Appears inProceedings of the ACM SIGPLAN’99 Conference omgfarmming Language Design and Implementatday 1999.

Cache-Conscious Structure Layout

Trishul M. Chilimbi
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.
Madison, WI 53706
chilimbi@cs.wisc.edu

ABSTRACT

Hardware trends have produced an increasing digpaetween
processor speeds and memory access times. Whaleeyvof tech-
niques for tolerating or reducing memory latencyenheen pro-
posed, these are rarely successful for pointer{odating
programs.

This paper explores a complementary approach thatks the
source (poor reference locality) of the problenneathan its mani-
festation (memory latency). It demonstrates thag¢fch data orga-
nization and layout provides an essential mechatésmprove the
cache locality of pointer-manipulating programs aodsequently,
their performance. It explores two placement teghes—eluster-

Mark D. Hill
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.
Madison, WI 53706
markhill@cs.wisc.edu

James R. Larus

Microsoft Research

One Microsoft Way
Redmond, WA 98052
larus@microsoft.com

(now almost two orders of magnitude) requires adnahy of
caches, which introduces further disparities in rmBRaccess
costs.

Many hardware and software techniques—such as phifigt[29,
9, 26, 38], multithreading [25, 44], non-blockingches [20],
dynamic instruction scheduling, and speculativecaien—try to
reduce or tolerate memory latency. Even so, mangrams’ per-
formance is dominated by memory references. Monedwgh and
variable memory access costs undercut the fundamemdom-
access memory (RAM) model that most programmersaisader-
stand and design data structures and algorithms.

Over the same period, application workloads hage ahanged.

ing andcoloring—that improve cache performance by increasing apredominately scientific applications have broadeiméo a richer

pointer structure’s spatial and temporal localdagd by reducing
cache-conflicts.

To reduce the cost of applying these techniques, ghper dis-
cusses two strategiessache-conscious reorganizati@mdcache-

workload. With this shift came a change in dataicdtire, from
arrays to a richer mix of pointer-based structulgst. surprisingly,
techniques for reducing or tolerating memory lajeimcscientific

applications are often ineffective for pointer mpanating programs

conscious allocation-and describes two semi-automatic tools— [7» 33]. In addition, many techniques are fundaraiéntimited by
ccmor ph and ccmal | oc—that use these strategies to produceth€ir focus on the manifestation of the problemrrogy latency),

cache-conscious pointer structure layoatsihor ph is a transpar-
ent tree reorganizer that utilizes topology infotiora.to cluster and

rather than its cause (poor reference locality).
In general, software reference locality can be owpd either by

color the structureccal | oc is a cache-conscious heap allocator changing a program’s data access pattern or its ckganization

that attempts to co-locate contemporaneously aededata ele-
ments in the same physical cache block. Our evahgst with
microbenchmarks, several small benchmarks, andipleof large
real-world applications, demonstrate that the camhescious
structure layouts produced lcnor ph and ccnal | oc offer
large performance benefits—in most cases, significaoutper-
forming state-of-the-art prefetching.

Keywords

Cache-conscious data placement, clustering, cglpdache-con-
scious allocation, cache-conscious reorganization

1. INTRODUCTION

The speed of microprocessors has increased 60%yqaer for
almost two decades. Yet, over the same periodtirtie to access
main memory only decreased at 10% per year [32% Tiifortu-
nate, but inevitable, consequence of these tremds large, and
ever-increasing, processor-memory gap. Until rdgememory
caches have been the ubiquitous response to tiiidepn [50, 43].
In the beginning, a single cache sufficed, but itrereasing gap

Copyright © 199x by the Association for Computing Machinery, Inc Permission
to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies aneot made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for componats of this work
owned by others than ACM must be honored. Abstracting withcredit is
permitted. To copy otherwise, to republish, to post on seers, or to redistribute
to lists, requires prior specific permission and/or a feeRequest permissions fron
Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissio@acm.org.

and layout. The first approach has been succegsfyplied to

improve the cache locality of scientific prograrhstt manipulate
dense matrices [52, 10, 16]. Two properties ofyastauctures are
essential to this work: uniform, random accessléments, and a
number theoretic basis for statically analyzingaddépendencies.
These properties allow compilers to analyze ar@gesses com-
pletely and to reorder them in a way that increasehe locality

(loop transformations) without affecting a programésult.

Unfortunately, pointer structures share neithepprty. However,
they possess another, extremely powerful propeftjocational
transparency elements in a structure can be placed at differen
memory (and cache) locations without changing agam’s
semantics. Careful placement of structure elemprasides the
mechanism to improve the cache locality of poimemipulating
programs and, consequently, their performance. Tpéper
describes and provides an analytic framework far placement
techniques—€lustering and coloring—that improve cache perfor-
mance on uniprocessor systems by increasing ssttataure’s spa-
tial and temporal locality, and reducing cache bctst

Applying these techniques may require detailed Kadge of a
program’s code and data structures, architectanaliliarity, and
considerable programmer effort. To reduce this,cost discuss
two strategies-eache-conscious reorganizatioand cache-con-
scious allocation—for applying these placement techniques to pro-
duce cache-conscious pointer structure layouts, dasdribe two
semi-automatic tools-ecnor ph and ccmal | oc—that embody
these strategies. Measurements demonstrate thia¢-canscious
data layouts produced bycnor ph andccnal | oc offer large
performance benefits—in most cases, significantlipedorming

N Y RN Y N VIR

Figure 1. Subtree clustering.

state-of-the-art prefetching.

This paper makes the following contributions:

Cache-conscious data placement techniques. Section 2 shows
how clustering and coloring can improve a pointencture’s
cache performance. Clustering places structureezigsikely
to be accessed contemporaneously in the same témtie
Coloring segregates heavily and infrequently aamkstement
in non-conflicting cache regions.

Strategies for applying cache-conscious data placement tech-

izes the performance of a pointer-based data steidty its

amortized miss rate over a sequence of pointer-pathsses.
This paper applies the framework to cache-consdiees and
validates its predictions with a microbenchmark.

2. CACHE-CONSCIOUS DATA
PLACEMENT TECHNIQUES

This section discusses two general data placeneehnigques—
clusteringandcoloring—that can be combined in a wide variety of
ways to produce cache-efficient data structures.rtihning exam-

niques. Section 3 describes two strategies—cache-consciousple in this discussion is binary trees.

reorganization and cache-conscious allocation—fqulyamg
placement techniques to produce cache-conscioadajatuts.
Cache-conscious reorganization utilizes structapmlogy or
profile information about data access patternsramsform
pointer structure layouts. This approach is incoafmd in
ccnor ph, a utility that reorganizes tree-like structuresch
as trees, lists, and chained hash tables, by dhugtend color-
ing the structure. A programmer need only suppfuration
that helps traverse the data structure. Cache-mwssalloca-
tion improves on conventional heap allocators bgrapting to
co-locate contemporaneously accessed data elenrerte
same physical cache block. The section descdbesl | oc,
a memory allocator that implements this strategythls case,
a programmer only must specify an additional arguinte
mal | oc—a pointer to a structure element likely to be in-co
temporaneous use.

