
Appears in Proceedings of the ACM SIGPLAN’99 Conference on Programming Language Design and Implementation, May 1999.

truc-
iza-
of
res
per

er-
ity)
ulti-
icts
ane-
roves
er,
re’s
ed
to
ques
on
as-
cks
n-

ion
ntly
om
—
on,
ced

che
or-
ock,
ch-
ects
lan-
pro-
cess
fre-
acts
h is
ld
ld

us’
ject

tting
o-
plit-
or-
is

ase

Cache-Conscious Structure Definition

Trishul M. Chilimbi
Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, WI 53706

chilimbi@cs.wisc.edu

Bob Davidson
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
bobd@microsoft.com

James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus@microsoft.com
ABSTRACT
A program’s cache performance can be improved by changing the
organization and layout of its data—even complex, pointer-based
data structures. Previous techniques improved the cache perfor-
mance of these structures by arranging distinct instances to increase
reference locality. These techniques produced significant perfor-
mance improvements, but worked best for small structures that
could be packed into a cache block.

This paper extends that work by concentrating on the internal orga-
nization of fields in a data structure. It describes two techniques—
structure splitting and field reordering—that improve the cache
behavior of structures larger than a cache block. For structures com-
parable in size to a cache block, structure splitting can increase the
number of hot fields that can be placed in a cache block. In five
Java programs, structure splitting reduced cache miss rates 10–27%
and improved performance 6–18% beyond the benefits of previ-
ously described cache-conscious reorganization techniques.

For large structures, which span many cache blocks, reordering
fields, to place those with high temporal affinity in the same cache
block can also improve cache utilization. This paper describes
bbcache, a tool that recommends C structure field reorderings.
Preliminary measurements indicate that reordering fields in 5 active
structures improves the performance of Microsoft SQL Server 7.0
2–3%.

Keywords
cache-conscious definition, structure splitting, class splitting, field
reorganization

1. INTRODUCTION
An effective way to mitigate the continually increasing processor-
memory performance gap is to allocate data structures in a manner
that increases a program’s reference locality and improves its cache
performance [1, 5, 6]. Cache-conscious data layout, which clusters
temporally related objects into the same cache block or into non-
conflicting blocks, has been shown to produce significant perfor-
mance gains.

This paper continues the study of data placement optimizations
along the orthogonal direction of reordering the internal layout of a
structure or class’s fields. The paper describes two cache-conscious
definition techniques—structure splitting and field reordering—
that can improve the cache behavior of programs. In other words,

previous techniques focused on the external arrangement of s
ture instances, while this paper focuses on their internal organ
tion. In particular, previous techniques (with the exception
techniques for reducing cache conflicts) worked best for structu
smaller than half of a cache block. The techniques in this pa
apply to larger structures as well.

Figure 1 indicates different opportunities for improving cache p
formance. Caches have finite capacity (<< main memory capac
and transfer data in units called cache blocks that encompass m
ple words. Caches also have finite associativity, and this restr
where a block can be placed in the cache. Placing contempor
ously accessed structure elements in the same cache block imp
cache block utilization and provides an implicit prefetch. Moreov
it makes more efficient use of cache space by reducing a structu
cache block footprint. Finally, mapping concurrently access
structure elements (which will not all fit in a single cache block)
non-conflicting cache blocks reduces cache misses. The techni
in this paper directly improve a structure’s cache block utilizati
and reduce its cache block working set. In addition, since decre
ing a structure’s cache footprint also reduces the number of blo
that potentially conflict, the techniques may indirectly reduce co
flict misses.

Figure 2 illustrates the relationship of cache-conscious definit
technique to the size of structure instances. Instances significa
smaller than a cache block (case 1), are unlikely to benefit fr
additional manipulation at definition time. Previous techniques
such as Chilimbi and Larus’ cache-conscious object co-locati
which uses a copying garbage collector to place objects referen
together near each other in memory [5]—are effective.

If the structure instance size is comparable to the size of a ca
block (case 2), splitting structure elements into a hot and cold p
tion can produce hot structure pieces smaller than a cache bl
which permits application of cache-conscious reorganization te
niques to these portions. As this paper will show, many Java obj
belong to this category. In addition, since Java is a type-safe
guage, class splitting can be automated. The first step in this
cess is to profile a Java program to determine member ac
frequency. These counts identify class member fields as hot (
quently accessed) or cold (rarely accessed). A compiler extr
cold fields from the class and places them in a new object, whic
referenced indirectly from the original object. Accesses to co
fields require an extra indirection to the new class, while hot fie
accesses remain unchanged. At run time, Chilimbi and Lar
cache-conscious garbage collector co-locates the modified ob
instances. For five medium-sized Java benchmarks, class spli
combined with Chilimbi and Larus’ cache-conscious object c
location reduced L2 cache miss rates by 29–43%, with class s
ting accounting for 26–62% of this reduction, and improved perf
mance by 18–28%, with class splitting contributing 22–66% of th
improvement.

Finally, when structure elements span multiple cache blocks (c

Copyright © 199x by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

er
d
e

a-
tion
for
 field
that
ce

ial

ibes
nd

ts.
3), reordering structure fields to place those with high temporal
affinity in the same cache block can also improve cache block utili-
zation. Typically, fields in large structures are grouped conceptu-
ally, which may not correspond to their temporal access pattern.
Unfortunately, the best order for a programmer may cause struc-
ture references to interact poorly with a program’s data access pat-
tern and result in unnecessary cache misses. Compilers for many
languages are constrained to follow the programmer-supplied field
order and so cannot correct this problem. Given the ever-increas-
ing cache miss penalties, manually reordering structure fields, to
place those with high temporal affinity in the same cache block, is
a relatively simple and effective way to improve program perfor-
mance.

Legacy applications were designed when machines lacked multiple
levels of cache and memory access times were more uniform. In
particular, commercial C applications often manipulate large struc-

tures. To explore the benefits of field reordering, this pap
describes bbcache, a tool that recommends C structure fiel
reorderings. bbcache correlates static information about th
source location of structure field accesses with dynamic inform
tion about the temporal ordering of accesses and their execu
frequency. This data is used to construct a field affinity graph
each structure. These graphs are then processed to produce
order recommendations. Preliminary measurements indicate
reordering fields in 5 active structures improves the performan
of Microsoft SQL Server 7.0, a large, highly tuned commerc
application, by 2–3% on the TPC C benchmark [13].

The rest of the paper is organized as follows. Section 2 descr
structure splitting. Section 3 discusses field reordering for C a
describes bbcache. Section 4 presents our experimental resul
Finally, Section 5 briefly discusses related work.

Figure 1. Improving cache performance.

Cache block

Cache block
working set

utilization

Cache
conflicts

Cache block size

Cache capacity

Cache associativity

Figure 2. Cache-conscious structure definition.

