
A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda
Microsoft Research

moscitho@microsoft.com

Onur Mutlu
Carnegie Mellon University

onur@cmu.edu

ABSTRACT

Buffers in on-chip networks consume significant energy, occupy chip

area, and increase design complexity. In this paper, we make a case for a

new approach to designing on-chip interconnection networks that elimi-

nates the need for buffers for routing or flow control. We describe new

algorithms for routing without using buffers in router input/output ports.

We analyze the advantages and disadvantages of bufferless routing and

discuss how router latency can be reduced by taking advantage of the fact

that input/output buffers do not exist. Our evaluations show that rout-

ing without buffers significantly reduces the energy consumption of the

on-chip cache/processor-to-cache network, while providing similar per-

formance to that of existing buffered routing algorithms at low network

utilization (i.e., on most real applications). We conclude that bufferless

routing can be an attractive and energy-efficient design option for on-

chip cache/processor-to-cache networks where network utilization is low.

Categories and Subject Descriptors: C.1.2 [Computer Systems Organiza-
tion]: Multiprocessors–Interconnection architectures; C.1.4 [Parallel Archi-
tectures]: Distributed architectures.

General Terms: Design, Algorithms, Performance.

Keywords: On-chip networks, multi-core, routing, memory systems.

1. INTRODUCTION
Interconnection networks are commonly used to connect different

computing components [12]. With the arrival of chip multiprocessor
systems, on-chip interconnection networks have started to form the
backbone of communication between cores and cores and memory
within a microprocessor chip [53, 42, 24, 6]. Several network-on-
chip (NoC) prototypes show that NoCs consume a substantial por-
tion of system power: ∼30% in the Intel 80-core Terascale chip [24],
and ∼40% in the MIT RAW chip [50]. As power/energy con-
sumption has already become a limiting constraint in the design of
high-performance processors [20] and future on-chip networks in
many-core processors are estimated to consume hundreds of watts of
power [6], simple energy- and area-efficient interconnection network
designs are especially desirable.

Previous on-chip interconnection network designs commonly as-
sumed that each router in the network needs to contain buffers to
buffer the packets (or flits) transmitted within the network. Indeed,
buffering within each router improves the bandwidth efficiency in the
network because buffering reduces the number of dropped or “mis-
routed” packets [12], i.e. packets that are sent to a less desirable
destination port. On the other hand, buffering has several disadvan-
tages. First, buffers consume significant energy/power: dynamic en-
ergy when read/written and static energy even when they are not oc-
cupied. Second, having buffers increases the complexity of the net-
work design because logic needs to be implemented to place packets
into and out of buffers. Third, buffers can consume significant chip

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

area: even with a small number (16) of total buffer entries per node
where each entry can store 64 bytes of data, a network with 64 nodes
requires 64KB of buffer storage. In fact, in the TRIPS prototype
chip, input buffers of the routers were shown to occupy 75% of the
total on-chip network area [22]. Energy consumption and hardware
storage cost of buffers will increase as future many-core chips will
contain more network nodes.

In this paper, we propose to eliminate buffers in the design of on-
chip cache-to-cache and cache-to-memory networks to improve both
energy- and area-efficiency, as well as reduce network design com-
plexity and router latency. The basic idea of “bufferless routing” is
to always route a packet (or a flit) to an output port regardless of
whether or not that output port results in the lowest distance to the
destination of the packet. In other words, packets are deflected or
“misrouted” [12] by the router to a different output port if an output
port that reduces the distance to the destination node is not available.
Bufferless routing has also been called “hot-potato” routing in net-
work theory [2], alluding to the scenario that the router immediately
needs to pass the potato (i.e. the packet) on to some other router as
the potato is too hot to keep (i.e. buffer).

We propose and evaluate a set of simple and practical buffer-
less routing algorithms (BLESS), and compare them against baseline
buffered algorithms in terms of on-chip network energy consumption
and latency. We find that BLESS routing can yield substantial reduc-
tions in network energy consumption, while incurring little extra la-
tency (versus buffered algorithms) if the average injected traffic into
the network is low, i.e. below the network saturation point. We find
that in most application scenarios, due to low cache miss rates, the
average injected traffic into the cache-to-cache and cache-to-memory
networks is very low, making BLESS a potentially attractive mecha-
nism for on-chip networks.