Evaluation of cache-conscious data placement. Section 4
demonstrates the performance benefits of cachesimussdata
placement. In microbenchmarks, cache-conscious tregper-
form their naive counterparts by a factor of 4-ig aven out-
perform B-trees by a factor of 1.5. For some peiitensive
programs in the Olden benchmark suite [36], sertoraatic
cache-conscious data placement improves performaBee
194%, and even outperformed state-of-the-art priiieg by
3%-194%. We applied the techniques to full applcapro-
grams. RADIANCE [49], a widely used ray-tracing gram,
showed a 42% speedup, and VIS [6], a model vetifioa
package, improved by 27%. Significantly, applyiognal -

| oc to the 160,000 line VIS, required little applicatiunder-
standing, and took only a few hours.

Analytic framework. Section 5 presents an analytic framework

that quantifies the performance benefits of caadrescious
pointer-based data structures. A key part of ameéwork is a
data structure-centric cache model of a seriecoésses that
traverse a pointer-based data structure. The nudebcter-

2.1 Clustering

Clustering attempts to pack data structure elemidedy to be
accessed contemporaneously into a cache block.te@hg
improves spatial and temporal locality and providewlicit
prefetching.

An effective way to cluster a tree is to pack sedsrinto a cache
block. Figure 1 illustrates subtree clustering ddoinary tree. An

intuitive justification for binary subtree clusteg is as follows

(detailed analysis is in Section 5.3). For a seoesandom tree

searches, the probability of accessing either dfild node is 1/2.

With k nodes in a subtree clustered in a cache bloclexpected

number of accesses to the block is the height ef shbtree,

logo(k+1), which is greater than 2 fdr> 3. Consider the alterna-
tive of a depth-first clustering scheme, in whible k nodes in a

block form a single parent-child-grandchild-... ichdn this case,

the expected number of accesses to the block is:

1,,,1 1, o o
1+lx2+1>< +...+1x k_1_2xD1_EEEIDS2

2 2

Of course, this analysis assumes a random acctesp#or spe-
cific access patterns, such as depth-first seaftter clustering
schemes may be better. In addition, tree modificatican destroy
locality. However, our experiments indicate that foees that
change infrequently, subtree clustering is far meffecient than

allocation-order clustering.

2.2 Coloring

Caches have finite associativity, which means tmy a limited
number of concurrently accessed data elements @ tmthe
same cache block without incurring conflict missesloring maps
contemporaneously-accessed elements to non-camdlicegions
of the cache. Figure 2 illustrates a 2-color schéama 2-way set-

associative cache (easily extended to multiple reploA cache
with C cache sets (each set contains associativityblocks) is

partitioned into two regions, one containingets, and the oth€r

- p sets. Frequently accessed structure elements raguely

mapped to the first cache region and the remaielegients are
mapped to the other region. The mapping ensureshavily

accessed data structure elements do not conflishgrthemselves
and are not replaced by infrequently accessed elesmi€or a tree,
the most heavily accessed elements are the nodesheeroot of
the tree.

3. STRATEGIES FOR APPLYING CACHE-
CONSCIOUS DATA PLACEMENT

Designing cache-conscious data structures requietiled
knowledge of a program’s code and data structunescansider-
able programming effort. This section explores tstategies—
cache-conscious reorganizati@mdcache-conscious allocatien

for applying placement techniques to produce cacmscious
data layouts, and describes two semi-automaticsteotnor ph
and ccmal | oc—that implement these strategies. Both signifi-
cantly reduce the level of programming effort, kiedge, and
architectural familiarity.

3.1 Cache-Conscious Data Reorganization

A data structure is typically allocated memory wlithe concern
for a memory hierarchy. The resulting layout matgiiact poorly
with the program’s data access patterns, therebgimg unneces-
sary cache misses and reducing performance. Cattsgious
data reorganization addresses this problem by a&peog a struc-
ture’s layout to correspond to its access patt€eneral, graph-
like structures require a detailed profile of agyeon’s data access
patterns for successful data reorganization [8,Hajvever, a very
important class of structures (trees) possess dgjmal properties
that permit cache-conscious data reorganizatiohowtt profiling.
This section presents a transparent (semanticipiege cache-
conscious tree reorganizarcimor ph) that applies the clustering
and coloring techniques described in the previegtan.

3.1.1 ccmorph

In a language, such as C, with unrestricted pantanalytical
techniques cannot identify all pointers to a stiteelement. With-

A

out this knowledge, a system cannot move or reoddéa struc-
tures without an application’s cooperation (asaih in a language
designed for garbage collection [11]). Howevem iprogrammer
guarantees the safety of the operationpror ph transparently
reorganizes a data structure to improve localityabplying the
clustering and coloring techniques from Section &l Section
2.2. Reorganization is appropriate for read-mod#ta structures,
which are built early in a computation and subsatjyeheavily

referenced. With this approach, neither the constm or con-

sumption code need change, as the structure caadoganized
between the two phases. Moreover, if the struathemges slowly,
ccnor ph can be periodically invoked.

ccnor ph operates on tree-like structures with homogeneters
ments and without external pointers into the middithe structure
(or any data structure that can be decomposedamgponents sat-
isfying this property). However, it allows a libeefinition of a
tree in which elements may contain a parent orgueskor pointer.
A programmer suppliegecnor ph (which is templatized with
respect to the structure type) with a pointer ® thot of a data
structure, a function to traverse the structurel eache parame-
ters. For example, Figure 3 contains the code tsedorganize
the quadtree data structure in the Olden benchpeikneterwith
the programmer supplying timext_noddunction.

ccror ph copies a structure into a contiguous block of mgmo
(or a number of contiguous blocks for large streety In the pro-
cess, it partitions a tree-like structure into sede$ that are laid out
linearly (Figure 1). The structure is also colotednap the firsp
elements traversed to a unique portion of the céatermined by
the Color_constparameter) that will not conflict with other struc
ture elements (Figure ZQ)cnor ph determines the values pfand
size of subtrees from the cache parameters andigteuelement
size. In addition, it takes care to ensure thaigdyes in the virtual
address space that implement coloring correspomduttiples of
the virtual memory page size.

The effectiveness afcnor ph is discussed in Section 5.

