of different
methods of eliminating control flow barriers to parallelism. When their model agreed with
Wall's, their results were similar. Butler and Patt [Butler et al. 19911 considered models
with a large variety of numbers of functional units and found that with good branch predic-
tion schemes and speculative execution, a wide range of speedup was available.

4.2. Erperiments That Measure Attained Parallelism

In contrast to the limit studies, some people have built real or simulated ILP systems and
have measured their speedup against real or simulated nonparallel systems. When simulated
systems have been involved, they have been relatively realistic systems, or systems that
the researchers have argued would abstract the essence of realistic systems in such a way
that the system realities should not lower the attained parallelism. Thus the experiments
represent something closer to true lower bounds on available parallelism.

Ellis [I9861 used the Bulldog compiler to generate code for a hypothetical machine. His
model was unrealistic in several aspects, most notably the memory system, but realistic
implementations should have little difficulty exploiting the parallelism he found. Ellis meas-
ured the speedups obtained on 12 small scientific programs for both a "realistic" machine .
(corresponding to one under design at Yale) and an "ideal" machine, with limitless hard-

?'
z ware and single-cycle functional units. He found speedups ranging from no speedup to c

7.6 times speedup for the real model, and a range of 2.7 to 48.3 for the ideal model. nl
=I
n

In this issue there are three papers that add to our understanding of the performance I-
of ILP systems. The paper by Hwu and others [I9931 considers the effect of a realistic D
compiler that uses superblock scheduling. Lowney and others [I9931 and Schuette and Shen ,$
[I9931 compare the performance of the Multiflow TRACE 141300 with current microproc-
essors from MIPS and IBM, respectively.

Fewer studies have been done to measure the attained performance of software pipelining.
Warter and others [I9921 consider a set of 30 doall loops with branches found in the Perfect

and SPEC benchmark sets. Relative to a single-issue machine without modulo scheduling,
they find a 6-time speedup on a hypothetical 4-issue machine and a 10-time speedup on
a hypothetical 8-issue machine. Lee and others [I9931 combined superblock scheduling
and software pipelining for a machine capable of issuing up to seven operations per cycle.
On a mix of loop-intensive (e.g., LINPACK) and "scalar" (e.g., Spice) codes, they found
an average of one to four operations issued per cycle, with two to seven operations in flight.

5. An Introduction to This Special Issue

In this special issue of The Journal of Supercomputing we have attempted to capture the
most significant work that took place during the 1980s irt the area of instruction-level parallel
processing. The intent is to document both the theory and the practice of ILP computing.
Consequently, our emphasis is on projects that resulted in implementations of serious scope,
since it is this reduction to practice that exposes the true merit and the real problems of
ideas that sound good on paper.

During the 1980s the bulk of the advances in ILP occurred in the form of VLIW proc-
essing, and this special issue reflects it with papers on Multiflow's Trace family and on
Cydrome's Cydra 5. The paper by Lowney and others [1993] provides an overview of the
Trace hardware and an in-depth discussion of the compiler. The paper by Schuette and
Shen [I9931 reports on an evaluation performed by the authors of the TRACE 141300 and
a comparison of it to the superscalar IBM RSl6000. The Cydra 5 effort is documented
by two papers: one by Beck, Yen, and Anderson [I9931 on the Cydra 5 architecture and
hardware implementation, and the other by Dehnert and Towle [I9931 on the Cydra 5 com-
piler. (While reading the descriptions of these large and bulky minisupercomputers, it is
worthwhile to bear in mind that they could easily fit on a single chip in the near future!)
The only important superscalar product of the 1980s was Astronautics' ZS-1 rninisuper-
computer. Although we wanted to include a paper on it in this special issue, that did not
come to pass. The paper by Hwu and others [I9931 reports on IMPACT, the most thorough
implementation of an ILP compiler that has occurred in academia.

Notes

1. The first machines of this type that were built in the 1960s were referred to as look-aheadprocessors. Subse-
quently, machines that performed out-of-order execution, while issuing multiple operations per cycle, came
to be termed superscalar processors. Since look-ahead pnressors are only quantitatively different from superscalar
processors, we shall drop the distinction and refer to them, too, as superscalar processors.

2. We shall consistently refer to this code generation activity as scheduling.

References

Acosta, R.D.. Kjelstrup, J., and Torng, H.C. 1986. An instruction issuing approach to enhancing performance
in multiple function unit processors. IEEE Tmns. Comps., C-35, 9 (Sept.): 815-828.

Adam, T.L., Chandy, K.M., and Dickson, J.R. 1974. A comparison of l i t sfhcdules for parallel processing systems.
CACM, 17, 12 (Dec.): 685-690.

Advanced Micro Deviccs. 1989. Am29000 Users Manual. Pub. no. 10620B, Advanced Micro Devices, Sunnyvale,
Calif.

Agerwala, T. 1976. Microprogram optimization: A survey. IEEE Tmns. Comps., C-25. 10 (Oct.): 962-973. 2
Agerwala. T., and Cocke, J. 1987. High performance reduced instruction set processors. Tech. rept. RC12434

(#55845), IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.
Aho, A.V., and Johnson, S.C. 1976. Optimal code generation for expression trees. JACM, 23 3 (July): 488-501.
Aho, A.V., Johnson, S.C., and Ullman, J.D. 1977a. Code generation for expressions withcommon subexpressions. 5

JACM. 24. 1 (Jan.): 146-160. 4
Aho, A.V., Johnson, S.C.. and Ullman, J.D. 1977b. Code generation for machines with multiregister operations. 2

In Proc., Fourth ACM Symp. on Principles of Programming Languages, pp. 21-28. P

Aiken, A., and Nicolau, A. 1988a. Optimal loop parallelization. In Proc., SIGPLAh'W Conf: on Programming '2
=l Language Design and Implemenrarion (Atlanta, June), pp. 308-317. z

Aiken, A,, and Nicolau, A. 1988b. Perfect pipelining: A new loop parallelization technique. In Pmc., 1988 European 2
Symp. on Programming, Springer Verlag, New York, pp. 221-235. 2

5' Aiken, A, , and Nicolau, A. 1991. A realistic resource-constrained software pipelining algorithm. In Advances =l

in Lnnguages and Compilers for ParallelProcessing (A. Nicolau, D. Gelernter. T. Gross, and D. Padua, eds.), r
m

PitmanIMIT Press, London, pp. 274-290. -z
L

Allen, J.R.. Kennedy. K., hrcerfield. C.. and Mrren, J. 1983. Conversion of control dependence to data dependence.
In Proc., Enrh Annual ACM Symp. on Principles of Progmmming Languages (Jan.): pp. 177-189.