Case 1: Structure size << cache block size

Case 2: Structure size ≅ cache block size

Case 3: Structure size >> cache block size

S1

S2

S3

f1

f1 f2 f3 f4

f1 f2 f3 f4 f5 f6 f7 f8 f9

f3 f9 f5 f1 f6 f8 f7 f4 f2S3’

S2’ f3 f1 f2 f4

Structure
splitting

Field reorganization

S1 f1

hot cold

cache block

No action

his
e.

ro-
nd

ru-
ma-
es.
The
able
. An
ich

om-
te-
 and
plit-
ore

n
rfor-
e-

 the
rtex

 is
ed
-3.
peri-
tion
plit-
ing,
r-
000,
 of

ich
re on
with
 are

ious
ly

are
s of
cts
ecu-
Java
an a
all
2. STRUCTURE SPLITTING
Chilimbi and Larus [5] proposed using a generational garbage col-
lector to lay out objects dynamically, so those with temporal affin-
ity are placed near each other and are likely to reside in the same
cache block. They demonstrated that the vast majority of live
objects in Cecil [2, 3] (an object-oriented language bearing similar-
ities to Java) were smaller than half a cache block (< 32 bytes).
This characteristic permitted low overhead, real-time data profiling
of Cecil programs. They also described a new copying algorithm
that utilized this profile information to produce a cache-conscious
object layout.

Our experiments (Section 2.1) found that Java objects are also
small, but they are on average approximately 8 bytes larger that
Cecil objects. Directly applying Chilimbi and Larus’ cache-con-
scious co-location scheme to Java programs yields smaller perfor-
mance improvements (10–20%, Section 4.1.2) than those reported
for Cecil (14–37% [5]). This difference is attributable to the larger
Java objects reducing the number of contemporaneously accessed
object instances that could be packed into a cache block.

One way to reduce the effective size of Java objects is to split Java
classes into a hot (frequently accessed) and a cold (rarely accessed)
portion, based on profiled field access frequencies. Splitting
classes allows more hot object instances to be packed into a cache
block and kept in the cache at the same time. Structure splitting is a
well known optimization, that is often applied manually to

improve performance. However, to the best of our knowledge, t
is the first completely automatic implementation of the techniqu

Figure 3 illustrates the class splitting process. First, a Java p
gram, in the form of verified bytecodes, is statically analyzed a
instrumented using BIT [10] (the standard library was not inst
mented). The static analyses produces a variety of class infor
tion, including class and field names, field types, and field siz
Next, the instrumented Java program is executed and profiled.
profile measures class instantiation counts and instance vari
(non-static class fields) access statistics on a per class basis
algorithm uses the static and dynamic data to determine wh
classes should be split. Finally, these splitting decisions are c
municated to the Vortex compiler [4], which compiles Java by
code to native code. The compiler splits the specified classes
transforms the program to account for the change. The class s
ting algorithm and program transformations are described in m
detail in subsequent sections.

Applying Chilimbi and Larus’ cache-conscious object co-locatio
scheme to the Java programs with split classes results in pe
mance improvements of 18–28%, with 22–66% of this improv
ment attributable to class splitting (see Section 4.1.2).

2.1 Average Java Object Size
We ran some experiments to investigate whether Java follows
same size distribution as Cecil objects. Our system uses the Vo
compiler developed at the University of Washington [4]. Vortex
a language-independent optimizing compiler for object-orient
languages, with front ends for Cecil, C++, Java, and Modula
Table 1 describes the Java benchmark programs used in the ex
ments. The programs were compiled at the highest optimiza
level (o2), which applies techniques such as class analysis, s
ting, class hierarchy analysis, class prediction, closure delay
and inlining, in addition to traditional optimizations [4]. The expe
iments were run on a single processor of a Sun Ultraserver E5
which contained 12 167Mhz UltraSPARC processors and 2GB
memory running Solaris 2.5.1.

Table 2 shows the results of our first set of experiments, wh
tested the hypothesis that most heap allocated Java objects a
average smaller than a cache block (for reasons having to do
garbage collection, objects greater than or equal to 256 bytes
considered large and managed differently).

However, small objects often die fast. Since the cache-consc
layout technique described in the Chilimbi-Larus paper is on
effective for longer-lived objects, which survive scavenges, we
more interested in live object statistics. Table 3 shows the result
the next experiment, which measured the number of small obje
live after each scavenge, averaged over the entire program ex
tion. Once again, the results support the hypothesis that most
objects are small, and the average live object size is smaller th
cache block (64 bytes). However comparing the average live smFigure 3. Class splitting overview.

Verified Java
bytecode

Instrumented
Java bytecode

JVM

Class access
statistics

Static class
information

Java native code
w split classes

BIT

Vortex

Class splitting algorithm

Table 1: Java benchmark programs.

Program Lines of Codea

a. Plus, a 13,700 line standard library (JDK 1.0.2).

Description

cassowary 3,400 Constraint solver

espresso 13,800 Martin Odersky’s drop-in replacement for javac

javac 25,400 Sun’s Java source to bytecode compiler

javadoc 28,471 Sun’s documentation generator for Java source

pizza 27,500 Pizza to Java bytecode compiler

cified
 suf-
ria

r-
-
 a

ting
ytes
 is
red

hot
arti-
 the
 bal-
ve

the
er-

a
or-
nt
ck

g

object size for Java programs (23–32 bytes) with that for Cecil pro-
grams (15–24 bytes [5]), it appears that Java objects are approxi-
mately 8 bytes larger (possibly due to larger object headers). This
larger size reduces the effectiveness of packing objects in the same
cache block.

2.2 Class Information
BIT is used to gather static class information, including class
name, number of non-static fields, and the names, access types,
and descriptors for all non-static fields. Non-static fields are
tracked since these constitute the instance variables of a class and
are allocated on the heap. In addition, BIT instruments the program
to generate field access frequencies on a per-class basis. An instru-
mented program runs an order of magnitude slower than its origi-
nal.

2.3 Hot/Cold Class Splitting Algorithm
Class splitting involves several trade-offs. Its primary advantage is
the ability to pack more (hot) class instances in a cache block. Its
disadvantages include the cost of an additional reference from the
hot to cold portion, code bloat, more objects in memory, and an
extra indirection for cold field accesses. This section describes a
class splitting algorithm that considers these issues while selecting
classes to split.

The problem of splitting classes into a hot and cold portion based
on field access counts has a precise solution only if the program is
rerun on the same input data set. However, we are interested in
splitting classes so the resulting program performs well for a wide
range of inputs. An optimal solution to this problem is unnecessary
since field access frequencies for different program inputs are
unpredictable. Instead, the class splitting algorithm uses several
heuristics. While none of these heuristics may be optimal, mea-
surements in Section 4.1 demonstrate that they work well in prac-
tice. In addition, they worked better than several alternatives that
were examined. In the ensuing discussion, the term “field” refers to
class instance variables (i.e., non-static class variables).

Figure 4 contains the splitting algorithm. The splitting algorithm

only considers classes whose total field accesses exceed a spe
threshold. This check avoids splitting classes in the absence of
ficient representative access data. While alternative crite
undoubtedly exist, the following formula worked well for dete
mining this threshold. Let LS represent the total number of pro
gram field accesses, C the total number of classes with at least
single field access, Fi the number of fields in class i, and Ai the
total number of accesses to fields in class i, then the splitting algo-
rithm only considers classes where:

Ai > LS / (100∗C)

These classes are called the ‘live’ classes. In addition, the split
algorithm only considers classes that are larger than eight b
and contain more than two fields. Splitting smaller classes
unlikely to produce any benefits, given the space penalty incur
by the reference from the hot to the cold portion.