3.2 Cache-Conscious Heap Allocation

Althoughccnor ph requires little programming effort, it currently
only works for tree-like structures that can be ethvin addition,
incorrect usage ofcror ph can affect program correctness. A

I el /1 OO 3
p
Fre(LuentI ccessed Remalnin%data structure
data structur@lements elements

b\
A

C-p

Cache

4—»‘;}4—»4—»4—»4—»4—»4—»
p -p p

C-p p C-p p C-p

Virtual Address Space

Figure 2. Coloring data structure elements to redoe cache conflicts.

mai n()

root =
ccnor ph(root,
Max_ki ds, Cache_sets,

Cache_associ ativity,

maket ree(4096, ...,)

next _node, Num nodes,
Cache_bl k_si ze,
Col or _const);

Quadt ree next_node(Quadtree node,

i nt

1)
/* Valid values for i are -1,
1 ... Max_kids */
switch(i){
case -1:
return(node->parent);
case 1:
ret ur n(node- >nw) ;
case 2:
r et ur n(node- >ne) ;
case 3:
ret ur n(node- >sw)j ;
case 4:
ret ur n(node- >se) ;

}

Figure 3. ccnor ph: Transparent cache-conscious data reorganization.

complementary approach, which also requires Igtgramming,
is to perform cache-conscious data placement whaments are
allocated. In general, a heap allocator is invakeahy more times
than a data reorganizer, so it must use technithasincur low
overhead. Another difference is that data reorgamipperate on
entire structures with global techniques, suchadering, whereas
a heap allocator has an inherently local view ef structure. For
these reasons, our cache-conscious heap allocatom(| oc)
only performs local clusteringzcnal | oc is also safe, in that
incorrect usage only affects program performanieé,ret correct-
ness.

3.2.1 ccmalloc

ccnal | oc is a memory allocator similar tal | oc, which takes
an additional parameter that points to an exigi@ig structure ele-
ment likely to be accessed contemporaneously tegparent of a
tree node)ccmal | oc attempts to locate the new data item in the
same cache block as the existing item. Figure fagmcode from
the Olden benchmarkealth which illustrates the approach. Our
experience witltcnal | oc indicates that a programmer unfamil-
iar with an application can select a suitable patamby local
examination of code surrounding the allocation estent and
obtain good results (see Section 5).

In a memory hierarchy, different cache block simesmns that data
can be co-located in different wayscnal | oc focuses only on
L2 cache blocks. In our system (Sun UltraSPARCLL),cache
blocks are only 16 bytes (L2 blocks are 64 bytesichv severely
limits the number of objects that fit in a blockoMover, the book-
keeping overhead in the allocator is inversely prapnal to the

voi d addLi st (struct List *list,
struct Patient *patient)
{

*b,
= NULL){

struct List
while (list
b =1list;
list = 1list->forward;

list = (struct List *)

ccmal | oc(si zeof (struct List),
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = |ist;

b);

}

Figure 4. ccmal | oc: Cache-conscious heap allocation.

size of a cache block, so larger blocks are botrentikely to be
successful and to incur less overhead.

An important issue is where to allocate a new data if a cache
block is full. ccmal | oc tries to put the new data item as close to
the existing item as possible. Putting the itemshensame virtual
memory page is likely to reduce the program’s wagkset, and
improve TLB performance, by exploiting the strorigthirom the
programmer that the two items are likely to be ased together.
Moreover, putting them on the same page ensurgswiiknot
conflict in the cache. There are several possitoégegjies to select

a block on the page. Thidoseststrategy tries to allocate the new
element in a cache block as close to the existiogklas possible.
The new-blockstrategy allocates the new data item in an unused
cache block, optimistically reserving the remainaligthe block for
future calls orccmal | oc. Thefirst-fit strategy uses a first-fit pol-
icy to find a cache block that has sufficient emgtace. The next
section evaluates these strategies.

4. EVALUATION OF CACHE-CONSCIOUS
DATA PLACEMENT

To evaluate our cache-conscious placement techsiique use a
combination of a microbenchmark, and two large,l-naxld
applications. In addition we performed detailed¢cleyby-cycle
simulations on four benchmarks from the Olden stitébreak
down where the time is spent. The microbenchmarfopaed a
large number of random searches on different tyfdsalanced
trees. The macrobenchmarks were a 60,000 lineraayny pro-
gram and a 160,000 line formal verification systérhe Olden
benchmarks are a variety of pointer-based appdicativritten in
C.

4.1 Methodology

We ran the benchmarks on a Sun Ultraserver E508&hwcon-
tained 12 167Mhz UltraSPARC processors and 2 GBi@hory
running Solaris 2.5.1. This system has two levdlslocking
cache—a 16KB direct-mapped L1 data cache with 16 bges,
and a 1 MB direct-mapped L2 cache with 64 byteslideL1 data
cache hit takes 1 cycle (i.¢,= 1). A L1 data cache miss, with a
L2 cache hit, costs 6 additional cycles (itgy,; = 6). A L2 miss
typically results in an additional 64 cycle delag .(ty, o= 64). All
benchmarks were compiled with gcc (version 2.7i1jha -0O2
optimization level and run on a single processahefE5000.

FPerformance af different tree configurations

)

o
o
s

fvrg. Search Time (microsecs

®—® Randomly clustersd binary tree |
B—W Depth—first clustered binary tree
4 ¢ In—core B-tree

A—a Transparent C—1lree

10

160

1000

10000 100000 1000000

Number of repeated searches

Figure 5. Binary tree microbenchmark.

4.2 Tree Microbenchmark

This microbenchmark measures the performanaecabr ph on
a large binary search tree, which we call a tramsyeC-tree. We
compare its performance against an in-core B-akse, colored to
reduce cache conflicts, and against random anchdigt clus-
tered binary trees. The microbenchmark does ndbierinser-
tions or deletions. The tree contained 2,097,15Y%skand
consumes 40 MB of memory (forty times the L2 cashsze).
Since the L1 cache block size is 16 bytes andagmcity is 16K
bytes, it provides practically no clustering orseuand hence its
miss rate was very close to one. We measured th@age search
time for a randomly selected element, while varytimgsnumber of
repeated searches to 1 million. Figure 5 shows lib#t B-trees
and transparent C-trees outperform randomly cledtbmary trees
by up to a factor of 4-5, and depth-first clustevatry trees by up
to a factor of 2.5-3. Moreover, transparent C-tregperform B-
trees by a factor of 1.5. The reason for this & Brtrees reserve

Base

Clusterng

extra space in tree nodes to handle insertion fyriyzeand hence
do not manage cache space as efficiently as trest#p@-trees.
However, we expect B-trees to perform better tmansparent C-
trees when trees change due to insertions andaredet

4.3 Macrobenchmarks

We also studied the impact of cache-conscious platzement on
two real-world applications. RADIANCE is a tool fonodeling
the distribution of visible radiation in an illun@ted space [49]. Its
input is a three-dimensional geometric model of shace. Using
radiosity equations and ray tracing, it producesap of spectral
radiance values in a color image. RADIANCE’s prignatata
structure is an octree, which represents the stteive modeled.
This structure is highly optimized. The program suseplicit
knowledge of the structure’s layout to eliminatanpers, much
like an implicit heap, and it lays out this struetun depth-first
order (consequently, it did not make sense toac®al | oc in

Clustering + Coloring

m Mew—block cache—concious heap cllloccltor_I

100 {1953}

{15513
{1375

80

B

43

Normalized Execution Time

20

o one

{180)

RADIANCE

WIS

Figure 6. RADIANCE and VIS Applications. Actual execution times above each bar.