Anderson D.W., Sparacio, F.L. and Tomasulo, R.M. 1967. The System/360 Model 91: Machine philosophy and %
instruction handling. IBM J. Res. and Dev., 11, 1 (Jan.): 8-24. L -.

Apollo Computer. 1988. The Series lOOW Personal Supercomputer: Inside a New Architecture. Publication no. 5
002402-007 2-88, Apollo Computer, Inc., Chelmsford. Mass. - -

r
Arvind and Gostelow, K. 1982. The U-interpreter. Computer, l.5, 2 (Feb.): 12-49. w -
Arvind and Kathail, V. 1981. A multiple processor dataflow machine that supports generalised pmedures. In

Proc.. Eighth Annual Symp. on Computer Archirecrure (May): pp. 291-302.
Auslander, M.. and Hopkins, M. 1982. An overview of the PL.8 compiler. In Proc., ACM SIGPL4N Symp. on

Compiler Consrruction (Boston, June), pp. 22-31.
Bahr, R., Ciavaglia, S.. Flahive, B., Kline, M., Mageau, P., and Nickel, D. 1991. The D N I W X : A new

high-performance PRISM processor. In Pmc. , COMPCON '91, pp. 90-95.
Baker, K.R. 1974. Introduction to Sequencing and Scheduling. John Wiley. New York.
Beck, G.R., Yen. D.W.L.. and Andenon T.L. 1993. The Cydrd 5 minisupercomputer: Architecture and implernen-

talion. 7he I. Supercompuring, 7 , 112: 143-180.
Bell, C.G., and Newell, A, l q l . Computer Stiucrures: Readings and Eutmples. McGraw-Hill, New York.
Bernstein, D., and Rodeh, M. 1991. Global instruction scheduling for superscalar machines. In Proc., S I G P M

'91 Conf on Programming Language Design and Implementation (June), pp. 241-255.
Bernstein. D.. Cohen. D., and Krawzyk. H. 1991. Code duplication: An assist for global instruction scheduling.

In Proc.. 24th Annual Internat. Synp. on Micmarchrrecture (Albuquerque, N. Mex.), pp. 103- 1 13.
Blanck, G., and Krueger, S. 1992. The SuperSPARP microprocessor. In Proc., COMPCON '92, pp. 06-141.
Bloch, E. 1959. The engineering desrgn of the STRETCH computer. In Proc., EaFrem Joint Cumpurer Conj ,

pp. 48-59.
Bruno, J.L., and Sethi, R. 1976. Code generation for a one-register machine. JACM, 23, 3 (July): 502-510.
Buchholz, W., cd. 1962. Planning a Computer System: Project Stretch. McGraw-Hill, New York.
Butler, M., Yeh, T., Paa., Y., Alsup, M., Scales, H., and Shebanow, M. 1991. Single instructionstream parallelism

is greater than ~ o . In Ax., Eighreenrh AMunl h i e m S m . on Computer Archifemre flomnto), pp. 276286.
Callahan, D., and Koblenz, B. 1991. Register allocation via hierarchical graph coloring. In Proc., SlCPLAN '91

Conf: on Progmmming Language Design and Implementation (Toronto, June), pp. 192-203.
Callahan, D., Cam, S.. and Kennedy, K. 1990. Improving register allocation for subscripted variables. In Pmc.,

ACM S l G P U N '90 ConJ: on Programming Longuage Design and Implemenlnrion, (White Plains, N.Y., June),
pp. 53-65.

Carpenler. B.E., and Doran, R.W., eda. 1986. A.M. W i n g ' s ACE Report of 1946 and Other Popers. MIT Press,
Cambridge. Mass.

Chaitin, G.J. 1982. Register allocation and spilling via graph coloring. In Proc., ACM SICPUN Symp. on Com-
piler Conrrruction (Boston, June), pp. 98-105.

Chang, P.P., and Hwu, W.W. 1988. Trace selection for compiling large C application programs to microcode.
In Pmc., 21sr Annual Wrlirhop on Microprogramming and Micmarchirecrures (Sun Diego, Nov.), pp. 21-29.

Chang, P.P., and Hwu, W.W. 1992. Profile-guided automatic inline expansion for C programs. Sofh.ore-Pmctice
and Erperience, 22, 5 (May): 349-3l6.

Chang, P.P., Lavery, D.M., and Hwu, W.W. 1991. The importance of prepass code scheduling for superscalar
and superpipelined processors. Tech. Rept. no. CRHC-91-18, Center for Reliable and High-Performance Com-
puting, Univ, of Ill, Urbana-Champaign, Ill.

Chang, P.P., Mahlke, S.A., Chen, W.Y.. Warter, N.J., and Hwu, W.W. 1991. IMPACT An architectural framewrk
for multiple-instruction-issue pmcessors. In Pmc., 18rh Annual Internat. Symp on Computer Architechire (Toronto,
May), pp. 266-275.

Charlesworth, A.E. 1981. An approach to scientific array processing: The architectural design of the AP-12OBI
FPS-164 family. Computer, 14, 9: 18-27.

Chen, T.C. 1971. Parallelism, pipelining, and computer efficiency. Compurer Design, 10, 1 (Jan.): 69-74.
Chen, T.C. 1975. Overlap and pipeline processing. In Introduction to Computer Archirecrure (H.S. Stone, ed.),

Science Research Associates, Ch~cago, pp. 375431.
Chow, F., and Hennessy, J. 1984. Register allocation by priority-based coloring. In Proc., ACM SIGPLAN Synp.

on Compiler Construction (Montreal, June), pp. 222-232.
Chow, F.C., and Hennessy. J.L. 1990. The priority-based coloring approach to register allocation. ACM Trans.