Contributions: This work makes the following contributions:

• We propose a variety of simple and effective routing algorithms
for bufferless routing. We show how bufferless routing can be ef-
fectively combined with wormhole routing.

• We comprehensively evaluate the network energy consumption,
performance, latency, and area requirements of bufferless routing
using real applications simulated on a self-throttling chip mul-
tiprocessor (CMP) on-chip-network, as well as using synthetic
workloads. We show that bufferless routing can result in average
network energy reduction of ∼40% without significantly impact-
ing application performance, while reducing network buffer area
requirements by ∼60%.

• We show how eliminating buffers can enable reductions in router
latency. The reduced router latency can enable bufferless routing
algorithms to outperform baseline buffered algorithms.

2. WHY COULD IT WORK?
At first thought, eliminating buffers in on-chip interconnection net-

works might appear audacious, since it will result in an increase in av-
erage packet latencies and a decrease in achievable network through-
put compared to buffered routing schemes. Moreover, there could
be other issues such as livelocks. Nonetheless, the approach could
be suitable for on-chip networks, as we describe below. Intuitively,
bufferless deflection routing works well when network utilization is

1

low. A packet is deflected only if a collision occurs in a router, i.e.,
if multiple packets arrive at a router at the same time, and if not all
of these packets can be sent in a productive direction.1 If only few
packets are in the network simultaneously, the number of collisions
is low. Hence, most packets progress quickly and can be routed to
their destination without being frequently deflected.

For larger traffic volumes, the fundamental effect of removing
buffers is a reduction of the total available bandwidth in the network.
In a buffered network, a packet waits idle in some buffer until it can
be routed in a productive direction and therefore does not unneces-
sarily consume link bandwidth while it is buffered. In contrast, in
a bufferless network all packets always consume link bandwidth be-
cause, in effect, links act as “buffers” for the packets. Therefore, be-
yond a certain packet injection rate into the network, bufferless rout-
ing algorithms will fail, while good buffered routing algorithms can
still perform well. More precisely, the network saturation throughput
ΘBLESS of bufferless routing is less than the saturation throughput
of buffered routing ΘB .

The critical questions that determine the potential usefulness of
bufferless routing in on-chip interconnection networks are there-
fore 1) how much energy reduction can be achieved by eliminating
buffers, 2) how large is the gap between ΘBLESS and ΘB , and
how well does bufferless routing perform at injection rates below
ΘBLESS , 3) are there any realistic situations in which an intercon-
nection network is operated at a traffic injection rate below ΘBLESS ,
and 4) are there benefits to eliminating buffers, such as simplicity of
design or ability to reduce router latency?

Our results in this paper show that the answers to the first three
questions are promising for bufferless routing in on-chip networks.
Many on-chip interconnection networks are observed to be operat-
ing at relatively low packet injection rates [27, 25], which are sig-
nificantly below their peak throughput, an observation we confirm
in this paper using realistic applications and a self-throttling CMP
network design in which processors stop injecting into the network
once their internal buffers (e.g. MSHRs [29]) become full. For in-
stance, the L1 miss rate is typically below 10%, which, in a chip
multiprocessor with a distributed shared L2 cache, results in very
low packet injection rates for the network connecting L1 caches and
L2 cache banks [9]. Hence, bufferless routing, which performs well
at low packet injection rates can be a promising approach for on-chip
networks that primarily operate at low utilization.

Finally, this paper also provides promising answers to the fourth
question by analyzing the tradeoffs, advantages, and disadvantages
involved in bufferless routing and utilizing the lack of buffers to sim-
plify router design and reduce router latency in a simple way.

3. ON-CHIP BUFFERLESS ROUTING

3.1 Overview
The basic principle of bufferless routing in on-chip interconnect

networks is simple: Since in bufferless routing routers cannot store
packets in transit, all packets that arrive at a router must immediately
be forwarded to an adjacent router. We first present a simple version
of our algorithm (FLIT-BLESS) in which routing is flit-switched, i.e.,
every flit is routed through the network individually. We then propose
WORM-BLESS, an optimization to FLIT-BLESS which combines
bufferless routing with ideas from wormhole routing. Finally, in §3.4,
we show how BLESS can seamlessly be used with buffers, if desired.
We discuss advantages and disadvantages of BLESS in §5.