Next, the algorithm labels fields in the selected ‘live’ classes as
or cold. An aggressive approach that produces a smaller hot p
tion, and permits more cache-block co-location, also increases
cost of accessing cold fields. These competing effects must be
anced. Initially, the splitting algorithm takes an aggressi
approach and marks any field not accessed more than Ai / (2 * Fi)
times as cold. If the cold portion of class i is sufficiently large to
merit splitting (at least 8 bytes to offset the space required for
cold object reference), the following condition is used to count
balance overaggressive splitting:

(max(hot(classi)) − 2 ∗ Σcold(classi)) / max(hot(classi)) > 0.5

where the hot and cold functions return the access counts of
class’ hot and cold fields, respectively. This condition can be inf
mally justified as follows. Consider instances of two differe
classes, o1 and o2, that are both comparable in size to a cache blo
and that have a high temporal affinity. Let instance o1 have n fields
that are accessed a1, .., an times, and o2 have m fields that are
accessed b1, ..., bm times. It is reasonable to expect the followin
access costs (# of cache misses) for the class instances o1 and o2:

Table 2: Most heap allocated Java objects are small.

Program

 # of heap
allocated small

objects
(< 256 bytes)

Bytes allocated
(small objects)

Avg. small
object size

(bytes)

of heap
allocated large

objects
(>= 256 bytes)

Bytes allocated
(large objects)

% small
objects

cassowary 958,355 19,016,272 19.8 6,094 2,720,904 99.4

espresso 287,209 8,461,896 29.5 1,583 1,761,104 99.5

javac 489,309 15,284,504 31.2 2,617 1,648,256 99.5

javadoc 359,746 12,598,624 35.0 1,605 1,158,160 99.6

pizza 269,329 7,739,384 28.7 1,605 1,696,936 99.4

Table 3: Most live Java objects are small.

Program
Avg. # of live
small objects

Bytes occupied
(live small

objects)

Avg. live
small object
size (bytes)

Avg. # of live
large objects

Bytes
occupied
(live large
objects)

% live small
objects

cassowary 25,648 586,304 22.9 1699 816,592 93.8

espresso 72,316 2,263,763 31.3 563 722,037 99.2

javac 64,898 2,013,496 31.0 194 150,206 99.7

javadoc 62,170 1,894,308 30.5 219 148,648 99.6

pizza 51,121 1,657,847 32.4 287 569,344 99.4

ass,
he

-

es.
lds
ce
irst
 ref-
ple

stor-
ently
n

the
nd
e in
the
max(a1, ..., an) < cost(o1) < Σ(a1, ..., an)

max(b1, ..., bm) < cost(o2) < Σ(b1, ... bm)

Now if the hot portion of o1 is co-located with the hot portion of o2
and these fit in a cache block, then:

cost(o1) + cost(o2) ≅ (max(hot(class1), hot(class2)) + ε) + 2 ∗
(Σcold(class1) + Σcold(class2))

since cold fields are accessed through a level of indirection. This
will definitely be beneficial if the sum of the (best case) costs of
accessing original versions of the instances is greater than the
access cost after the instances have been split and hot portions co-
located:

max(a1, ..., an) + max(b1, ..., bm) >
((max(hot(class1), hot(class2)) + ε) + 2∗(Σcold(class1) +

Σcold(class2))

i.e.:

min(max(hot(class1)), max(hot(class2))) >
2 ∗ (Σcold(class1) + Σcold(class2)) + ε

Since apriori we do not know which class instances will be co-
located, the best we can do is to ensure that:

TD(classi) = max(hot(classi)) - 2 ∗ Σcold(classi) >> 0

This quantity is termed the ‘temperature differential’ for the class.
For classes that do not meet this criteria, a more conservative for-
mula is used that labels fields that are accessed less than Ai / (5*Fi)
as cold. If this does not produce a sufficiently large cold portion (>
8 bytes), the class is not split.

2.4 Program Transformation
We modified the Vortex compiler to split classes selected by the
splitting algorithm and to perform the associated program transfor-
mations. Hot fields and their accesses remain unchanged. Cold
fields are collected and placed in a new cold counterpart of the
split class, which inherits from the primordial Object class and has
no methods beyond a constructor. An additional field, which is a

reference to the new cold class, is added to the original cl
which now contains the hot fields. Cold fields are labelled with t
public access modifier. This is needed to permit access to pri-
vate and protected cold fields through the cold class refer
ence field in the original (hot) class.

Finally, the compiler modifies the code to account for split class
These transformations include replacing accesses to cold fie
with an extra level of indirection through the cold class referen
field in the hot class. In addition, hot class constructors must f
create a new cold class instance and assign it to the cold class
erence field. Figure 5 illustrates these transformations for a sim
example.

2.5 Discussion
Some programs transfer structures back and forth to persistent
age or external devices. These structures cannot be transpar
changed without losing backward compatibility. However, whe
new optimizations offer significant performance advantages,
cost of such compatibility may become high, and explicit input a
output conversion necessary. Translation, of course, is routin
languages, such as Java, in which structure layout is left to

split_classes()
{

for each class {
mark_no_split;
if((active)&&(suitable_size)){

mark_flds_aggresive;
if(suff_cold_fields)

if(nrmlized_temp_diff > 0.5)
mark_split;

else{
re-mark_flds_conservative;
if(suff_cold_fields)

mark_split;
}

}
}

}
Figure 4. Class splitting algorithm.

class A {
protected long a1;
public int a2;
static int a3;
public float a4;
private int a5;
A(){

...
a4 = ..;

}
...

}
class B extends A {

public long b1;
private short b2;
public long b3;
B(){

b3 = a1 + 7;
...

}
...

}

class A {
public int a2;
static int a3;
public cld_A cld_A_ref;
A(){

cld_A_ref = new cld_A();
...
cld_A_ref.a4 = ..;

}
...

}
class B extends A {

public long b3;
public cld_B cld_B_ref;
B(){

cld_B_ref = new cld_B();
b3 = cld_A_ref.a1 + 7;
...

}
...

}

class cld_A {
public long a1;
public float a4;
public int a5;
cld_A(){...}

}

class cld_B {
public long b1;
public short b2;
cld_B(){...}

}

Figure 5. Program transformation.

ture

 be
both
for-
base
o-
nity

ost
and
za-
der
ive
ncy,
ld

-
ram.
ld
ess
he
e. A
air,

the
re
w-
ive
ces
ad
er,
ince
ecu-
le)

 hash
pre-
compiler.

The splitting technique in this paper produces a single split version
of each selected class. A more aggressive approach would create
multiple variants of a class, and have each direct subclass inherit
from the version that is split according to the access statistics of the
inherited fields in that subclass. To simplify our initial implemen-
tation, we choose not to explore this option, especially since its
benefits are unclear. However, future work will investigate more
aggressive class splitting.

Since this paper focuses on improving data cache performance,
class splitting only considers member fields and not methods.
Method splitting could improve instruction cache performance. In
addition, it offers additional opportunities for overlapping execu-
tion of mobile code with transfer [9].