Table 1: Simulation Parameters.

Issue Width 4

Functional Units

2 Int, 2 FP, 2 Addr. gen., 1 Branch

Integer Multiply, Divide 3, 9 cycles

All Other Integer 1 cycle

FP Divide, Square Root 10, 10 cycles
All Other FP 3 cycles
Reorder Buffer Size 64

Branch Prediction Scheme

2-bit history counters

Branch Prediction Buffer Size 512

L1 Data Cache

16 KB, direct-mapped, dual portedieathirough

Write Buffer Size 8

L2 Cache 256 KB, 2-way set associative, write-back
Cache Line Size 128 bytes

L1 hit 1 cycle

L1 miss 9 cycles

L2 miss 60 cycles

MSHRs L1, L2 (# of outstanding misses) 8,8

this case). We changed the octree to use subtrseihg and col-
ored the data structure to reduce cache conflitts.performance
results includes the overhead of restructuringotttece.

VIS (Verification Interacting with Synthesis) isgstem for formal
verification, synthesis, and simulation of finitete systems [6].
VIS synthesizes finite state systems and/or verifioperties of
these systems from Verilog descriptions. The furelaal data
structure used in VIS is a multi-level network afdhes and com-
binational gates, which is represented by Binargiflen Dia-
grams (BDDs). Since BDDs are DAGS; nor ph cannot be used.
However, we modified VIS to use oacral | oc allocator with
the new-blockstrategy (since it consistently performed welle se
Section 4.4).

Figure 6 shows the results. Cache-conscious cingtand color-
ing produced a speedup of 42% for RADIANCE, ancheacon-
scious heap allocation resulted in a speedup of @f%/1S. The
result for VIS demonstrates that cache-consciota pcement
can even improve the performance of graph-like datectures, in
which data elements have multiple parents. Sicanifiy, very few
changes to these 60-160 thousand line programsigeddarge
performance improvements. In addition, the modifs to VIS
were accomplished in a few hours, with little ursd@nding of the
application.

4.4 Olden Benchmarks

We performed detailed, cycle-by-cycle uniprocessmulations of
the four Olden benchmarks using RSIM [30]. RSIMaisexecu-
tion driven simulator that models a dynamicallyedtied, out-of-

order processor similar to the MIPS R10000. Itsraggive mem-
ory hierarchy includes a non-blocking, multiportedd pipelined
L1 cache, and a non-blocking and pipelined L2 cathble 1 con-
tains the simulation parameters.

Table 2 describes the four Olden benchmarks. We tree&SIM
simulator to perform a detailed comparison of @misautomated
cache-conscious data placement implementatiarts¥er ph
(clustering only clustering and coloring andccnal | oc (clos-
est first-fit, and new-block strategies)—against other latency
reducing schemes, such as hardware prefetchinge{gheng all
loads and stores currently in the reorder buffer)l software
prefetching (we implement Luk and Mowry’s greedgfptching
scheme [26] by hand).

Figure 7 shows the results. Execution times armatized against
the original, unoptimized code. We used a commaplied

approach to attribute execution delays to variausses [31, 37].
If, in a cycle, the processor retires the maximuomber of

instructions, that cycle is counted as busy timehe@vise, the
cycle is charged to the stall time component cpoading to the
first instruction that could not be retired.

Treeaddand perimeterboth create their pointer-based structures
(trees) at program start-up and do not subsequemihjify them.
Although cache-conscious data placement improve®npeance,
the gain is only 10-20% because structure elenaantsreated in
the dominant traversal order, which produces autadit cache-
conscious layout. However, all cache-conscious géaement
implementations outperform hardware prefetchingaedcompet-
itive with software prefetching fareeadd and outperform both

Table 2: Benchmark characteristics.

- Main Pointer- Memor
Name Description Based Structures Input Data Set AIIocateyd
TreeAdd Sums the values stored in tree nodes Binaey t 256 K nodes 4 MB
Health Simulation of Columbian health care | Doubly linked lists max. level = 3, max. | 828 KB
system time =3000
Mst Computes minimum spanning tree of a Array of singly 512 nodes 12 KB
graph linked lists
Perimeter Computes perimeter of regions in Quadtree 4K x 4K image 64 MB
images

- Busy B - Base
nst atall HP - H/W prefetch
o oae B SP - S/W prefetch
] - Ftore stall - CC[TBJ I.Opc:.
100 |2 HP _ B . L N FA - First-fit allocatol
v ” -~ | | CA - Closest allocatc
£ 1| TP B r NA - New-block
= an D RE Sl aell | allocator
5 ccnor ph:
= i i CI - Clustering only
B0 H il Cl+Col - Clustering
S and coloring
= L _ N
)
=40
E i | i
5
= 20
O

Treeadd Health

st Perirmeter

Figure 7. Performance of cache-conscious data pEment.

software and hardware prefetching perimeter Theccnal | oc-
new-blockallocation policy requires 12% and 30% more memory
thanclosestandfirst-fit allocation policies, fotreeaddandperime-

ter respectively (primarily due to leaf nodes beirigadted in new
cache blocks).

Healths primary data structure is linked lists, to whielements
are repeatedly added and removed. The cache-cassesion
periodically invokedccor ph to reorganize the lists (no attempt
was made to determine the optimal interval betwaeocations).
Despite this overhead,cnor ph significantly outperformed both
software and hardware prefetching. Not surprisingigccnal -

| oc-new-block allocation strategy, which left space in cache
blocks to add new list elements, outperformed thercallocators,

at a cost of 7% additional memory.

Msts primary data structure is a hash table that akaining for
collisions. It constructs this structure at progratart-up and it
does not change during program execution. Ashfealth the
ccmal | oc-new-blockallocator andzcnor ph, significantly out-
performed other schemeascnor ph's coloring did not have much
impact since the lists were short. However, witbrshsts and no
locality between lists, incorrect placement incarsigh penalty.
The ccral | oc-new-blockallocator significantly outperformed
both first-fit, andclosestallocation schemes, at a cost of only 3%
extra memory.

In summary, ccnor ph outperformed hardware and software
prefetching schemes for all benchmarks, resultingpeedups of
28-138% over the base case, and 3-138% over prigfgtdNith
the exception oftreeadd the ccral | oc-new-block allocation
strategy alone produced speedups of 20-194% ogtatphing. In
addition, theccmal | oc-new-blockallocator compares favorably
with the other allocations schemes, with low memowgrhead
(with the exception operimetej. To confirm that this perfor-

mance improvement is not merely an artifact of oaral | oc
implementation, we ran a control experiment wheeereplaced
all ccral | oc parameters by null pointers. The resulting pro-
grams performed 2%—6% worse than the base verdiate
the systenmal | oc.