3.2 Basic Algorithm: Flit-Level Routing
Overview: In flit-level bufferless routing (FLIT-BLESS or simply
FLIT), each flit of a packet is routed independently of every other

1A productive direction is a direction (or output port) that brings the packet closer to
its destination [45]. A non-productive direction brings the packet further away from its
destination.

flit through the network, and different flits from the same packet may
take different paths.2 When there is contention between multiple flits
that are destined for a particular direction, only one of these flits is
actually sent to the corresponding output port. In such a case, tra-
ditional routing algorithms would temporarily store such flits in a
buffer within the router; and credits would flow between neighboring
routers in order to prevent buffer overflows. In contrast, BLESS does
not have buffers and therefore sends these flits to other, potentially
undesirable output ports. In other words, flits that cannot be sent to
a productive direction are “deflected.” The basic idea of BLESS is
that deflected packets will eventually reach their destinations, and—
as we show in our evaluation—that the total extra latency due to the
detours resulting from deflections is not too high.
Network Topology: BLESS routing is feasible on every network
topology that satisfies the following two constraints: Every router 1)
has at least the same number of output ports as the number of its
input ports, and 2) is reachable from every other router. Many im-
portant topologies such as Mesh, Torus, Hypercubes, or Trees satisfy
these criteria. However, bufferless routing cannot easily be applied
to networks with directed links, such as the Butterfly network, as a
deflected packet may no longer be able to reach its destination [12].
In the sequel, we specifically assume a Mesh topology.
Injection Policy: A processor can safely inject a flit into its router
when at least one incoming link (from other routers) is free. Unless
all input ports are busy, there must be at least one free output port,
to which a newly injected flit can be sent. That is, all incoming flits
can be routed to some direction. Observe that this allows for entirely
local flow and admission control; every processor can locally decide
whether or not it can inject a flit in a given cycle. Thus, in contrast to
existing routing algorithms, BLESS does not require a credit-based
system to avoid overflows.
Arbitration Policy: The algorithm’s arbitration policy has to decide
which incoming flit is routed to which output port. The arbitration
policy of BLESS is governed by two components, a ranking com-
ponent and an port-selection component. In combination, these two
components determine the arbitration of flits, but the components are
orthogonal in the sense that they can be changed independently.

BLESS’ arbitration policy is rank-based. In every cycle, the router
ranks all incoming flits using the flit-ranking component. For each
flit, the port-prioritization component ranks the available output ports
in order of their “desirability” for this flit. The router then considers
the flits one by one in the order of their rank (highest rank first) and
assigns to each flit the output port with highest priority that has not
yet been assigned to any higher-ranked flits.
Example: Consider two flits A and B contending in a router. Let

the flit-ranking component rank A higher than B, and let the port-
priorities for A and B be (N, E) and (N, W), respectively. BLESS will
assign A to North, and B to West.

We now discuss flit-ranking and port-prioritization components of
FLIT-BLESS in detail.

FLIT-BLESS: Flit-Ranking: We implement and evaluate five
different flit-ranking schemes in BLESS (see Table 1, Row 2). Differ-
ent policies have different advantages and disadvantages. However,
as we show in the evaluation (see §7.6) the simple Oldest-First (OF)
policy, which ensures there is a total age order among flits and prior-
itizes older flits, performs the best over a wide range of traces, both
in terms of average/maximum latency and deflection-count/energy-
efficiency. OF has another crucial advantage over other policies in
that it is guaranteed to avoid livelocks (see below). For these two
reasons, we select OF as our primary ranking policy. Implementing
OF such that there is a total age order of flits is non-trivial. However,
there are previously-researched techniques (e.g. timestamping [34])
to make OF implementable.

2Technically, what we call a flit in FLIT-BLESS is actually a “packet” as it is a unit of
routing, but we refer to it as “flit” to keep consistency with WORM-BLESS, which is
explained later.