Programming Languages and Systems, 12 (Oct.): 501-536.
Coffman, J.R., ed. 1976. Computer and Job-Shop Scheduling 7keory. John Wiley, New York.
Coffman, E.G., and Graham, R.L. 1592. Opt~mal scheduling for two processor systems. Acta In fomt ica , 1,

3: 200-213.
Cohen, D. 1978. A methodology for programming a pipeline array pmessor. In Pmc., 11th Annual Micmpmgmm-

ming Workshop (Asilomar, Calif., Nov.), pp. 82-89.
Colwell, R.P., Nix, R.P., O'Donnell, J.J.. Papworth, D.B., and Rcdman, P.K. 1988. A V L W architecture for

a trace scheduling compiler. IEEE Trans. Comps., C-37, 8 (Aug.): 967-979.
Colwell, R.P., Hall, W.E.. Joshi. C.S., Papworth, D.B., Rcdman, P.K., and Tornes, J.E. 1990. Architecture and

implementation of a VLIW supercomputer. In Pmc. , Supercomputing '90 (Nov.), pp. 910-919.
Cotten, L.W. 1965. Circuit implementation of high-speed pipelme systems. In Proc., AFIPS Fall Joint Computing

C o n t , pp. 489-504.
Cotten. L.W. 1969. Maximum-rate pipeline systems. In Proc., AFIPS Spring Joinr Computing C o n t , 581-586.
Danelutto. M . , and Vanneschi, M. 1990. VLlW in-the-large: A model for fine grain pnrullelism exploitation

of distributed memory multiprocessors. In Pmc., 23rd Annual Mrkshop on Microprvgmrmning and Micmrchi-
recrure (Nov.), pp. 7-16.

Dasgupta, S., and Tartar, J. 1976. The identification of maximal parallelism in straight-line microprograms. IEEE
Trans. Comps., C-25, 10 (Oct.): 986-991.

Davidson. E.S. 1971. The design and control of pipelined function generators. In Proc., 1971 Internat. IEEE Conf
on Systems, N e m r k s , and Computers (Oaxtepec, Mexico. Jan.), pp. 19-21.

Davidson, E.S. 1974. Scheduling for plpelined processors. In Proc., 7th Hawaii Conf on Systems Sciences, pp. 58-60.
Davidson, S., Landskov. D., Shriver, B.D., and Mallett, PW. 1981. Some experiments in local microcode com-

paction for horizontal machines. IEEE Trans. Comps., C-30, 7: 460477,
Davidson, E.S., Shar, L.E., Thomas, A.T., and Patel, J.H. 1975. Effective control for pipelined computers. In

Proc., COMPCON '90 (San Francisco, Feb.), pp. 181-184.
Dehnert, J.C., and Towle, R.A. 1993. Compiling for the Cydra 5. l l ~ e I. Supercomputing, 7, I n : 181-227.
Dehnert, J.C., Hsu, PY.-T., and Bran, J.P. 1989. Overlapped loop support in the Cydra 5. In Pmc., Third Internat.

Conf: on Archirectural Support for Programming Languages and Operating Systems (Boston. Apr.), pp. 26-38.
DeLano, E.. Walker, W., Yetter, I., and Forsyth, M. 1992. A high speed superscalar PA-RISC processor. In Pmc.,

COMPCON '92 (Feb.), pp. 1 16- 12 1.
DeWitt. D.J. 1975. A control word model for detecting conflicts between microprograms. In Pmc., 8th Annual

Workshop on Microprogramming (Chicago, Sept.), pp. 6-12.
Diefendorff, K . , and Allen. M . 1992. Organization of the Motorola 881 10 superscalar RlSC micmprocessor.

IEEE Micro, 12, 2 (Apr.): 40-63.
Dongarra, J.J. 1986, A survey of high performance computers. In Proc., COMPCON '86 (Mar.), pp. 8-11,
Dwyer, H., and Torng, H.C. 1992. An dut-of-order superscalar processor with speculative execution and fast,

precise interrupts. In Pm., 25th Annual Internat. Symp. on Microarchitecture (Podand, Ore., Dec.), pp. 272-281.

Ebcioglu, K. 1988. Some design ideas for a VLIW architecture for sequential-natured software. In Pamllel Proc-
essing (Proc. , IF IP WG 10.3 Hbrking Con$ on Parallel Processing, Pisu. Ilaly) (M. Cosnard. M.H. Barton,
and M. Vanneschi, eds.), North-Holland, pp. 3-21.

Ebcioglu. K . , and Nakatani, T. 1989. A new compilation technique for parallelizing loops with unpredictable
branches on a VLW archirecture. In Languages and Compilersfor Pnrallel Computing (D. Gelemter, A. Nicolau.
and D. Padua, eds.), PitmanlMIT Press, London, pp. 213-229.

Ebcioglu, K . , and Nicolau, A. 1989. A global resource-constrained parallelization technique. In Pmc., 3rd In-
t e n t ~ ~ . Con/ on Supercompuring (Crete, Greece, June), pp. 154-163.

Eckert, J.P., Chu, J.C., Tonik, A.B., and Schmitt, W.F. 1959. Design of UNIVAC-LARC System: I. In Proc.,
Easrern Joint Compurer Conf , pp. 59-65.

Ellis, J.R. 1986. Bulldog: A Compiler for VLlW Architectures. MIT Press, Cambridge, Mass.
Fawcett. B.K. 1975. Maximal clocking rates for pipclrned drgiti~l syatema. M.S. Ihes~s, Univ, of Ill., Urbana-

Champaign, Ill.
Fernandez, E.B., and Bussel, B. 1973 Bounds on the number of processors and time for multiprocessor optimal

schedule. IEEE Tmns. Comps., C-22. 8 (Aug.): 745-751.
Fisher. J.A. 1979. The optimization of horizontal microcode within and beyond basic blocks: An application of

professor scheduling with relources, Ph.D. thesis, New York Univ., New York.
Fisher, J.A. 1980. zN-way jump microinstruction harduare and an effective instruction binding method. In Proc.,

13th Annual Workshop on Microprogramming (Colorado Springs, Colo., Nov.), pp. 64-75.
Fisher, J.A. 1981. Trace scheduling: A technique for global rnrcroccde compaction. IEEE Trans. Comps., C-30,

7 (July): 478-490.
Fisher. J.A. 1983. Very long instruction word architectures and the ELI-512. In Proc., Tenth Annual Internat.

Symp. on Computer Architecture (Stockholm, June), pp. 140-150.
Fisher, J.A. 1992. Trace Scheduling-2, an extension of trace scheduling. Tech. rept.. Hewlen-Packard Laboratories.
Fisher, J.A., and Freudenberger, S.M. 1992. Predicting conditional jump directions from previous runs of a pro-

gtam. In Proc , Fijh Inremar. Conf on Archirecturul Suppon ~ i) r Progrunming Languuges and Operating Sysams
(Boston. Oct.), pp. 85-95.