3. FIELD REORDERING
Commercial applications often manipulate large structures with
many fields. Typically, fields in these structures are grouped logi-
cally, which may not correspond to their temporal access pattern.
The resulting structure layout may interact poorly with a program’s
data access pattern and cause unnecessary cache misses. This sec-
tion describes a tool—bbcache—that produces structure field
reordering recommendations. bbcache’s recommendations
attempt to increase cache block utilization, and reduce cache pres-
sure, by grouping fields with high temporal affinity in a cache
block.

For languages, such as C, that permit almost unrestricted use of
pointers, reordering structure fields can affect program correct-
ness—though this is often a consequence of poor programming
practice. Moreover, C structures can be constrained by external
factors, such as file or protocol formats. For these reasons,
bbcache’s recommendations must be examined by a programmer
before they can be applied to C programs.

3.1 bbcache
Figure 6 illustrates the process of using bbcache. A program is
first profiled to create a record of its memory accesses. The trace
file contains temporal information and execution frequency for
structure field accesses. bbcache combines the dynamic data

with static analysis of the program source to produce the struc
field order recommendations.

The algorithm used to recommend structure field orders can
divided into three steps. First, construct a database containing
static (source file, line, etc.) and dynamic (access count, etc.) in
mation about structure field accesses. Next, process this data
to construct field affinity graphs for each structure. Finally, pr
duce the structure field order recommendations from these affi
graphs.

bbcache also contains an evaluation facility that produces a c
metric, which represents a structure’s cache block working set,
a locality metric, which represents a structure’s cache block utili
tion. These metrics help compare the recommended field or
against the original layout. They, together with a ranking of act
structures based on their temporal activity and access freque
can be used to identify structures most likely to benefit from fie
reordering.

3.1.1 Constructing the Structure Access Database
The ASTtoolkit [7], a tool for querying and manipulating a pro
gram’s abstract syntax tree, is used to analyze the source prog
It produces a file containing information on each structure fie
access, including the source file and line at which the acc
occurs, whether the access is a ‘read’, ‘write’, or ‘read-write’, t
field name, the structure instance, and the structure (type) nam
structure instance is a <function name, structure (type) name> p
where the function name corresponds to the function in which
instance is allocated. With pointer aliasing, computing structu
instances statically in this manner is an approximation. The follo
ing example helps illustrate the problem. Consider consecut
accesses to fields a and b in two different structure instan
(though indistinguishable with our approximation). This could le
to incorrectly placing fields a and b next to each other. Howev
this did not appear to be a serious problem for our purposes, s
most instances showed similar access characteristics (i.e., cons
tive accesses to the same field in different (indistinguishab
instances, rather than different fields). bbcache reads this file
and builds a structure access database, which it represents as a
table on structure names (Figure 7). Each hash table entry re

Program

Microsoft Internal
Tracing Tool

Trace File

bbcache

Structure
field orders,

rankings, evaluation
metrics

Figure 6. bbcache overview.

AST toolkit

Static information
about structure
field accesses

ries

as-

che
 If
the
to
ot

n
 a
ut
s
n
. If

the
ea-
sents a structure type and points to a list of structure instances.
Every structure instance points to a list of fields that were accessed
through that instance, and each field in turn points to a list of
access sites which record the source location from which the
access took place. bbcache uses program debug information to
associate temporal information and execution frequency, from the
program trace, with each field access site.

3.1.2 Processing the Structure Database
The structure database contains information about field accesses
for many instances of the same structure type. For each structure
instance, bbcache constructs a field affinity graph, which is a
weighted graph whose nodes represent fields and edges connect
fields that are accessed together according to the temporal trace
information. Fields accessed within 100 milliseconds of each other
in the trace were considered to be accessed contemporaneously.
While we experimented with several intervals ranging from 50—
1000 ms, most structures did not appear to be very sensitive to the
exact interval used to define contemporaneous access, and the
results reported in Section 4.2 correspond to a 100ms interval.
Edge weights are proportional to the frequency of contemporane-
ous access. All instance affinity graphs of each structure type are
then combined to produce a single affinity graph for each structure
(Figure 8).

3.1.3 Producing Structure Field Orders
Since structure alignment with respect to cache block bounda
can only be determined at run time (unless the malloc pointer is
suitably manipulated), our approach is to be satisfied with incre
ing inherent locality by placing fields with high temporal affinity
near each other—so they are likely to reside in the same ca
block—rather than try to pack fields exactly into cache blocks.
alignment (natural boundary) constraints would force a gap in
layout that alternative high temporal affinity fields are unable
occupy, we attempt to fill these with structure fields that were n
accessed in the profiling scenario.

We introduce the notion of configuration locality to explai
bbcache’s algorithm. Configuration locality attempts to capture
layout’s inherent locality. The first step is to compute a layo
affinity for each field, which is the sum of its weighted affinitie
with neighboring fields in the layout up to a predefined horizo
(presumably equivalent to the cache block size) on either side
field fi is surrounded by fields f1, ..., fn, in the layout, then its layout
affinity is:

Field layout affinity(fi) = wt(f1, fi)∗aff(f1,fi) + ...
+ wt(fn, fi)∗aff(fn, fi)

The weights correspond to the distance between the fields—
number of bytes separating the start of the fields—and are a m

Figure 7. Structure access database.

struct A struct B

inst A1 inst A2

field a field b field c

access a1 access a2 access a3

for each structure type
{

for each instance of this type
{

combine field access information for multiple
occurrences of the same field;

// Build a field affinity graph for this instance
for each pair of instance fields
{

compute field affinity edge weight;
}

}

//Combine instance field affinity graphs to create a structure
// field affinity graph
for each pair of structure fields
{

find all structure instances for which this pair of fields
has an affinity edge and compute a weighted affinity;

}
}

Figure 8. Processing the structure access database.

re’s

tive

nd

ents
lgo-

tex
1

ingle
hz

ris
lity

pag-
vel
he
t-

a 64
a-
vel
nal
64

ten-
r of
sure of the probability that the fields will end up in the same cache
block. The weighting factor used is:

wt(fi, fj) = ((cache_block_size - dist(fi, fj)) / cache_block_size)

A structure’s configuration locality is the sum of its field layout
affinities. Figure 9 illustrates the process of computing the increase
in configuration locality from adding field x to an existing layout.

bbcache uses a greedy algorithm to produce structure field order
recommendations from a structure field affinity graph. It starts by
adding the pair of fields, connected by the maximum affinity edge
in the structure field affinity graph, to the layout. Then at each step,
a single field is appended to the existing layout. The field selected
is the one that increases configuration locality by the largest
amount at that point in the computation. This process is repeated
until all structure field are laid out.