2

Flit Ranking Rules Comments

Rule 1) MSF: Must-Schedule First (see Section 3.4)

Rule 2) Evaluated flit-ranking rules:

— i) OF: Oldest First Older flits before younger flits.

— ii) CF: Closest First Flits closer to their destination before
flits whose remaining distance is larger.

— iii) DEFs: Most Deflections First Flits that have been deflected more
before flits deflected fewer times.

— iv) RR: Round Robin Flits from different input ports
are ranked in round robin fashion.

— v) Mix: Mixed Policy In odd (even) cycles, use OF (RR).

Table 1: Different flit-ranking schemes. The highest priority MSF rule

applies only to BLESS with buffers (see Section 3.4).

FLIT-BLESS: Port-Prioritization: Table 2(left) shows the port-
prioritization rules of FLIT-BLESS. For a given flit, the router picks
the output port that conforms to the highest priority according to the
figure. In the case of FLIT-BLESS, this simply means that productive
directions are preferred over non-productive directions. If there are
two possible ports with same priority, the router picks the x-direction
over y-direction as in dimension-order routing. During this process,
only free output ports are considered, i.e., ports not already assigned
to higher-ranked flits in the same cycle.

Deadlocks: Guaranteeing the absence of deadlocks and livelocks
is of critical importance to any routing algorithm. The use of deflec-
tion routing and ensuring that the number of output ports in a router
is greater than or equal to the number of input ports ensure no dead-
locks can occur. Protocol (request-reply) deadlocks are avoided by
ensuring that replies can always reach their destinations: a reply in-
herits the age of its corresponding request and OF ranking ensures
the oldest flit will always be delivered to its destination.

Livelocks: The combination of OF ranking and port-prioritization
ensures that no livelocks can occur. In OF, the oldest flit is highest-
ranked and hence, it can always be assigned a productive direction.
By induction, this guarantees that no livelocks can occur because
once a flit is the oldest flit in the network, it cannot be deflected any-
more and is guaranteed to make forward progress until it reaches its
destination. Eventually, a flit will become the oldest flit in the net-
work, after which it cannot be deflected any more.

Implementation: In FLIT-BLESS, every packet is routed individ-
ually through the network. Therefore, every flit needs to contain rout-
ing information, or in other words, every flit needs to be a head-flit.
BLESS adds additional wires between routers to transport this infor-
mation. Our evaluations show that the energy consumed by these
additional wires is small, compared to the energy savings due to not
having buffers in the routers. As in the baseline algorithms, a destina-
tion BLESS router buffers received flits in a receiver-side buffer until
all flits of a packet have arrived upon which the packet is delivered to
the receiving processor.

3.3 BLESS Wormhole Routing
Compared to wormhole routing [11] in traditional, buffered base-

line routing algorithms, flit-level switching in FLIT-BLESS has three
potential disadvantages. First, it is not energy-optimal because every
flit needs to be a head-flit, i.e., the additional header-wires need to be
activated for every flit instead of only the first flit of a packet as in
baseline algorithms. Second, it can have a negative impact on packet
latency. The reason is that since every flit may take a different route
through the network, it is statistically more likely that one flit is de-
layed or takes a detour, thereby delaying the entire packet. Third, for
the same reason, flit-level switching tends to increase the receiver-
side buffering requirement as different flits may take different paths.

To mitigate the above disadvantages, we propose WORM-BLESS,
which is an optimization to FLIT-BLESS that combines BLESS with
ideas from wormhole routing. Ideally, only the first flit of each packet
should contain header information (head-flit) and all subsequent flits
should simply follow the preceding flit. In case a head-flit is de-
flected, the entire packet (=worm) would follow this head-flit and

would be deflected. With buffers, this pure form of wormhole routing
can be enabled using credit-based flow-control and is very efficient.
Without buffers, however, pure wormhole routing is impossible be-
cause the injection policy becomes unclear, and livelocks can occur.