Fisher, J.A., Landskov, D., and Shriver. B.D. 1981. Microcode compaction: Looking backward and looking for-
ward. In Proc.. 1981 Nat. Computer C o n j . pp. 95-102.

Fisher. J.A., Ellis. J.R.. Ruttenberg. J.C., and Nicolau, A. 1984. Pdrallel processing: A smart compiler and a
dumb mchrnc. In Pwc., ACM SlGPLAN '84 Symp, on Compiler Consrrur,rion (Montreal, June), pp. 37-47.

Floating Point Systems. 1979. FPSAP-12OB Pmcessor Handbook. Floating Point Systems, Inc., Beavenon, Ore.
Foster, C.C., and Riseman, E.M. 1972. Percolation of code to enhance parallel dispatching and execution. IEEE

Tmns. Comps., C-21, 12 (Dec.): 1411-1415.
Franklin, M., and Sohi. G.S. 1992. The expandable split window paradigm for exploiting fine-grain parallelism.

In Proc. 19rh A n n u l Intemtronal Symp. on Computer Archifecrure (Gold Coast. Australia, May), pp. 58-67.
Freudenberger. S.M.. and Ruttenberg. J.C. 1992. Phase ordering of register allocation and instruction scheduling.

In Code Generation-Conceprs, Tools, Techniques: Proc., Internal. Workshop on Code Generation. May 1991
(R. Giegerich, and S.L. Graham, eds.), Springer-Verlag, London, pp. 146-172.

Gasperoni, F. 1989. Compilation techniques for VLlW architectures. Tech. rept. RC 14915, IBM Research Div.,
T.J. Watson Research Center, Yorktown Heights, N.Y.

Gibbons, P.B., and Muchnick, S.S. 1986. Efficient instruction scheduling for a pipelined architecture. In Proc..
ACM S I G P U N '86 Symp. on Compiler Constructron (Palo Alto, Calif., July), pp. 11-16.

Golumbic, M.C., and Rainish, V. 1990. Instruction schedulig beyond basic blocks. I B M J. Res. and Dev.. 34,
I (Jan.): 93-97.

Gonzalez, M.J. 1977. Deterministic processor scheduling. A C M Computer Surveys, 9, 3 (Sept.): 173-204.
Goodman, J.R., and Hsu. W.-C. 1988. Code scheduling and register allocation in large basic blocks. In Pmc.,

I988 Inremat. Conf: on Supercomputing (St. Malo, France, July), pp. 442-452.
Grishman. R.. and Su. B. 1983. A preliminary evaluation of trace scheduling for global m~crocode compaction.

IEEE Truns. Comps.. C-32. 12 (Dec.): 1191-1 194.
Gross, T.R.. and H e ~ e s s y , J.L. 1982. Optimizing delayed branches. In Proc., 15th Annual Ubrkshop on Micm-

progmmming (Oct.), pp. 1 14-120.

Gross, T., and Ward, M. 1990. The suppression of compensation code. In Advances in Lnnguagesand Compilers
for Parallel Coml:,~ring (A. N~colau, D. Gelernter, T. Gross, and D. Padua, eds.), PitmanlMIT Press. London,
pp. 260-273.

Gurd, J. , Kirkham, C.C., and Watson, I. 1985. The Manchester prototype dataflow computer. CACM. 28, I(Jan.):
34-52.

Hallin, T.G.. and Flynn, M.J. 1972. Pipelining of arithmetic functions. IEEE Tmns. Comps., C-21.8 (Aug.): 880-886.
Hcndrcn, L.J., Gao, G.R.. Altman, E.R., and Muherji. C. 1992. Register allocation using cyclic interval graphs:

A new approach to an old problem. ACAPS Tech. Memo 33, Advanced Computer Architecture and Program
Structures Group, McGill Univ., Montreal.

Hennessy. J.L., and Gross, T. 1983. Post-pass code optimization of pipelined constraints. ACM Trans. Program-
n r ~ q Languages and Syslemr, 5, 3 (July): 422-448.

Henneasy, J., Jouppi, N., Baskett. F,, Gross, T . , and Gill, J. 1982. Hardwarelsoftware tradeoffs for increased
performance. In Proc., Symp, on Archirecrural Suppon for Progmmming Languages and Opemting Systems
(Palo Alto, Calif., Mar.) pp. 2-1 1.

Hennessy. J. Jouppi, N., Przybylski, S., Rowen, C., Gross, T., Basken, F,, and Gill, J. 1982. MIPS: A microproc-
essor architecture. In Proc., 15rh Annual Workshop on Microprogramming (Palo Alto, Calif., Oct.). pp. 17-22.

Hintz, R G., and rite, D.P. 1972. Control Data STAR-100 processor design. In Proc., COMPCON '72 (Sept.),
pp. 1-4.

Hsu, P.Y.T. 1986. Highly concurrent scalar processing. Ph.D, thesis. Univ. of Ill., Urbana-Champaign, Ill.
Hsu, P.Y.T., and Davidson, E.S. 1986. Highly concurrent scalar processing. In Proc., 7hineenth Annual Inremar.

Symp. on Computer Archirecrure, pp. 386-395.
Hsu, W.-C. 1987. Register allocation and code scheduling for loadlstore architectures. Comp. Sci. Tech. Rept.

no. 722, Univ. of Wisc., Madison.
Hu, T.C. 1961. Parallel sequencing and assembly line problems. Operarions Research, 9, 6: 841-848.
Hwu, W.W., and Chang, P.P. 1988. Exploiting parallel microprocessor microarchitectures with a compiler code

generator. In Proc.. I5rh Annual 111ternar. Symp. on Compurer Architecture (Honolulu, May), pp. 45-53.
Hwu, W.W.. and Patt, Y.N. 1986. HPSm, a high performance restricted data flow arch~tecture having minimal

functionality. In P m , 13th Annual Inrernar. Symp. on Computer Architecture (Tokyo, June), pp. 297-306.
Hwu, W.W., and Patt. Y.N. 1987. Checkpoint repair for out-of-order execution machines. IEEE Trans. Comps.,

C-36. 12 (Dec.): 1496-1514.
Hwu, W.W.. Conle, T.M., und Chang, P.P. 1989. Comparing softwore and hardware schemes for reducing the

cost of branches. In Proc., 16th Annual Inlernar. Symp. on Computer Archirecrure (May), pp. 224-233.
Hwu. W.W., Mahlke, S.A.. Chen. W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Ouellette, R.G., Hank,

R.E. , Kiyohara, T., Haab, G. E., Holm, J.G., and Lavery, D.M. 1993. The superblock: An effective technique
for VLIW and superscalar compilation. 7 l e J. Supercompuring, 7. 112: 229-248.