4.5 Discussion

Table 3 summarizes the trade-offs among the cachsetmus data
placement techniques. While incorrect use ofror ph can affect
program correctness, misapplyiogmal | oc will only affect pro-
gram performance. In addition, the techniques is plaper focus
on single data structures. Real programs, of cowse multiple
data structures, though often references to onetste predomi-
nates. Our techniques can be applied to each @teugt turn to
improve its performance. Future work will consideteractions
among different structures.

Our cache-conscious structure layout techniqueseptantempo-
raneously accessed elements in the same cache Blle this
will always improve uniprocessor cache performarioe,multi-

processor systems, it depends on whether the tatas iare
accessed by same processor or by different prasedsdhe latter
case, co-locating the data elements could exaeefalae-sharing.

5. ANALYTIC FRAMEWORK

Although the cache-conscious data placement teabsiccan
improve a structure’s spatial and temporal localityir descrip-
tion is ad hoc. The framework presented in thigsieeaddresses
this difficulty by quantifying their performance \aahtage. The
framework permits priori estimation of the benefits of these tech-
niques. Its intended use is not to estimate theecperformance of
a data structure, but rather to compare the relaarformance of a
structure with its cache-conscious counterpartddition, it pro-

Table 3: Summary of cache-conscious data placemetechniques.

Technique Data Program Architectural Somfc.e dee Performance
Structures Knowledge Knowledge Modification
CC Design Universal High High Large High
ccror ph Tree-like Moderate Low Small Moderate—High
ccmal | oc Universal Low None Small Moderate—High

vides intuition for understanding the impact of addayout on
cache performance.

A key part of the framework is a data structuretgercache model
that analyzes the behavior of a series of accetbsgstraverse
pointer-paths in pointer-based data structures. ofnter-path
access references multiple elements of a datatsteuby travers-
ing pointers. Some examples are: searching forlement in a
tree, or traversing a linked list. To make the tleteoncrete, this
paper applies the analytic framework to predict steady-state
performance of cache-conscious trees.

5.1 Analytic Model

For a two level blocking cache configuration, txpected mem-
ory access time for a pointer-path access to atolie-pointer-
based data structure is given by

tmemory= (th + MLy X Ty + My X Mo X T 9) X (Memory Refer-
ence}

ty: level 1 cache access time
m 1, M o: miss rates for the level 1 and level 2 cachegsaetsvely

tmL1 tmio Miss penalties for the level 1 and level 2 cackepec-
tively

A cache-conscious data structure should minimiig ithemory
access time. Since miss penalties are determinetiabyware,
design and layout of a data structure can onlyrgitéo minimize

its miss rate. We now develop a simple model fonpoting a data
structure’s miss rate. Since a pointer-path admeaglata structure
can reference multiple structure elements,nét) represent the
miss rate for thé-th pointer-path access to the structure. Given a
sequence gb pointer-path accesses to the structure, we déiime
amortized miss rate as

p
z m(i)
ma(p) = =1
p

For a long, random sequence of pointer-path acsesie amor-
tized miss rate can be shown to approach a steatygmluemg

(in fact, the limit exists for all but the most patogical sequence

of values fom(i)). We define the amortized steady-state miss rate,
mg as

mg = lim my(p)

P - o

We examine this amortized miss rate for a cachégumation C<

¢, b, a >,wherec s the cache capacity in sghss the cache block
size in wordsanda is the cache associativity. Consider a pointer-
based data structure consistingrohomogenous elements, sub-
jected to a random sequence of pointer-path accegsbe same
type. LetD be a pointer-path access function that represbsts
average number of unique references required ®sa@n element

(th+ (le)

. X
Naive

of the structureD depends on the data structure, and the type of
pointer-path access (if the pointer-path accessesa of the same
type, D additionally depends on the distribution of théfedent
access types). For exampl2,is logy,(n+1) for a key search on a
balanced binary search tree. Let the size of awitheal structure
element bee. If e < b, thenb/elis the number of structure ele-
ments that fit in a cache block. Ltrepresent the average number
of structure elements residing in the same cachekbihat are
required for the current pointer-path accdéds a measure of a
data structure’s spatial locality for the accesgfion,D. From the
definition of K it follows that

c

e

1sKsL
Let R represent the number of elements of the data teteic
required for the current pointer-path access ttaahkeady present
in the cache because of prior acces&§ is the number of ele-
ments that are reused during thth pointer-path access, and is a
measure of a data structure’s temporal localitgniFthe definition
of Rit follows that

0<R< mir%[) Lwﬁ

e

With these definitions, the miss rate for a singl@nter-path
access can be written as

m(i) = (number of cache misses) / (total references)

D —R(i) 1_&_0
N K _ D
m(i) = D m

The reuse functioR(i) is highly dependent on for small values

of i, because initially, a data structure suffers froold start
misses. However, one is often interested in thedststate perfor-
mance of a data structure once start-up missesliarmated. If a
data structure is colored to reduce cache confiets Section 2.2),
thenR(i) will approach a constant val&g when this steady state is
reached. Sinc® andK are both independent afthe amortized
steady-state miss rata of a data structure can be approximated
by its amortized miss rate,(p), for a large, random sequence of

pointer-path accessgsall of the same type, as follows

m(i)
L_Rs
1 D

Ms= ma(p)harge p: K

p

This equation can be used to analyze the steatlytsthavior of a
pointer-based data structure, and the previoustiequ analyze
its transient start-up behavior.

5.2 Speedup Analysis

We use the model to derive an equation for speéudprms of

+ X X
e, ML XM 2D aive™ Ty

Cache- conscious Speedup

(th*+ (ML) oo Xt + (Mg XM 5)

t

Xt)
CC my

Figure 8. Cache-conscious speedup.

(Iogz(n +1) - Iogz(c/2 xkxa+ 1))/(Iogz(k +1)) 1-

Iogz(c/Z xkxa+1)
log o(n +1)

s l0g,(n+1)

Iogz(k +1)

Figure 9. Cache-conscious binary tree.

cache miss rates that results from applying caomsaious tech-
nigues to a pointer-based data structure.This mistdesirable, as
speedup is often more meaningful than cache missaad is eas-
ier to measure.

Cache-conscious speedup ﬁéFnor})Naive/ (tmemor))Cache—conscious
When only the structure layout is changed, the rermobmemory
references remains the same and the equation edodeat in
Figure 8.

In the worst case, with pointer-path accessesiatastructure that
is laid out naivelyK = 1 andR = 0 (i.e., each cache block contains
a single element with no reuse from prior accesses)M_1)Naive

= (M 2)Naive= 1-

5.3 Steady-State Performance Analysis

This section demonstrates how to calculate thelgtetate perfor-
mance of a cache-conscious tree (see Section dbBcsed to a
series of random key searches.