• Injection Problem: In FLIT-BLESS, a processor can inject a
packet whenever at least one input port is free. If all flits of a
packet have to be routed in succession, this is no longer possible.
If an input port is free and a processor starts injecting a worm, it
could happen that in a subsequent cycle (while this packet injec-
tion is still going on), flits arrive on all input ports. In this case, the
router would be unable to send out all incoming flits, which in the
absence of buffers, must not happen. Say, in a 2D-Mesh, a core
starts injecting an 8-flit worm into the router at cycle T (because
not all of the input ports were busy). At cycle T + 3, new worms
arrive at all four input ports to be forwarded to other routers. Now,
at cycle T + 3, there are 5 worms (flits) that need to be routed to 4
output ports, which is not possible.

• Livelock Problem: If entire worms can be deflected, livelock can
occur because arbitration is performed only for head-flits. When a
worm arrives at a router, even if it is the oldest in the network, it
might not get a chance to arbitrate with other worms in other in-
put ports because other worms might already be transmitting their
body flits. In such a case, the oldest worm is deflected instead of
being prioritized. This can happen for the same worm in all routers
and as a result the worm might never reach its destination; livelock
ensues.

In WORM-BLESS, we solve these problems using worm trunca-
tion. As in baseline wormhole routing, each router maintains an al-
location of worms to output ports. Once the head-flit of a packet is
routed to a specific output port, this port is allocated to this worm
until the tail-flit of the worm passes the output port (see [12] for a
detailed description of wormhole routing). This allocation is accom-
plished by keeping a small table in the router that contains informa-
tion on which output port is allocated to which worm.

WORM-BLESS: Injection Policy: The injection policy remains
the same. A worm can be injected whenever in a cycle, not all 4
input ports are busy. In case new worms arrive on all 4 input ports
while the source is injecting a worm, the injected worm is truncated.
The second part of the worm can be injected as soon as one input port
becomes free. When a worm is truncated, the first flit of the truncated
worm’s second part becomes a new head-flit.

WORM-BLESS: Flit-Ranking: Flit-ranking remains unchanged
compared to FLIT-BLESS (see Table 1).

WORM-BLESS: Port-Prioritization: In WORM-BLESS, port-
prioritization is critical to avoid livelocks. In order to maintain the
key invariant that the oldest flit in the network always makes progress
towards its destination, we allow worms to be truncated in certain
cases. Table 2 (middle) shows the port-prioritization rules. The rules
distinguish between head-flits and non-head flits. For a head-flit, a
new output port must be allocated. For this purpose, productive ports
that are not currently allocated to any existing worms have highest
priority (Rule 1). If no such port exists, the next highest priority
are free ports that are productive, but are currently allocated to an
existing worm (Rule 2). In this case, the port is re-allocated to the
new worm. Effectively, this means that the existing worm (to which
that port had been allocated before) will be truncated. Notice that
only a higher-ranked head-flit can truncate an existing worm. If a
worm is truncated, the first flit of the worm’s second part (which has
not yet left the router) becomes a new head-flit; it will be allocated
a new output port once it is this flit’s turn to be assigned. Both parts
of the worm are then independently routed to the destination. In case
all productive directions are already occupied, a head-flit is assigned
a non-productive port, i.e., it is deflected (Rules 3 and 4). Finally, if
the flit is not a head-flit, then by definition, this flit’s worm is already

3

FLIT-BLESS: WORM-BLESS: WORM-BLESS with buffers:

if flit is head-flit then if flit is head-flit then
1: assign flit to productive port 1: assign flit to unallocated, productive port 1: assign flit to unallocated, productive port

if flit is mustSchedule then
2: assign flit to non-productive port 2: assign flit to allocated, productive port 2: assign flit to allocated, productive port
→ packet is deflected → another worm is truncated → another worm is truncated

3: assign flit to unallocated, non-productive port 3: assign flit to unallocated, non-productive port
→ packet is deflected → packet is deflected

4: assign flit to allocated, non-productive port 4: assign flit to allocated, non-productive port
→ another worm is truncated → another worm is truncated
→ packet is deflected → packet is deflected

else else
5: assign the flit to port that is allocated to its worm 5: buffer the flit→ packet is buffered

end if end if
else

6: assign the flit to port that is allocated to its worm
end if

Table 2: BLESS port-prioritization policy for bufferless FLIT-BLESS (left), bufferless WORM-BLESS (middle), and WORM-BLESS with buffers