IBM. 1967. I S M J. Res. and Dev.. 11, 1 (Jan.). Special issue on the System1360 Model 91.
IBM. 1976. I B M 3838 Array Processor Funcrional Characrerisrics. Pub. no. 6.424-3639-0, file no. S370-08, IBM

Corp., Endicott, N.Y.
IBM. 1990. I B M J. Res. and Dev., 34, 1 (Jan.). Special issue on the IBM RISC System16000 processor.
Intel. 1989a. i860 64-Bir Microprocessor Programmer's Reference Manual. Pub. no. 240329-001, Intel Corp.,

Santa Clara, Calif.
Intel. 1989b. 80960CA User's Manual. Pub. no. 270710-001, Intel Corp., Santa Clara, Calif.
Jain, S. 1991. Circular scheduling: A new technique to perform software pipelining. In Proc., A C M S I G P L M

'91 Con/: on Programming Language Design and Implemenranon (June). pp. 219-228.
Johnson. M. 1991. Superscalar Microprocessor Design. Prentice-Hall, Englewood Cliffs, N.J.
Jouppi. N.P. 1989. The nonuniform distribution of instruction-level and machine parallelism and its effect on

performance. IEEE Trans. Comps., C-38, 12 (Dec.): 1645-1658.
Jouppi, N.P.. and Wall, D. 1989. Available instruction level parallelism for superscalar and superpipelined machines.

In Proc.. 7hird 111remal. Conf. on Architecrurul Supporr fur Programming Languages and Operating Sysrents
(Boston. Apr.). pp. 272-282.

Kasahara. H., and Narita, S. 1984. Practical multiprocessor scheduling algorithms for efficient parallel processing.
IEEE Trans. Comps., C-33, 1 1 (Nov.): 1023-1029.

Keller, R.M. 1975. Look-ahead processors. Computing Surwys 7, 4 (Dec.): 177-196.

Kleir, R.L. 1974. A representation for the analysis of microprogram operation. In Proc., 7th Annual Workrhop !$
on Microprogramming (Sept.) , pp. 107-1 18.

Kleir, R.L., and Ramamwrlhy, C.V. 1971. Optimization strategies for microprograms. IEEE Tran Comps., C-20,
7 (July): 783-794.

Kogge, P.M. 1973. Maximal rate pipelined solutions to recurrence programs. In Proc.. First Annual Sjmp. on 9
Compurer Architecture (Univ. of Fla., Gainesville, Dec.), pp. 71-76. m

Kogge, P.M. 1974. Parallel solution of recurrence problems. I B M J. Rer. and D o ! , 18, 2 (Mar.): 138-148.
z e

Kogge, P.M. l977a. Algorithm development for pipel~ned processors. In Proc., 1977Internar. Con/: on Parallel a
Processing (Aug.). p. 217. 1 -

Kogge, P.M. l977b. The microprogramming of pipelined processors. In Proc., 4th Annual Symp. on Compurer 2
Archirecture (Mar.). pp. 63-69. 7 c

Kogge, P.M. 1981. 7he Archirecrure of Pipelined Compurers. McGraw-HIII, New York. 2.
Kogge, P.M., and Stone, H.S. 1973. A parallel algorithm for the efficient solut~on of a general class of recurrence 2

equations. IEEE Trans. Comps., C-22, 8 (Aug.): 786-793. r
Kohler, W.H. 1975. A preliminary evaluation of the critical path method for scheduling tasks on multiprocessor 9

systems. IEEE Tmns. Comps., C-24, 12 (Dec.): 1235-1238. 'D

Kohn, L., and Margulis, N. 1989. Introducing the Intel i860 64-bit microprocessor. IEEEMicro, 9 , 4 (Aug.): 15-30. $
Kunkel, S.R., and Smith, J.E. 1986. Optimal pipelining in supercomputers. In Proc., 13th Annual Inrernar. Symp.

on Campurer Architecture (Tokyo, June), pp. 404-41 1 'D -.
Labrousse, J., and Slavenburg, G.A. 1988. CREATE-LIFE: A design system for high performance VLSI circuits.

In Proc., Inrernat. Conf. on Circuits and Devices, pp. 365-360. 3 -
Labrousse, I.. and Slavenburg, G.A. 1990a. A 50 MHz microprocessor with a VLIW architecture. In Proc., r

w
ISSCC '90 (San Francisco), pp. 44-45. -

Labrousse, J., and Slavenburg. G.A. 1990b. CREATE-LIFE: A modular design approach for high performance
ASICs. In R o c . , COMPCON '90 (San Francisco), pp. 427-433.

Lam, M A - L . 1987. A systolic array optimizing compiler. Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh.
Lam. M. 1988. Software pipelining: An effective scheduling lechnique for VLIW machines. In P m . , ACM S I G P W

'88 Conj: on Programming Language Design and Implementation (Atlanta, June). pp. 318-327.
Lam, M.S., and Wilson, R.P. 1992. Limits of control flow on parallelism. In Proc., Nineteenth Inremar. Symp.

on Compurer Architecture (Gold Coast, Australia, May), pp. 46-57.
Landskw, D., Davidson. S., Shrivcr, B.. nnd Mallet[, P.W. 1980. I.ocul microcode compaction techniques. ACM

Compurer Surveys, 12, 3 (Sepl.): 261-294.
Lee, J.K.F., and Smith, A.J. 1984. Branch prediction strategies and branch target buffer design. Compurer, 17,

I (Jan.): 6-22.
Lee, M., Trumalai, P.P., and Ngai, T.-F. 1993. Software pipelining and superblock scheduling: Compilation

techniques for VLIW machines. In Proc., 26th Annual Hawaii Internut. Con/: on System Sciences (Hawaii.
Jan.), vol. 1, pp. 202-213.

Linn, S.L. 1988. Horiwntal microcode compaction. In Microprogmmming and Firmware Engineering Methods
(S . Habib, ed.), Van Nostrand Reinhold, New York, pp. 381-431.

Lownq: PG., Freudenberger, S.M., Karzes. T.J., Lichtenstein. W.D., Nix. R.P,, O'Donnell, J.S., and Ruttenburg,
J.C. 1993. The Mulliflow trace scheduling compiler. 7'he J. Supercompuring, 7. 12: 51-142.