3.1.4 Evaluating Structure Field Orders
While the best way to evaluate a structure field ordering is to mea-
sure its impact on performance, this entails a tedious cycle of edit-
ing, recompiling, and rerunning the application. A quality metric
for structure field orderings can help compare a recommended lay-
out against the original layout and help evaluate alternative lay-
outs, without rerunning the application. This is especially useful
when field layout constraints prevent directly following the field
ordering recommendations.

bbcache provides two metrics to evaluate structure field orders,
as well as a query facility to compare alternative layouts. The first
is a metric of the average number of structure cache blocks active
during an application’s execution (i.e., a measure of a structure’s
cache block working set or cache pressure). This metric is com-
puted by combining temporal information for field accesses with a
structure’s field order to determine active cache blocks. A pro-
gram’s execution is divided into temporal intervals of 100ms each.
This metric assumes that structures start on cache block bound-
aries, and uses the field order (and field sizes) to assign fields to
cache blocks. If any of the fields in a cache block are accessed dur-
ing an execution interval, that block is considered to be active in
that interval. Let n represent the total number of program execution
intervals, and b1, ..., bn the number of active structure cache blocks
in each of these intervals.Then a structure’s cache block pressure

is:

Cache block pressure = Σ(b1, ...,bn) / n

The second metric is a locality metric that measures a structu
average cache block utilization. Let fij represent the fraction of
cache block j accessed (determined by accessed field sizes rela
to the cache block size) in program execution interval i, then:

Cache block utilization = Σ(f11,,fnbn) / Σ(b1, ...,bn)

4. EXPERIMENTAL EVALUATION
This section contains experimental evaluation of class splitting a
field reordering.

4.1 Class Splitting
This section describes our experimental methodology and pres
experiments that measure the effectiveness of the splitting a
rithm and its impact on the performance of Java programs.

4.1.1 Experimental Methodology
As described earlier, we used the University of Washington Vor
compiler infrastructure with aggressive optimization (o2). Table
describes the benchmarks. The compiled programs ran on a s
processor of a Sun Ultraserver E5000, which contained 12 167M
UltraSPARC processors and 2GB of memory running Sola
2.5.1. The large amount of system memory ensures that loca
benefits are due to improved cache performance, not reduced
ing activity. This processor has two levels of data cache. The le
1 cache is 16 KB direct-mapped with 16 byte cache blocks. T
level 2 cache is a unified (instruction and data) 1 MB direc
mapped cache with 64 byte cache blocks. The system has
entry iTLB and a 64 entry dTLB, both of which are fully associ
tive. A level 1 data cache hit requires one processor cycle. A le
1 cache miss, followed by a level 2 cache hit, costs 6 additio
cycles. A level 2 cache miss typically results in an additional
cycle delay.

4.1.2 Experimental Results
The first set of experiments were designed to investigate the po
tial for class splitting in the Java benchmarks, study the behavio

a
e

k

x

s

7

21

3

16

Structure field affinity graph

s k e a

x

Cache block size (b)

Structure layout

∆ configuration locality–() affinity x a,() b 4–
b

------------× affinity x e,() b 6–
b

aaaaaaaaaaaaaaaaaaaaa – affinity x k,()+
b 8–

b
------------× affinity x s,() b 12–

b
---------------×+ +

×+=

Figure 9. Producing field orders from the structure field affinity graph.

dif-
ty
ace
on

ea-
miss
rage
 and
ary,
rate
the
on
ext,
f the
t L1
ates

n
t/
s’

rates
ive-
7%

ion
lit-

6

64

60

2

4

0

0

2

4

our splitting algorithm, and examine the sensitivity of splitting
decisions to program inputs.

Table 4 shows that the five Java benchmarks for two different sets
of inputs have a significant number of classes (17–46% of all
accessed classes), that are candidates for splitting (i.e., live and
sufficiently large). Even more promising, 26–100% of these candi-
date classes have field access profiles that justify splitting the
class. The cold fields include variables that handle error condi-
tions, store limit values, and reference auxiliary objects that are not
on the critical data structure traversal path. The splitting algorithm
is fairly insensitive to the input data used for profiling field
accesses. For all benchmarks, regardless of input data set, 73–
100% of the classes selected for splitting were identical (the sec-
ond number enclosed in brackets indicates the number of common
classes split with different inputs), with the same fields labeled hot
or cold barring a few exceptions. Closer examination of the classes
split with one input set and not the other revealed these to be
classes with the smallest normalized temperature differentials
(though greater than 0.5).

Table 5 analyses the characteristics of the split classes in more
detail. Accesses to fields in split classes account for 45–64% of the
total number of program field accesses. The average dynamic split
class sizes were computed by weighting each split class with the
number of its split instances. The splitting algorithm reduces
dynamic class sizes by 17–23% (cassowary shows a 68% reduc-
tion), and with the exception of javadoc, permits two or more hot

instances to fit in a cache block. The normalized temperature
ferentials are high (77–99%), indicating significant dispari
between hot and cold field accesses. Finally, the additional sp
costs for the reference from the hot to cold portion are modest—
the order of 13–74KB.

Next, the UltraSPARC’s [12] hardware counters were used to m
sure the effect of our cache-conscious object layouts on cache
rates. Each experiment was repeated five times and the ave
value reported (in all cases the variation between the smallest
largest values was less than 3%). With the exception of cassow
the test input data set differed from the input data used to gene
field access statistics for class splitting. First, we measured
impact of Chilimbi and Larus’ cache-conscious object co-locati
scheme on the original versions of the five Java benchmarks. N
we measured its impact on the hot/cold split classes versions o
benchmark. The results are shown in Table 6 (we do not repor
miss rates since L1 cache blocks are only 16 bytes and miss r
were marginally affected, if at all). CL represents direct applica-
tion of Chilimbi and Larus’ cache-conscious object co-locatio
scheme, and CL + CS represents this scheme combined with ho
cold class splitting. The results indicate that Chilimbi and Laru
cache-conscious object co-location scheme reduces L2 miss
by 16–29% and our hot/cold class splitting increases the effect
ness of this scheme, reducing L2 miss rates by an further 10–2

Finally, we measured the impact of our techniques on execut
time. The results shown in Table 7 indicate that hot/cold class sp

Table 4: Class splitting potential.

Benchmark # of classes
(static)

of accessed
classes

of ‘live’
classes

of candidate
classes (live &
suitably sized)

of split
classes

Splitting
success ratio

(#split/
#candidates)

cassowary 27 12 6 2 2 100.0%

espresso (input1) 104 72 57 33 11 (8) 33.3%

espresso (input2) 104 69 54 30 9 (8) 30.0%

javac (input1) 169 92 72 25 13 (11) 52.0%

javac (input2) 169 86 68 23 11 (11) 47.8%

javadoc (input1) 173 67 38 13 9 (7) 69.2%

javadoc (input2) 173 62 30 11 7 (7) 63.6%

pizza (input1) 207 100 72 39 10 (9) 25.6%

pizza (input2) 207 95 69 36 10 (9) 27.8%

Table 5: Split class characteristics

Benchmarks Split class
access /

total prog.
accesses

Avg.
pre-split
class size
(static)

Avg.
pre-split
class size

(dyn)

Avg.
post-
split
(hot)

class size
(static)

Avg.
post-
split
(hot)

class size
(dyn)

 Avg.
reduc-
tion in
(hot)
class
size

(static)

Avg.
reduc-
tion in
(hot)
class
size

(dyn)

Avg. normal-
ized temper-

ature
differential

Additional
space allocated
for cold class

field ref
(bytes)

cassowary 45.8% 48.0 76.0 18.0 24.0 62.5% 68.4% 98.6% 5

espresso (input1) 55.3% 41.4 44.8 28.3 34.7 31.6% 22.5% 79.2% 74,4

espresso (input2) 59.4% 42.1 36.2 25.7 30.1 39.0% 16.9% 79.5% 58,1

javac (input1) 45.4% 45.6 26.3 27.2 21.6 40.4% 17.9% 75.1% 50,37

javac (input2) 47.1% 49.2 27.2 28.6 22.4 41.9% 17.6% 79.8% 36,60

javadoc (input1) 56.6% 55.0 48.4 29.3 38.1 46.7% 21.3% 85.7% 20,88

javadoc (input2) 57.7% 59.4 55.1 33.6 44.0 43.4% 20.1% 85.2% 12,74

pizza (input1) 58.9% 37.8 34.4 22.9 27.3 39.4% 20.6% 79.4% 55,65

pizza (input2) 64.0% 39.4 30.9 23.7 24.4 39.9% 21.0% 82.1% 38,00

uc-
-
er-

 by

t of
1, 6,
ch
ack
cant
 for

cts.
or-

eap

e-
ov-
few
ce

t of
m-

her

ge
igh
ting also affects execution time, producing improvements of 6–
18% over and above the 10–20% gains from Chilimbi and Larus’
co-location scheme.