(right). For a given flit, the router picks the output port that conforms to the highest priority according to the above table. Only free output ports are

considered, i.e., output ports that have not previously been assigned to higher-ranked flits in the same cycle. If two free output ports have the same

priority, the router picks the x-direction ahead of the y-direction.

allocated to a specific output port, to which this flit is sent (Rule 5).3

The key insight is that the combination of OF routing and port-
prioritization with truncation ensures that the oldest flit is always
routed to a productive direction. Therefore, the absence of livelocks
is guaranteed, because the oldest flit always makes progress towards
its destination. In our evaluation section, we show that because of its
reduction in header-flits, WORM-BLESS does indeed save energy
compared to FLIT-BLESS in many cases.

Additional Information Needed in the Router: To implement
truncation, the router needs to be able to create head flits out of body
flits at the time of truncation. For this, the router stores the packet
header information from the original head-flit of a worm in the ta-
ble that also maps output ports to allocated worms. Note that, the
stored header information is transmitted using the additional wires
dedicated for header transmission, as described in FLIT-BLESS.

3.4 BLESS with Buffers
Completely bufferless routing as described so far is the extreme

end of a continuum. In this section, we show how BLESS can also be
used at other points in this continuum to achieve different tradeoffs.
Specifically, although our evaluations, e.g. §7.2), show that not us-
ing any buffers has little impact on performance of real applications,
adding buffers to BLESS can nonetheless have benefits: It increases
throughput and decreases latency for high injection rates (§7.5).

Hence, if good performance at high injection rates is desired,
buffers can easily be integrated into BLESS. The basic principle
of deflection routing remains the same: no non-local (e.g., credit-
based) flow-control is required, arbitration is determined purely lo-
cally based on ranking and port-prioritization. The key benefit of
buffers in BLESS is to reduce the probability of misrouting, i.e. to
increase the likelihood that a worm/flit is routed to a productive out-
put port. If a productive port does not exist for a buffered flit, the flit
remains in the buffer until 1) the buffer is full in which case the flit
must be scheduled or 2) a productive port becomes available.

Compared to bufferless WORM-BLESS, the following changes
apply. The router maintains one bit, mustSchedule, per input port.
When the buffer associated to this input port becomes full, the bit
is set to true. It means that the oldest flit in this buffer is now
mustSchedule, i.e., it must be sent out in the next cycle in order
to make room for a new incoming flit that might arrive on that input
port. If a router did not send out all mustSchedule flits each cycle,
it could happen that it suddenly has to send out more flits than it has
output ports.

3Note that the allocated output port of a non-head-flit can never be blocked
(already assigned to another flit). If a higher-ranked flit is assigned to an
output port allocated to a different worm, that worm is truncated and the first
flit of the worm’s second part becomes a head-flit. Hence, once it is this flit’s
turn to be assigned, the head-flit port-prioritization rules apply to that flit.

WORM-BLESS with Buffers: Injection Policy: Remains the
same as in WORM-BLESS.

WORM-BLESS with Buffers: Flit-Ranking: The basic ranking
policy is adjusted in one critical way. Flits that are mustSchedule are
ranked higher than flits that are not mustSchedule. This is important
for preventing livelocks. Among mustSchedule flits and among flits
that not mustSchedule, the ranking is determined by OF.

WORM-BLESS with Buffers: Port-Prioritization: As shown in
Table 2 (right), for mustSchedule head-flits and non head-flits, port
prioritization rules remain the same (including possible truncations).
However, for head-flits that are not mustSchedule prioritization is
different: A flit is sent out (and the corresponding output port allo-
cated) only if it can be sent to an unallocated (by another worm),
productive direction. Otherwise, the flit is buffered (Rule 5). Hence,
only mustSchedule head-flits can truncate worms.

Livelocks: The absence of livelock is guaranteed. In any cycle,
at most InputPorts input ports (including the injection port) can
be mustSchedule. Hence, all mustSchedule flits can be sent out.
Furthermore, the oldest flit in the network is always guaranteed to
make progress to the destination: If it is mustSchedule, it can always
be sent to a productive direction (possibly by truncating an existing
worm with lower-ranked flits, see Table 2 (right)). If the oldest flit
is not mustSchedule, it is not deflected and waits for a productive
output port to free up.