Consider a balanced, complete binary trea nbdes. Let the size
of a node be words. If the cache block sizebisvords ance < b,

up tob/elnodes can be clustered in a cache block. Leteshf
sizek = [b/ednodes fit in a cache block. The tree is colorethso
top (c/2 x b/elIx a) nodes of the tree map uniquely to the foi
sets of the cache with no conflicts and the remaimiodes of the
tree map into next/2 sets of the cache (other divisions of the
cache are possible).

Coloring subtree-clustered binary trees ensuret thasteady-
state, the toffc/2 x b/elJx a) nodes are present in the cache. A
binary tree search examineg,(n+1) nodes, and in the worst-case
(random searches on a large tree approximate ttiis),first
logy((c/2 x b/edx a)+1) nodes will hit in the cache, and the
remaining nodes will miss. Since subtrees of kize(b/eCInodes
are clustered in cache blocks, a single cache htacisfer brings

in log,(k+1) nodes that are needed for the current searchelf th
number of tree searches is large, we can ignorstéreup behav-
ior, and approximate the data structure’s perfocedy its amor-
tized steady-state miss rate as shown in Figure 9.

Comparing with the steady-state miss rate equatiengetK =
logo(k+1) andRg = logy(c/2x kx a + 1). This result indicates that
cache-conscious trees have logarithmic spatiakeamgoral local-
ity functions, which intuitively appear to be thedb attainable,
since the access function itself is logarithmic.

5.4 Model Validation

This section validates the model’'s predictions effagrmance
improvement. The experimental setup is the samieefwe (see
Section 4.1). The tree microbenchmark is usedhfereperiments
of 1 million repeated searches for randomly gemerdtys in a
tree (Section 4.2)We apply the model to predict the performance
advantage of transparent C-trees, which use batinemiclustering
and coloring, over their naive counterpart. For #xperiments,
subtrees of size 3 were clustered in a single chttdek and 64 x
384 tree nodes (half the L2 cache capacity as 88ésnfit in a 8K
page) were colored into a unique portion of thech2he. The tree
size was also increased from 262,144 to 4,194,383k The
results are shown in Figure 10. As the graph shtvesmodel has
good predictive power, underestimating the actpaédup by only
15% and accurately predicting the shape of theecupome rea-
sons for this systematic underestimation might lmsvar L1 cache
miss rate (assumed 1 here) and TLB performanceowepnents
not captured by our model.

6. RELATED WORK

Previous research has attacked the processor-meagaprigy reor-
dering computations to increase spatial and tenhpacality [16,
52, 10]. Most of this work focused on regular araagesses. Gan-

Cache—conscious speedup for different tree sizes

= 7.0‘ H T T T T T LI | T T T T T T I=

?z 6.5 — ®----® FPredicted speedup -

= *—& Actual speedup

[45] 6'3' [

555 _

=

& 5O |

|

o 45 | R —

v e

= 4.0 —] —

]

335 _
LN U 1 1 1 Lol 1 1 1 L1 11 img

10° 16° 107
Tree size

Figure 10. Predicted and actual speedup for C-tree

non et al. [16] studied an exhaustive approach dgeatrated all
permutations of a loop nest and selected the Imestising an eval-
uation function. Wolf and Lam [52] developed a Idognsforma-
tion theory, based on unimodular matrix transfoioret, and used
a heuristic to select the best combination of Itrepsformations.
Carr et. al [10] used a simple model of spatial tamdporal reuse
of cache lines to select compound loop transfonati This work
considers an entirely different class of data $tm&s. Pointer-
based structures do not support random accesheamu chang-
ing a program’s access pattern is impossible iregen

Database researchers long ago faced a similarrpafwe gap
between main memory and disk speeds. They desgpesialized
data structures, such as B-trees [4, 13], to britigegap. In addi-
tion, databases use clustering [3, 48, 15, 5] amdpcession [13]
to improve virtual memory performancdglustering has also been
used to improve virtual memory performance of Staldl and
LISP systems [28, 46, 51, 21, 14] by reorganiziatadstructures
during garbage collection.

Seidl and Zorn [40] combined profiling with a vayief different

information sources present at the time of objéotation to pre-

dict an object’s reference frequency and lifetifieey showed that
program references to heap objects are highly giage. These
studies focused on a program’s paging behavior,itsotache
behavior. Our work differs, not only because of ¥hst difference
in cost between a cache miss and a page faultalbatbecause
cache blocks are far smaller than memory pages.

Recently Chilimbi and Larus [11] used a generafligaabage col-
lector to implement cache-conscious data placenTdmy collect
low-overhead, real-time profiling information abod&ta access
patterns and applied a new copying algorithm tisasuhis infor-
mation to produce a cache-conscious object laybhat work
relies on properties of object-oriented progrants r@gjuires copy-
ing garbage collection, whereas this paper focases programs.

A more recent paper by Chilimbi et al. [12] desesliwo tech-
nigues—structure splitting and field reorganizatiom—tache-
conscious structure definition, and demonstratesfopeance
improvements for C and Java. Truong et al. [47) alsggest field
reorganization for C structures. These works compl this one,
as they are concerned with improving the cacheopmdnce of a
data structure by reorganizing its internal layetijle the orthog-
onal techniques in this paper improve performanceirsanging
collections of structures.

Calder et al. [8] applied placement techniques kipes for

instruction caches [17, 34, 27] to data. They useompiler-

directed approach that creates an address placdarethie stack
(local variables), global variables, heap objeats] constants in
order to reduce data cache misses. Their technichieh requires
a training run to gather profile data, shows litttgprovement for
heap objects but significant gains for stack okjertd globals. By
contrast, we provide tools for cache-conscious Hegput that

produce significant improvement without profilintn addition,

they used an entirely different allocation stratdggsed on a his-
tory of the previously allocated object, ratherrttithe program-
mer-supplied hint thatcmal | oc uses to co-locate objects.

Researchers have also used empirical models ofgrogehavior
[2, 39, 45] to analyze cache performance [35, 82, These efforts
tailor the analysis to specific cache parametehschwlimits their
scope. Two exceptions are Agarwal’'s comprehensache model
[1] and Singh’s model [41]. Agarwal's model uselai@e number
of parameters, some of which appear to require unea®nts to
calibrate. He provides performance validation gtedws that the

model’s predictions are quite accurate. Howeverntiodel's com-
plexity and large number of parameters, makesfficdit to gain
insight into the impact of different cache paraneten perfor-
mance. Singh presents a technique for calculatisgcche miss
rate for fully associative caches from a mathemahtinodel of
workload behavior. His technique requires fewerpsters than
Agarwal’s model, but again measurements appeassangeto cal-
ibrate them. The model’s predictions are accuratddrge, fully
associative caches, but are not as good for smadlties. Hill [19]
proposed the simple 3C model, which classifies eanlsses into
three categories—compulsory, capacity, and conflibe model
provides an intuitive explanation for the causesafhe misses,
but it lacks predictive power. These models foauswalyzing and
predicting a program’s cache performance, whilefegeis on the
cache performance of individual in-core pointenstures.