4.2 Structure Field Reordering for C
We used a 4 processor 400MHz Pentium II Xeon system with a
1MB L2 cache per processor. The system had 4GB memory with
200 disks, each a 7200 rpm Clarion fiber channel drive. The sys-
tem was running Microsoft SQL Server 7.0 on top of Windows NT
4.0. We ran the TPC-C [13] benchmark on this system. Microsoft
SQL Server was first instrumented to collect a trace of structure
field accesses while running TPC-C. bbcache used this trace to
produce structure field order recommendations

Out of the almost 2,000 structures defined in the SQL Server
source, bbcache indicated that 163 accounted for over 98% of
structure accesses for the TPC-C workload. In addition, the top 25
of these 163 active structures account for over 85% of structure
accesses. For this reason, we focused on these 25 active structures

SQL Server uses a number of persistent, on-disk structures that
cannot have their fields reordered without affecting compatibility
(Section 2.5). In addition, there are dependencies, such as casting,
between structures that prevent reordering the fields of one, with-
out also reordering the other. Finally, SQL server is a highly tuned
commercial application, and many of the 25 active structures pre-
viously had their fields reordered by hand. We used bbcache to
select 5 structures that had no constraints on reordering and which
showed the largest potential benefits according to the cost and

locality metrics provided (Table 8). We reordered these 5 str
tures according to bbcache’s recommendations and ran the TPC
C benchmark on this modified SQL Server several times. The p
formance of the modified SQL Server was consistently better
2–3%.

5. RELATED WORK
Recent research has focused on reorganizing the data layou
pointer-based codes to improve memory system performance [
5, 14, 8, 11]. Calder et al. [1] apply a compiler-directed approa
that uses profile information to place global data, constants, st
variables, and heap objects. Their techniques produced signifi
improvements for globals and stack data, but only modest gains
heap objects. Their approach differs from ours in two respe
First, they adjusted the placement of entire objects, while we re
ganized the internal field of objects. Second, we focus on h
object.

Chilimbi et al. [6] describe two tools—a data reorganizer for tre
like structures and a cache-conscious heap allocator—for impr
ing the cache performance of C programs. The tools require
source code modifications and produce significant performan
improvements. Both tools reorganize the memory arrangemen
entire objects. This work complements their work, since the co
bination of the two techniques yields larger benefits than eit
alone.

Chilimbi and Larus [5] showed how to use generational garba
collection to reorganize data structures so that objects with h

Table 6: Impact of hot/cold object partitioning on L2 miss rate.

Program
L2 cache miss

rate (base)
L2 cache miss

rate (CL)
L2 cache miss
rate (CL + CS)

% reduction in
L2 miss rate

(CL)

% reduction in
L2 miss rate
(CL + CS)

cassowary 8.6% 6.1% 5.2% 29.1% 39.5%

espresso 9.8% 8.2% 5.6% 16.3% 42.9%

javac 9.6% 7.7% 6.7% 19.8% 30.2%

javadoc 6.5% 5.3% 4.6% 18.5% 29.2%

pizza 9.0% 7.5% 5.4% 16.7% 40.0%

Table 7: Impact of hot/cold object partitioning on execution time.

Program
Execution time
in secs (base)

Execution time
in secs
(CL)

Execution time in
secs

(CL + CS)

% reduction in
execution time

(CL)

% reduction in
execution time

(CL + CS)

cassowary 34.46 27.67 25.73 19.7 25.3

espresso 44.94 40.67 32.46 9.5 27.8

javac 59.89 53.18 49.14 11.2 17.9

javadoc 44.42 39.26 36.15 11.6 18.6

pizza 28.59 25.78 21.09 9.8 26.2

Table 8: bbcache evaluation metrics for 5 active SQL Server structures.

Structure
Cache block utilization

(original order)
Cache block utilization
(recommended order)

Cache pressure
(original order)

Cache pressure
(recommended order)

ExecCxt 0.607 0.711 4.216 3.173

SargMgr 0.714 0.992 1.753 0.876

Pss 0.589 0.643 8.611 5.312

Xdes 0.615 0.738 2.734 1.553

Buf 0.698 0.730 2.165 1.670

res
%.
ll as
ing

 the
ro-
ities
e.

w,
ce

oft
in
re
bly
re.
nd
n-

eful
R-

ant
he

in.

.”
g

nd

e-

al
ce-

.

ge

ct

r

g
ile
temporal affinity are placed near each other, so they are likely to
reside in the same cache block. We extend their technique to Java,
and increase its effectiveness by partitioning classes into a hot and
cold portion.

Truong et al. [14] also suggest field reorganization for C structures.
They develop a memory allocation library to support interleaving
identical fields of different instances of a structure that are refer-
enced together and demonstrate significant reductions in cache
miss rates and execution times. Our work complements theirs since
they perform field reorganization manually using profiling data,
whereas we describe a tool—bbcache—that automates part of
this process. Moreover, we showed how to fully automate cache-
conscious layout for Java-like languages.

Concurrently, Kistler and Franz [8] describe a technique that uses
temporal profiling data to reorder structure fields. Their work dif-
fers from ours in four ways. First, they use path profiling data to
capture temporal relationships. Second, they optimize their layouts
for cache-line fill buffer forwarding, a hardware feature supported
on the PowerPC, whereas we optimize layouts for inherent locality.
Third, their algorithm divides the affinity graph into cache-line
sized cliques. A consequence of this technique is that there may be
no affinity between fields placed in consecutive cache lines. With-
out cache-line alignment at allocation time (i.e., by suitably manip-
ulating the malloc pointer), the resultant layout may not perform
well. Finally, we provide structure activity rankings and two met-
rics for evaluating structure field orders that permit an informed
selection of suitable candidates for structure field reordering.

Seidl and Zorn [11] combine profiling with a variety of different
information sources present at run time to predict an object’s refer-
ence frequency and lifetime. They show that program references to
heap objects are highly predictable and that their prediction tech-
niques are effective. They use these predictions to generate cus-
tomized allocators that decrease a program’s page fault rate. Our
techniques on the other hand aim at reducing a program’s cache
miss rate.

6. CONCLUSIONS
This paper describes two techniques—structure splitting and field
reordering—that improve cache performance by changing the
internal organization of fields in a data structure. While previous
techniques, which concentrate on arranging distinct structure
instances, worked best for structures smaller than half a cache
block, the techniques in this paper improve the cache behavior of
larger structures.