Mahlke, S.A., Chen, W.Y., Hwu, W.W.. Rau. B.R., and Schlansker, M.S. 1992. Sentinel scheduling for VLIW
and superscalar processors. In Proc., Fifth Inrernaf. Conf. on Archirecrural Suppon for Programming Languages
and Opemting System (Boston, Oct.). pp. 238-247.

Mahlke, S.A., Lin, D.C.. Chen, W.Y., Hank. R.E., and Bringmann. R.A. 1992. Effectivecompiler support for
predicated execution using the hyperblock. In Proc., 25th Annual Inrernar. Sjmp, on Micmrchirecrure (Dec.),
pp. 45-54.

Mallen, P.W. 1978. Methods of compacting microprograms. Ph.D. thesis, Univ. of Southwestern La., Lafayette, La.
Mangione-Smith, W.. Abraham, S.G., and Davidson, E.S. 1992. Register requirements of pipelined processors.

In Proc., Inrcrnat. Con/: on Supercompuring (Washington. D.C., July).
McFarling, S., and Hennessy. J. 1986. Reducing the cost of branches. In Proc.. ntirreenth Internor. Synp on

Computer Architecture (Tokyo, June), pp. 396-403.
Moon, S.-M.. Ebcioglu, K. 1992. An efficient resource-constrained global scheduling technique for superscalar

and VLIW processors. In Proc.. 25th Annual Inremar. Symp. on Microarchitecture (Pbrtland, Ore., Dec.).
pp. 55-71.

Nakatani, T., and Ebcioglu, K. 1990. Using a lookahead window in a compaction-based parallelizing compiler.
In Proc., 23rd Annual Mrkrhop on Microprogramming and Microanhirecrure (Orlando, Fla., Nov.). pp. 57-68.

Nicolau. A. 1984. Pdrallelism. memory anti-aliasing and correctness for trace scheduling compilers. Ph.D. thesis,
Yale Univ., New Haven, Conn.

Nicolau. A. 1985a. Percolation scheduling: A parallel compilation technique. Tech. Rept. TR 85-678, Dept. of
Comp. Sci., Cornell. Ithaca, N.Y.

Nicolau, A. 1985b. Uniform parallelism exploitation in ordinary programs. In Proc., Inremar. ConJ on Porallel
Processing (Aug.), pp. 614-618.

Nicolau, A., and Fisher, J.A. 1981. Using an oracle to measure parallelism in single instruction stream programs.
In Proc., Fbuneenrh Annual Microprogramming Wrkrhop (Oct.). pp. 171-182.

Nicolau. A,, and Fisher, J.A. 1984. Measuring the parallelism available for very long instruction wrd architec-
tures. IEEE Trans. Comps.. C-33, l l (Nov.): 968-976.

Nicolau. A,, and Potasman, R. 1990. Realistic scheduling: Compaction for pipelined architectures. In Proc.,
23rd Annual Workhop on Microprog'ramming and Microarchirecrure (Orlando, Fla., Nov.), pp. 69-79.

Oehler, R.R., and Blasgen, M.W. 1991. IBM RISC Systemi6000: Architecture and performance. IEEE Micro,
11. 3 (June): 14.

Papadopoulos, G. M., and Culler, D.E. 1990. Monsoon: An explicit token store architecture. In Proc., Sewnreenrh
Inremar. Symp. on Computer Archirecrure (Seattle, May), pp. 82-91.

Park, J.C.H.. and Schlansker, M.S. 1991. On predicated execution. Tech. Rept. HPL-91-58, Hewlett Packard
Laboratories.

Patel, J.H. 1976. Improvingthe throughput of pipelines withdelays and buffers. Ph.D. thesis, Univ. of Ill., Urbana-
Champaign, Ill.

Patel, J.H., and rlavidson, E.S. 1976. Improving the throughput of a pipeline by insertion of delays. In Proc.,
3rd Annual Symp. on Computer Archirecrure (Jan.), pp. 159-164.

Patterson, D.A., and Sequin, C.H. 1981. RISC I: A reduced instruction set VLSI computer. In Pror.., 8th Annual
Symp. on Compurer Awhirecture (Minneapolis, May). pp. 443-450.

Peterson, C.. Sutton, I . , and Wiley, P., 1991. iWarp: A 100-MOPS, LIW microprocessor for multicomputers.
IEEE Micro, 11, 3 (June): 26.

Popescu, V., Schultz, M., Spracklen, J.. Gibson. G., Lightner, B., and Isaman, D. 1991. The Metaflow archi-
tecture. IEEE Micro. 11. 3 (June): 10.

Radin. G. 1982. The 801 minicomputer. In Pmc., Symp. on Archirecruml Support for Programming Languasc~.,
and Operating Sysrem (Palo Alto, Calif., Mar.), pp. 39-47.

Ramakrishnan, S. 1992. Software pipelining in PA-RISC compilers. Haulerr-Packard J. (July): 39-45.
Ramamoorthy. C.V., and Gonzalez. M.J. 1969. A survey of techniques for recognizing parallel processable streams

in computer programs. In Proc.. AFIPS k l l Joint Cornpuring Conf:, pp. 1-15,
Ramamoorthy, C.V., and Tsuchiya. M. 1974. A high level language for horizontal micropmgramrning. IEEE Tmns.

Comps., C-23: 791-8132,
Ramamoorthy, C.V, Chandy, K.M.. and Gonzalez, M.J. lmZ. Optimal scheduling strategies in a multiprocessor

system. IEEE Trans. Comps., C-21, 2 (Feb.): 137-146.
Rau. B.R. 1988. Cydra 5 Directed Dataflow architecture. In Proc., COMPCON '88 (San Francisco. Mar.), pp.

106-1 13.
Rau, B.R. 1992. Data flow and dependence analysis for instruction level parallelism. In Fourth Inremar. Wrkrhop

on Languages and Compilers for Parallel Computing (U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua.
eds.), Springer-Verlag, pp. 236-250.

Rau, B.R., and Glaeser, C.D. 1981. Some scheduling techniques and an easily schedulable horizontal architecture
for high performance scientific computing. In Proc., Founeenrh Annual Wrkshop on Micropmgmmming (Oct.),
pp. 183-198.