Lam et al. [22] developed a theoretical model dadzonflicts in
the cache and analyzed the implications for blockedy algo-
rithms. They showed that cache interference islhigansitive to
the stride of data accesses and the size of bledkish can result
in wide variation in performance for different matsizes. Their
cache model captures loop nests that access dmraygegular
manner, while our model focuses on series of pojma¢h accesses
to in-core pointer-based data structures.

LaMarca and Ladner [23, 24] explored the interacitd caches
and sorting algorithms. In addition, they constedca cache-con-
scious heap structure that clustered and aligneg eéements.
Their “collective analysis” models an algorithm’'&Havior for
direct-mapped caches and obtains accurate pratsctidheir
framework relies on the “independence referencemagson” [2],
and is algorithm-centric, whereas ours is datacsire-centric, and
specifically targets correlations between multipteesses to the
same data structure.

7. CONCLUSIONS

Traditionally, in-core pointer-based data structuneere designed
and programmed as if memory access costs wereromifocreas-
ingly expensive memory hierarchies open an oppiytuto
achieve significant performance improvements bgseghing data
structures to use caches more effectively. Whithrigues such as
clustering, and coloring can improve the spatiafl damporal
locality of pointer-based data structures, applyimgm to existing
codes may require considerable effort. This papmws that
cache-conscious techniques can be packaged intptease
tools. Our structure reorganizergcmor ph, and cache-conscious
memory allocatorccmal | oc, greatly reduce the programming
effort and application knowledge required to imgaache per-
formance.

While the cache-conscious structure layout tookcdeed in this
paper are fairly automated, they still require pamgmer assis-
tance to identify tree-structures that can be mpeed suitable
candidates for cache block co-location. Future weaak explore
two directions to reduce the amount of programnfferte static

program analyses and profiling. Finally, we beli¢vat compilers
and run-time systems can help close the processoreny perfor-
mance gap.

8. ACKNOWLEDGEMENTS

The authors would like to thank Thomas Ball, Braalder, Bob
Fitzgerald, Anoop Gupta, Manoj Plakal, Thomas Reps] the
anonymous referees for their useful comments. Téggarch is
supported by NSF NYI Award CCR-9357779, with supgoym

Sun Microsystems, and NSF Grant MIP-9625558.

REFERENCES

A. Agarwal, M. Horowitz, and J. Hennessy. “An anidgl
cache model.”ACM Transactions on Computer Systems
7(2):184-215, 1989.

A.V. Aho, P.J. Denning, and J. D. Ullman. “Priplds of
optimal page replacementJournal of the ACM18(1):80—
93, 1971.

J. Banerjee, W. Kim, and J. F. Garza. “ClusterinDAG for
CAD databases.[EEE Transactions on Software Engineer-
ing, 14(11):1684-1699, 1988.

R. Bayer and C. McCreight. “Organization and mair&nce
of large ordered indexesActa Informatica 1(3):173-189,
1972.

Veronique Benzaken and Claude Delobel. “Enhaggiarfor-
mance in a persistent object store: Clusteringtesiias in
02.” In Technical Report 50-90, AltaiAug. 1990.

R. K. Brayton, G. D. Hachtel, A. S. Vincentelli, Eomenzi,
A. Aziz, S.Cheng, S.Edwards, S.Khatri, Y.Kukimoto,
A. Pardo, S.Qadeer, R.Ranjan, S.Sarwary, T.R. Shilpe
G. Swamy, and T. Villa. “VIS: a system for verificati and
synthesis.” InProceedings of the Eight International Confer-
ence on Computer Aided Verificatiahuly 1996.

Doug Burger, James R. Goodman, and Alain Kagiefibry
bandwidth limitations of future microprocessorsii Pro-
ceedings of the 23rd Annual International Symposm
Computer Architecturepages 78-89, May 1996.

Brad Calder, Chandra Krintz, Simmi John, and d@dstin.
“Cache-conscious data placement.” Rroceedings of the
Eight International Conference on Architectural popt for

[1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

[17] N. Gloy, T. Blackwell, M. D. Smith, and B. Caldé®roce-
dure placement using temporal ordering informatitmPro-
ceedings of MICRO-3M®ec. 1997.

[18] I. J. Haikala. “Cache hit ratios with geomettask switch
intervals.” In Proceedings of the 11th Annual International
Symposium on Computer Architectupages 364-371, June
1984.

[19] Mark D. Hill and Alan Jay Smith. “Evaluating assativity in
CPU caches.” [EEE Transactions on ComputersC-
38(12):1612-1630, December 1989.

[20] David Kroft. “Lockup-free instruction fetch/pietch cache
organization.” InThe 8th Annual International Symposium on
Computer Architecturgpages 81-87, May 1981.

[21] M. S. Lam, P.R. Wilson, and T.G. Moher. “Objefstpe
directed garbage collection to improve localitya"Rroceed-
ings of the International Workshop on Memory Mamaget
pages 16-18, Sept. 1992.

[22] Monica S. Lam, Edward E. Rothberg, and MichaeWalf.
“The cache performance and optimizations of blochlepb-
rithms.” In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Laages
and Operating Systemgages 63—74, Santa Clara, California,
1991.

[23] Anthony LaMarca and Richard E. Ladner. “The uefhce of
caches on the performance of heap&CM Journal of Exper-
imental Algorithmics1, 1996.

[24] Anthony LaMarca and Richard E. Ladner. “The uefhce of
caches on the performance of sorting.Eight Annual ACM-
SIAM Symposium on Discrete Algorithrdan. 1997.

Programming Languages and Operating Systems (ASPLOS[25] James Laudon, Anoop Gupta, and Mark Horowitaterleav-

VIIl), pages 139-149, Oct. 1998.

David Callahan, Ken Kennedy, and Allan PotedietSoft-
ware prefetching.” IfProceedings of the Fourth International
Conference on Architectural Support for Programmiran-
guages and Operating Systems (ASPLOS psljes 40-52,
April 1991.

[10] Steve Carr, KathrynS. McKinley, and Chau-Wenrerig.
“Compiler optimizations for improving data localityn Pro-
ceedings of the Sixth International Conference achifec-
tural Support for Programming Languages and Opegti
Systems (ASPLOS Vpages 252-262, Oct. 1994.

[11] Trishul M. Chilimbi, and James R. Larus. “Usiggnerational
garbage collection to implement cache-conscioua dhtce-
ment.” In Proceedings of the 1998 International Symposium
on Memory Managemen®Dct. 1998.