Measurements indicate that Java programs have a significant num-
ber of classes with field access profiles that permit a simple, bimo-
dal division into hot (frequently accessed) and cold (rarely
accessed) fields. In addition, these classes account for a significant
fraction of all field accesses. The structure splitting algorithm
described in this paper is effective at dividing these classes into hot
and cold portions. Perhaps more importantly, the splitting deci-
sions are robust, being fairly insensitive to input data used for pro-
filing class field accesses. This structure splitting algorithm
reduced the cache miss rates of five Java programs by 10–27%,
and improved their performance by 6–18% beyond the improve-
ment from previously described cache-conscious reorganization
techniques. These promising results encourage further experimen-
tation with a larger variety of benchmarks.

For large structures, which span multiple cache blocks, reordering
fields, to place those with high temporal affinity in the same cache
block also improves cache utilization. This paper describes a tool
that recommends C structure field reorderings. Preliminary mea-

surements indicate that reordering fields in 5 active structu
improves the performance of Microsoft SQL Server 7.0 by 2–3
Unfortunately, constraints due to persistent data formats, as we
code that relied on particular field orders, prevented reorder
several other promising structures.

These results suggest that structure layouts are better left to
compiler or runtime system, rather than being specified by p
grammers. Modern languages, such as Java, provide opportun
to exploit this flexibility to improve programs’ cache performanc

ACKNOWLEDGEMENTS
The authors would like to thank Ronnie Chaiken, Roger Cre
Richard Shupak, and Daniel Weise for helpful discussions. Bru
Kuramoto, and Hoi huu Vo provided assistance with the Micros
tracing tool. Sameet Agarwal, Maurice Franklin, Badridd
Khessib, and Rick Vicik helped with SQL Server. The authors a
indebted to Craig Chambers for writing the Java SPARC assem
code generator, and providing the Vortex compiler infrastructu
Dave Grove assisted with Vortex. We are grateful to Han Lee a
Ben Zorn for providing us with BIT, the Java bytecode instrume
tation tool. Finally, the anonymous referees offered several us
comments. This research is supported by NSF NYI Award CC
9357779, with support from Sun Microsystems, and NSF Gr
MIP-9625558. The field reordering work was performed while t
first author was an intern at Microsoft Research.

REFERENCES
[1] Brad Calder, Chandra Krintz, Simmi John, and Todd Aust

“Cache-conscious data placement.” In Proceedings of the
Eight International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), pages 139-149, Oct. 1998.

[2] Craig Chambers. “Object-oriented multi-methods in Cecil
In Proceedings ECOOP’92, LNCS 615, Springer-Verla,
pages 33–56, June 1992.

[3] Craig Chambers. “The Cecil language: Specification a
rationale.” University of Washington Seattle, Technical Report
TR-93-03-05, Mar. 1993.

[4] Craig Chambers, Jeffrey Dean, and David Grove. “Whol
program optimization of object-oriented languages.” Univer-
sity of Washington Seattle, Technical Report 96-06-02, June
1996.

[5] Trishul M. Chilimbi, and James R. Larus. “Using generation
garbage collection to implement cache-conscious data pla
ment.” In Proceedings of the 1998 International Symposium
on Memory Management, Oct. 1998.

[6] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus
“Cache-conscious structure layout.” In Proceedings of the
ACM SIGPLAN’99 Conference on Programming Langua
Design and Implementation, May 1999.

[7] R. F. Crew. “ASTLOG: A language for examining abstra
syntax trees.” In Proceedings of the USENIX Conference on
Domain-Specific Languages, Oct. 1997.

[8] T. Kistler, and M. Franz. “Automated record layout fo
dynamic data structures.” Department of Information and
Computer Science, University of California at Irvine, Techni-
cal Report 98-22, May 1998.

[9] C. Krintz, B. Calder, H. B. Lee, and B. G. Zorn “Overlappin
execution with transfer using non-strict execution for mob
programs.” In Proceedings of the Eight International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII), pages 159-169, Oct.

1998.
[10] H. B. Lee, and B. G. Zorn. “BIT: A Tool for Instrumenting

Java Bytecodes.” In Proceedings of the 1997 USENIX Sympo-
sium on Internet Technologies and Systems (USITS’97), pages
73-83, Dec. 1997.

[11] M. L. Seidl, and B. G. Zorn. “Segregating heap objects by ref-
erence behavior and lifetime.” In Proceedings of the Eight
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VIII),
pages 12-23, Oct. 1998.

[12] Sun Microelectronics. UltraSPARC User’s Manual, 1996.
[13] Transaction Processing Council. TPC Benchmark C, Standard

Specification, Rev. 3.6.2, Jun. 1997.
[14] Dan N. Truong, Francois Bodin, and Andre Seznec. “Improv-

ing cache behavior of dynamically allocated data structures.”
In International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1998.

	ABSTRACT
	Keywords
	1. INTRODUCTION
	Figure 1. Improving cache performance.
	Figure 2. Cache-conscious structure definition.

	2. STRUCTURE SPLITTING
	Figure 3. Class splitting overview.
	2.1 Average Java Object Size
	Table 1: Java benchmark programs.

	cassowary
	3,400
	Constraint solver
	espresso
	13,800
	Martin Odersky’s drop-in replacement for javac
	javac
	25,400
	Sun’s Java source to bytecode compiler
	javadoc
	28,471
	Sun’s documentation generator for Java source
	pizza
	27,500
	Pizza to Java bytecode compiler
	Table 2: Most heap allocated Java objects are small.

	cassowary
	958,355
	19,016,272
	19.8
	6,094
	2,720,904
	99.4
	espresso
	287,209
	8,461,896
	29.5
	1,583
	1,761,104
	99.5
	javac
	489,309
	15,284,504
	31.2
	2,617
	1,648,256
	99.5
	javadoc
	359,746
	12,598,624
	35.0
	1,605
	1,158,160
	99.6
	pizza
	269,329
	7,739,384
	28.7
	1,605
	1,696,936
	99.4
	2.2 Class Information
	2.3 Hot/Cold Class Splitting Algorithm
	Table 3: Most live Java objects are small.

	cassowary
	25,648
	586,304
	22.9
	1699
	816,592
	93.8
	espresso
	72,316
	2,263,763
	31.3
	563
	722,037
	99.2
	javac
	64,898
	2,013,496
	31.0
	194
	150,206
	99.7
	javadoc
	62,170
	1,894,308
	30.5
	219
	148,648
	99.6
	pizza
	51,121
	1,657,847
	32.4
	287
	569,344
	99.4
	Ai > LS / (100*C)
	(max(hot(classi)) - 2 * Scold(classi)) / max(hot(classi)) > 0.5
	max(a1, ..., an) < cost(o1) < S(a1, ..., an)
	max(b1, ..., bm) < cost(o2) < S(b1, ... bm)
	cost(o1) + cost(o2) @ (max(hot(class1), hot(class2)) + e) + 2 * (Scold(class1) + Scold(class2))
	max(a1, ..., an) + max(b1, ..., bm) > ((max(hot(class1), hot(class2)) + e) + 2*(Scold(class1) + ...
	min(max(hot(class1)), max(hot(class2))) > 2 * (Scold(class1) + Scold(class2)) + e
	TD(classi) = max(hot(classi)) - 2 * Scold(classi) >> 0
	Figure 4. Class splitting algorithm.
	2.4 Program Transformation
	2.5 Discussion
	Figure 5. Program transformation.