Rau. B.R.. Glaeser, C.D., and Greenawalt. E.M. 1982. Architectural support for the efficient generation of code
for horiwnwl architectures. In Pmc.. Synp. on Atrhitecrurul Support for Progmrruiring Languages and Opemrirr~
Sysrems (Palo Alto, Calif., Mar.), pp. 96-99.

Rau, B.R.. Glaeser. C.D.. and Picard, R .L . 1982. Efficient code generation for horizontal architectures: Compiler
techniques and architectural support. In Proc., Ninrh Annual Inrernar. Symp. on Compurer Archirecrure (Apr.),
pp. 131-139.

Rau. B.R., Lee, M., Tirumalai. P., and Schlansker, M.S. 1992. Register allocation for software pipdined loops.
In Proc., S I C P U N '92 Conf: on Programming Language Design and Implementation (San Francisco, June
17-19). pp. 283-299.

Rau, B.R., Yen, D.W.L., Yen. W., and Towle, R.A. 1989. The Cydra 5 departmental supercomputer: Design
philosophies, decisions and trade-offs. Computer, 22, 1 (Jan.): 12-34.

Riseman, E.M., and Foster, C.C. ISrR. The inhibition of potential parallelism by conditional jumps. IEEE Trans.
Comps.. C-21, I2 (Dec.): 1405-141 1.

Ruggiero. J.F., and Coryell, D.A. 1969. An auxiliary processing system for array calculations. I B M Systems I . ,
8. 2: 118-135.

Russell. R.M. 1978. The CRAY-I cornputer system. CACM, 21: 63-72.
Rymarczyk. 1. 1982. Coding guidelines for pipelined processors. In Proc.. Symp. on Anhirecruml Support for

Progrumming languages und Operuring Sysrems (Pdlo Alto. Calif., Mar.), pp, 12-19.
Schmidt, U., and Caesar, K. 1991. Datawave: A single-chip multiprocessor for video applications. IEEE Micro,

11, 3 (June): 22.
Schneck, P.B. 1987. Supercomputer Architecture. Kluwer Academic, Norwell, Mass.
Schuette, M.A., and Shen, 1.P. 1993. Instruction-level experimental evaluation of the Multiflow TRACE 141300

VLlW computer. m e J. Supercompuring. 7, 112: 249-271.
Sethi. R. 1975. Complete register allocation problems. SIAM J. Compuring, 4, 3: 226-248.
Sethi, R., and Ullman, J.D. 1970. The generation of optimal code for arithmetic expressions. JACM, 17, 4

(Oct.): 715-728.
Sites. R.L. 1978. Instructionordering for IheCRAY-I computer. Tech. rept. 78-CS-023, Univ. of Calif.. San

Diego.
Smith, J.E. 198 1. A study of branch prediction strategies. In Proc.. Eighrh Annual Inremar. Symp. on Compurer

Archirecrure (May), pp. 135-148.
Smith. J.E. 1982. Decoupled access/execute architectures. In Proc., Ninrh Annual Inremr . Symp. on Compurer

Archirecrure (Apr.). pp. 112-1 19.
Smith, J.E. 1989. Dynamic instruction scheduling and the Astronautics ZS-I. Compurer, 22, 1 (Jan.): 21-35.
Smith. J.E., and Pleszkun, A.R. 1988. Implementing precise interrupts in pipelined processors. IEEE Trans.

Comps., C-37, 5 (May): 562-573.
Smith. J E.. Dcrmer, G.E.. Vanderwarn, B.D., Klinger, S.D., Roszcwski, C.M., Fowler, D.L., Scidrnore, K.R.,

and b u d o n , J.P. 1987. The ZS-l centrdl prwesbor. In Proc.. Sc,rond Irrrertmr. Curl/ on Archirerrural Supporr
/or Progrrrmming Languages and Operuring Sysrem (Palo Alto. Calif., Oct.). pp. 199-204.

Smith, M.D., Horowitz, M.. and Lam, M. 1992. Efficient superscalar performance through boosting. In Proc.,
fiifrh lnremr . Conf: on Archirecrural Supporr for Programming Languages and Operar~ng Sysrems (Boston.
Oct.), pp. 248-259.

Smith, M.D., Lam, M.S., and Horowitz, M.A. 1990. Boosting beyond static scheduling in a superscalar proc-
essor. In Proc.. Seventeenth lntermr. Symp. on Compurer Archirecrure (June), pp. 344-354.

Smotherman, M., Krishnamurthy, S . , Aravind, P.S., and Hunnicutt. D. 1991. Efficient DAG construction and
heuristic calculation for instruction scheduling. In Proc., 24rh Annual lnremat. W r h h o p on Microarchirecture
(Albuquerque, N.M., Nov.), pp. 93-102.

Sohi, G.S., and Vajapayem, S. 1987. Instruction issue logic for high-performance, interruptable pipelined proc-
essors. In Proc., 14th Annual Symp. on Compurer Archirecrure (Pittsburgh, June), pp. 27-36.

m
P

Su, B., and Ding, S. 1985. Some experimenrs in global microcode compaction. In Proc., 18rh Annual Wrkshop
on Microprogramming (Asilomar, Calif., Nov.), pp. 175-180. w

C

Su. B., and Wang, I. 1991a. GURPR*: A new global software plpelining algorithm. In Proc., 24rh Annual Internot. w
2

Symp. on Microarchirecrure (Albuquerque. N.M., Nov.), pp. 212-216. P

Su. B , and Wang, J. 1991b. Loop-carrred dependence and the general URPR software pipelining approach. In 5
Proc., 24rh Annual H a w i i Internal. Conf: on Sysrem Scrences (Hawaii, Jan.). P

Su. B., Ding, S . , and Jin, L. 1984. An improvement of trace scheduling for glohal micmcode compaction. In $
Proc.. 17rh Annrtul W)rkshop on M~cro/)rigrunrmin# (Ncw Orlcd~ir. Oct.). PI'. 78-85, 5 rn

Su. B. , Ding, S.. and Xia, J. 1986. URPR-An extension of UKCR for software pipelining. In Proc.. 19th Annual
Ubrkrhop on Microprogramming (New York, Oct.), pp. 104-108.

Su, B., Ding, S.. Wang. J., and Xia, J. 1987. GURPR-A method for global software pipelining. In Proc., 20rh
Annual Worlcrhop on Microprogramming (Colorado Springs, Colo., Dec.). pp. 88-96, 3

Thistle, M.R., and Smith, B.J. 1988. A processor architecture for Horizon. In Pmc.. Supercompwing '88, (Orlando,
Fla., Nov.), pp. 35-41.