[12] Trishul M. Chilimbi, Bob Davidson, and James Rarus.
“Cache-conscious structure definition.” Pmoceedings of the
ACM SIGPLAN’99 Conference on Programming Language
Design and Implementatipiiay 1999.

[13] Douglas Comer. “The ubiquitous B-treéACM Computing
Surveys11(2):121-137, 1979.

[14] R. Courts. “Improving locality of reference ingarbage-col-
lecting memory management systen€dmmunications of
the ACM 31(9):1128-1138, 1988.

[15] P. Drew and R. King. “The performance and utiliy the
Cactis implementation algorithms.” IRroceedings of the
16th VLDB Conferencgages 135-147, 1990.

[16] Dennis Gannon, William Jalby, and K. Gallivarstfategies

for cache and local memory management by globajraro

transformation.’Journal of Parallel and Distributed Comput-

ing, 5:587-616, 1988.

[9]

ing: A multithreading technique targeting multipessors and
workstations.” InProceedings of the Sixth International Con-
ference on Architectural Support for Programmingnta
guages and Operating Systenmages 308-318, San Jose,
California, 1994.

[26] Chi-Keung Luk and Todd C. Mowry. “Compiler-based
prefetching for recursive data structures.”Hroceedings of
the Seventh International Conference on Architedt@up-
port for Programming Languages and Operating System
(ASPLOS Vll)pages 222-233, Oct. 1996.

[27] Scott McFarling. “Program optimization for ingttion
caches.” InProceedings of the Third International Confer-
ence on Architectural Support for Programming Laages
and Operating Systemgages 183-191, 1989.

[28] D. A. Moon. “Garbage collection in a large LISPstem.” In
Conference Record of the 1984 Symposium on LISP and
Functional Programmingpages 235-246, Aug. 1984.

[29] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.e4dign
and evaluation of a compiler algorithm for prefétgh’ In
Proceedings of the Fifth International Conference Archi-
tectural Support for Programming Languages and @fieg
Systems (ASPLOS,\pages 62—73, October 1992.

[30] V. S. Pai, P. Ranganathan, and S. V. Adve. “RSé¥mrence
manual version 1.0.” Iffechnical Report 9705, Dept. of Elec-
trical and Computer Engineering, Rice Universitkug.
1997.

[31] V. S. Pai, P. Ranganathan, S.V. Adve, and T. Hharté\n
evaluation of memory consistency models for shanedhory
systems with ILP processors.” Rroceedings of the Seventh
International Conference on Architectural Suppast Pro-
gramming Languages and Operating Systems (ASPLOS VI
pages 12-23, Oct. 1996.

[32] David Patterson, Thomas Anderson, Neal CardviRithard
Fromm, Kimberly Keaton, Christoforos Kazyrakis, Ean
Thomas, and Katherine Yellick. “A case for intedlig
RAM.” In IEEE Micro, pages 34-44, Apr 1997.

[33] Sharon E. Perl and Richard L. Sites. “Studie$Midows NT
performance using dynamic execution traces.” Second
Symposium on Operating Systems Design and Implament
tion, Oct. 1996.

[34] Karl Pettis and Robert C. Hansen. “Profile gaidmde posi-
tioning.” SIGPLAN Notices25(6):16—-27, June 199®ro-
ceedings of the ACM SIGPLAN90 Conference on
Programming Language Design and Implementation

[35] G. S. Rao. “Performance analysis of cache messdriour-
nal of the ACM25(3):378-395, 1978.

[36] A. Rogers, M. Carlisle, J. Reppy, and L. HendreBugport-

ing dynamic data structures on distributed memory

machines.”ACM Transactions on Programming Languages
and Systemd.7(2), 1995.

[37] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchaind
A. Gupta. “The impact of architectural trends on ragieg
system performance.” IRroceedings of the 15th ACM Sym-
posium on Operating System Principles (SQ$BY)es 285—
298, Dec. 1995.

[38] A. Roth, A. Moshovos, and G.S. Sohi. “Dependehased
prefetching for linked data structures.” Pmoceedings of the
Eight International Conference on Architectural Popt for

object clustering techniques.” IRroceedings of the 1992
ACM SIGMOD Intl. Conf. on Management of Datmges
144-153, June 1992.

[49] G. J. Ward. “The RADIANCE lighting simulation dmender-
ing system.” InProceedings of SIGGRAPH ‘9duly 1994.

[50] M. V. Wilkes. “Slave memories and dynamic staragloca-
tion.” In IEEE Trans. on Electronic Computensages 270—
271, April 1965.

[51] Paul R. Wilson, Michael S. Lam, and Thomas G. Mohe
“Effective “static-graph” reorganization to improieeality in
garbage-collected systemsSIGPLAN Notices 26(6):177—
191, June 1991Proceedings of the ACM SIGPLAN'91 Con-
ference on Programming Language Design and Implémen
tion.

[52] Michael E. Wolf and Monica S. Lam. “A data lodgliopti-
mizing algorithm.” SIGPLAN Notices 26(6):30-44, June
1991.Proceedings of the ACM SIGPLAN’'91 Conference on
Programming Language Design and Implementation

Programming Languages and Operating Systems (ASPLOS

VIII), pages 115-126, Oct. 1998.

[39] J. H. Saltzer. “A simple linear model of demgmabing per-
formance.” Communications of the ACML7(4):181-186,
1974.

[40] M. L. Seidl, and B. G. Zorn “Segregating hedgjeats by ref-
erence behavior and lifetime.” IAroceedings of the Eight
International Conference on Architectural Suppast Pro-
gramming Languages and Operating Systems (ASPLDS VI
pages 12-23, Oct. 1998.

[41] Jaswinder Pal Singh, Harold S. Stone, and Doromig
Thiebaut. “A model of workloads and its use in riat® pre-
diction for fully associative cacheslEEE Transactions on
Computers41(7):811-825, 1992.

[42] A.J. Smith. “A comparative study of set asstemmemory
mapping algorithms and their use for cache and meEm-
ory.” IEEE Trans. on Software Engineering(2):121-130,
1978.

[43] Alan J. Smith. “Cache memoriesRCM Computing Surveys
14(3):473-530, 1982.

[44] Burton J. Smith. “Architecture and applicatiookthe HEP
multiprocessor computer system.” Real-Time Signal Pro-
cessing l\Vpages 241-248, 1981.

[45] J. R. Spirn, editorProgram Behavior: Models and Measure-

ments Operating and Programming System Series, Elsevier

New York, 1977.

[46] J. W. Stamos. “Static grouping of small objetdsenhance
performance of a paged virtual memorfxCM Transactions
on Programming Languages and Systerf§2):155-180,
1984.

[47] Dan N. Truong, Francois Bodin, and Andre Sezfieaprov-
ing cache behavior of dynamically allocated datacstires.”
In International Conference on Parallel Architecturaad
Compilation Technique®©ct. 1998.

[48] M. N. Tsangaris and J. Naughton. “On the perfarosa of