	3. FIELD REORDERING
	Figure 6. bbcache overview.
	3.1 bbcache
	3.1.1 Constructing the Structure Access Database
	Figure 7. Structure access database.
	Figure 8. Processing the structure access database.

	3.1.2 Processing the Structure Database
	3.1.3 Producing Structure Field Orders
	Figure 9. Producing field orders from the structure field affinity graph.

	Field layout affinity(fi) = wt(f1, fi)*aff(f1,fi) + ... + wt(fn, fi)*aff(fn, fi)
	wt(fi, fj) = ((cache_block_size - dist(fi, fj)) / cache_block_size)
	3.1.4 Evaluating Structure Field Orders

	Cache block pressure = S(b1, ...,bn) / n
	Cache block utilization = S(f11,,fnbn) / S(b1, ...,bn)
	4. EXPERIMENTAL EVALUATION
	4.1 Class Splitting
	Table 4: Class splitting potential.

	Benchmark
	# of classes (static)
	# of accessed classes
	# of ‘live’ classes
	# of candidate classes (live & suitably sized)
	# of split classes
	Splitting
	success ratio (#split/
	#candidates)
	cassowary
	27
	12
	6
	2
	2
	100.0%
	espresso (input1)
	104
	72
	57
	33
	11 (8)
	33.3%
	espresso (input2)
	104
	69
	54
	30
	9 (8)
	30.0%
	javac (input1)
	169
	92
	72
	25
	13 (11)
	52.0%
	javac (input2)
	169
	86
	68
	23
	11 (11)
	47.8%
	javadoc (input1)
	173
	67
	38
	13
	9 (7)
	69.2%
	javadoc (input2)
	173
	62
	30
	11
	7 (7)
	63.6%
	pizza (input1)
	207
	100
	72
	39
	10 (9)
	25.6%
	pizza (input2)
	207
	95
	69
	36
	10 (9)
	27.8%
	4.1.1 Experimental Methodology
	4.1.2 Experimental Results
	Table 5: Split class characteristics

	Benchmarks
	Split class access / total prog. accesses
	Avg. pre-split class size (static)
	Avg. pre-split class size (dyn)
	Avg. post- split (hot) class size
	(static)
	Avg. post- split (hot) class size (dyn)
	Avg. reduction in (hot) class size (static)
	Avg. reduction in (hot) class size (dyn)
	Avg. normalized temperature differential
	Additional space allocated for cold class field ref
	(bytes)
	cassowary
	45.8%
	48.0
	76.0
	18.0
	24.0
	62.5%
	68.4%
	98.6%
	56
	espresso (input1)
	55.3%
	41.4
	44.8
	28.3
	34.7
	31.6%
	22.5%
	79.2%
	74,464
	espresso (input2)
	59.4%
	42.1
	36.2
	25.7
	30.1
	39.0%
	16.9%
	79.5%
	58,160
	javac (input1)
	45.4%
	45.6
	26.3
	27.2
	21.6
	40.4%
	17.9%
	75.1%
	50,372
	javac (input2)
	47.1%
	49.2
	27.2
	28.6
	22.4
	41.9%
	17.6%
	79.8%
	36,604
	javadoc (input1)
	56.6%
	55.0
	48.4
	29.3
	38.1
	46.7%
	21.3%
	85.7%
	20,880
	javadoc (input2)
	57.7%
	59.4
	55.1
	33.6
	44.0
	43.4%
	20.1%
	85.2%
	12,740
	pizza (input1)
	58.9%
	37.8
	34.4
	22.9
	27.3
	39.4%
	20.6%
	79.4%
	55,652
	pizza (input2)
	64.0%
	39.4
	30.9
	23.7
	24.4
	39.9%
	21.0%
	82.1%
	38,004
	Table 6: Impact of hot/cold object partitioning on L2 miss rate.

	cassowary
	8.6%
	6.1%
	5.2%
	29.1%
	39.5%
	espresso
	9.8%
	8.2%
	5.6%
	16.3%
	42.9%
	javac
	9.6%
	7.7%
	6.7%
	19.8%
	30.2%
	javadoc
	6.5%
	5.3%
	4.6%
	18.5%
	29.2%
	pizza
	9.0%
	7.5%
	5.4%
	16.7%
	40.0%
	4.2 Structure Field Reordering for C
	Table 7: Impact of hot/cold object partitioning on execution time.

	cassowary
	34.46
	27.67
	25.73
	19.7
	25.3
	espresso
	44.94
	40.67
	32.46
	9.5
	27.8
	javac
	59.89
	53.18
	49.14
	11.2
	17.9
	javadoc
	44.42
	39.26
	36.15
	11.6
	18.6
	pizza
	28.59
	25.78
	21.09
	9.8
	26.2
	Table 8: bbcache evaluation metrics for 5 active SQL Server structures.

	ExecCxt
	0.607
	0.711
	4.216
	3.173
	SargMgr
	0.714
	0.992
	1.753
	0.876
	Pss
	0.589
	0.643
	8.611
	5.312
	Xdes
	0.615
	0.738
	2.734
	1.553
	Buf
	0.698
	0.730
	2.165
	1.670
	5. RELATED WORK
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	[1] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. “Cache-conscious data placement.” I...
	[2] Craig Chambers. “Object-oriented multi-methods in Cecil.” In Proceedings ECOOP’92, LNCS 615, ...
	[3] Craig Chambers. “The Cecil language: Specification and rationale.” University of Washington S...
	[4] Craig Chambers, Jeffrey Dean, and David Grove. “Whole- program optimization of object-oriente...
	[5] Trishul M. Chilimbi, and James R. Larus. “Using generational garbage collection to implement ...
	[6] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. “Cache-conscious structure layout.” In...
	[7] R. F. Crew. “ASTLOG: A language for examining abstract syntax trees.” In Proceedings of the U...
	[8] T. Kistler, and M. Franz. “Automated record layout for dynamic data structures.” Department o...
	[9] C. Krintz, B. Calder, H. B. Lee, and B. G. Zorn “Overlapping execution with transfer using no...
	[10] H. B. Lee, and B. G. Zorn. “BIT: A Tool for Instrumenting Java Bytecodes.” In Proceedings of...
	[11] M. L. Seidl, and B. G. Zorn. “Segregating heap objects by reference behavior and lifetime.” ...
	[12] Sun Microelectronics. UltraSPARC User’s Manual, 1996.
	[13] Transaction Processing Council. TPC Benchmark C, Standard Specification, Rev. 3.6.2, Jun. 1997.
	[14] Dan N. Truong, Francois Bodin, and Andre Seznec. “Improving cache behavior of dynamically al...

	Cache-Conscious Structure Definition
	Trishul M. Chilimbi
	Computer Sciences Department
	University of Wisconsin-Madison
	1210 W. Dayton Street
	Madison, WI 53706
	chilimbi@cs.wisc.edu

	Bob Davidson
	Microsoft Corporation
	One Microsoft Way
	Redmond, WA 98052
	bobd@microsoft.com

	James R. Larus
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	larus@microsoft.com