Thomas, A.T., and Davidson, E.S. 1974. Scheduling of multiconfigurable pipelines. In Pmc.. 12th A n n d Allenon
Conf: on Circuits and Systems nteory (Allerton, Ill.), pp. 658-669.

Thornton, J.E. 1964. Parallel operation in the Control Data 6600. In Pmc., AFIPS Fall Joint Compufer Conf,
pp. 33-40.

Thornton, J E 1970. Desinn of a Computer-The Control Dara 6600. Scott, Foresman, Glenview. Ill. - .
Tirumalai, P., Lee, M., and Schlansker, M.S. 1990. Parallelization of loops with ex!& on pipelined architectures.

In Proc.. Supercompuring '90 (Nov.), pp. 200-212.
Tjaden. G.S., and Flynn, M.J. 19A). Detection and parallel execution of parallel instructions. IEEE Tmns. Compr.,

C-19, 10 (Oct.): 889-895.
Tjaden, G.S., and Flynn, M.J. 1973. Representation of concurrency with ordering matrices. IEEE h n s . Comps.,

C-22, 8 (Aug.): 752-761.
Tokoro, M., Tamura. E., and Takizuka, T. 1981. Optimization of microprograms. IEEE Trans. Comps., C-30,

7 (July): 491-504.
Tokom, M . , Takizuka, T., Tamura, E., and Yamaura, I. 1978. A technique of global optimization of microprograms.

In Proc.. 11th Annual Workshop on Micrbprogramming (Asilomar, Calif.. Nov.), pp. 41-50.
Tokom, M., Tamura, E., Takase, K . , and Tamaru, K. 1977. An approach to microprogram optimization consider-

ing resource occupancy and ~nstruction formats. In Pmc., 10th A r u w l Wbrkshop on Microprogramming (Niagara
Falls, N.Y., Nov.), pp. 92-108.

Tomasulo. R.M. 1967. An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res. and Dev.,
1 I, I (Jan.): 25-33.

Touzeau. R.F. 1984. A FORTRAN compiler for the FPS-164 scientific computer. In Proc., ACM SIGPLAN '84
Symp, on Compiler Conslrucrion (Montreal), pp. 48-57.

Tsuchiya, M . , and Gonzalez, M.J. 3974. An approach to optimization of horizontal microprograms. In Proc.,
Se~senrh Anrruol Wrkshop on Micro l , rogramn~i~ (Palo Alto. Calif.), pp. 85-90.

Tsuch~ya, M . , and Gonzalez, M.J. 1976. Toward opt~m~zation of horizontal microprograms, IEEE %ns. Conrps..
C-25, 10 (Oct.): 992-999.

Uht, A.K. 1986. An efficient hardware algorithm to extract concurrency from general-purpose code. In Proc..
Nirrcrre~rrh Annrcol t lu~ur i i Corlj on Sysretn Sciences (Jun.), pp. 41-50.

, Wall, L1.W. 1991. Limits ol' ~nrtruction-lcvel parullclism. In P ~ v c . , fijurrh Internal. ConJ: on Atihifectuml Supporr
for Programming Languages and Operaring Sysrems (Santa Clara, Calif., Apr.), pp. 176-188.

Warren, H.S. 1990. Instruction scheduling for the IBM RISC System16000 processor. IBM J. Res. and D m .
34. 1 (Jan.): 85-92.

Warter. N.J., Bockhaus, J.W., Haab, G.E., and Subramanian, K . 1992. Enhanced modulo scheduling for loops
w~ th conditional branches. In Proc., 25rhAnnual Inrernar. Symp, on Microarchitecrure (Ponland, Ore., Dec.),
pp. 170-179.

Watson, W.J. 19R. The TI ASC-A highly modular and flexible super computer architecture. In Proc., AFIPS
Full Joinr Computer Conf:, pp. 221-228.

Wedig. R.G. 1982. Detection of concurrency in directly executed language instruction streams. Ph.D. thesis, Stanford
Univ., Stanford, Calif.

Weiss, S., and Smith, J.E. 1984. Instruction issue logic for pipelined supercomputers. In Proc., 11th Annual
Inremat. Symp. on Compurer Architecfure, pp. 110-1 18.

Weiss, S . , and Smith, J.E. 1987 A study of scalar compilation techniques for pipelined supercomputers. In Proc.,
Second Inrernaf. Conf on Archirecluml Supporr for Pmgramrning Languages und Operaring Sysrems (Pdlo
Alto, Calif.. Oci.), pp. 105-109.

Wilkes. M.V. 1951. The best way to design an automatic calculating machine. In Proc., Manchesfer Univ. Comp.
Inaug~rral ConJ (Manchester, England, July), pp. 16-18.

Wilhch. M . V . . and S1ringcrrJ.B. 1953. Micmprogra~nming and the design of the control circuits in an elcctmniu
d~g~lul cor~~l)uIcr. In Pn~c. , Tlrr C~r~trbriclgr Pl~ili~sol)hicurl Sociefy. Pcrrt 2 (Apr.), pp. 230-238.

Wolfe, A,, and Shen, J.P. 1991. A variable instruction stream extension to the VLlW architecture. In Pmc.. Forcnh
Inrernar. Conf on Archirecrural Supporf for Programming Languages and Operating Systems (Santa Clara.
Ca l~ f . , Apr.), pp. 2-14.

Wood. G. 1978. On the packing of microoperations into micro-instruction words. In Pmc., 11th Annual Mrkshop
on Microprogmmming (Asilomar, Calif., Nov.), pp. 51-55.

Wood. G. l9i9. Global optimization of microprograms through modular control constructs. In Proc., 12th Annual
Workshop on Microprogmmming (Hershey, Penn.), pp. 1-6.

Yau, S.S., Schowe, A.C. and Tsuchiya, M. 1974. On storage optimization of horizontal microprograms. In Proc..
Sevenrh Annual Hbrkshop on Micropmgmmming (Palo Alto, Calif.), pp. 98-106.

Yeh, T.Y.. and Patt, Y.N. 1992. Alternative implementations of two-level adaptive branch prediction. In Proc..
Nineteenth Inrernar. Symp. on Comp. Architecture (Gold Coast. Australla, May), pp. 124-134.

Zima, H., and Chapman, B. 1990. Supercompilers for Parallel and Yecror Compurers. Addison-Wesley, Reading,
Mass.