Finally, note that BLESS with buffers can also be used in combi-
nation with multiple virtual channels [10].

4. REDUCTION OF ROUTER LATENCY
Bufferless routing eliminates input buffers and virtual channels

from the design of the on-chip network. The elimination of input
buffers and virtual channels not only reduces design complexity in
the router, but can also enable reduction in router latency.

Baseline router pipeline: Figure 1(a) shows the baseline router
pipeline of a state-of-the-art virtual channel router, as adapted from
Dally and Towles [12]. The baseline router we assume in this work is
similar to that used in [30] employs several features to reduce router
latency for each flit, including speculation [44, 39]. The pipeline
consists of three stages: 1) buffer write (BW) and for head flits route
computation (RC), 2) virtual channel allocation (VA) and switch al-
location (SA) done speculatively in parallel, and 3) switch traversal
(ST), followed by link traversal (LT). We refer the reader to Dally
and Towles [12] for more detailed descriptions of this baseline router
pipeline. Note that in our evaluations we assume an aggressive 2-
cycle latency for the baseline router pipeline as with careful design,
the pipeline can be modified to employ double speculation so that
switch traversal can be performed along with VA and SA.

BLESS router pipeline: In the baseline router, VA/SA stage is
needed to allocate virtual channels (VA) and to arbitrate between vir-

4

Router 1

Router 3

Router 2

(a) Speculative router pipeline (3 stages)

BW
RC

Router 1

Router 2

Router 3

STRC

RC

RC

ST

ST

Head
Flit

Flit
Body/ tail

VA
ST

STSABW

SA

(b) BLESS router pipeline (2 stages)

ST

LA LT

LA LT

LA LT

RC

RC ST LT

LT

LT

LT

LT

LT

RC ST LT

LT

(c) Reduced−latency BLESS router pipeline (1 stage)

Figure 1: Baseline and BLESS router pipelines

tual channels for physical output ports (SA). Since all virtual chan-
nels are eliminated in our design, this stage can be eliminated. In ad-
dition, BW can be eliminated since there are no buffers, but this likely
does not reduce latency because RC still needs to be performed in the
first stage (RC stage implements the bufferless routing and arbitration
algorithms described in the previous section). As a result, the base-
line BLESS router consists of 2 stages as shown in Figure 1(b). In our
main evaluations, we assume the BLESS router latency is 2 cycles.

Reduced-latency BLESS router pipeline: The latency of the
BLESS router can be further optimized by employing lookahead
techniques [17, 12] as shown in Figure 1(c). The basic idea is to have
enough information about a flit to travel to its destination one cycle
ahead of the flit itself on a separate, narrow link. The link traversal
of the lookahead (LA LT) is accomplished in parallel with the switch
traversal (ST) of the flit. As a result, while the flit itself traverses the
link, the next router performs route computation (RC) for the flit, us-
ing the lookahead information. The result of the route computation
is stored in the pipeline latches feeding the ST stage. When the flit it-
self arrives in the next cycle, using this information it directly enters
the ST stage. Hence, using lookahead-based routing, it takes a flit
only one stage (ST) to pass through the router pipeline. Figure 1(c)
depicts the lookahead pipeline stages as shaded in dark. With this
optimization, a BLESS router can have single-cycle latency, which
we assume in some of our evaluations.

This lookahead-based latency optimization for the BLESS router
is not speculative. Since, the bufferless router guarantees that a flit
will always routed after it arrives, lookahead routing performed in
the previous cycle never fails. In contrast, in a buffered router it is
possible that lookahead routing can fail, in which case actions should
be taken to detect the failure and recover [30].

We would like to note that eliminating virtual channels comes with
a disadvantage: different classes of traffic can no longer be accom-
modated easily in our bufferless routing technique because they can-
not be assigned different virtual channels. This is a shortcoming of
our existing design, which we intend to address in the future. Instead
of using virtual channels, our mechanism needs to use the routing
algorithm to distinguish between different classes of traffic. For ex-
ample, each packet can be augmented with its priority. Bufferless
routing algorithms can be designed to prioritize such packets in their
routing decisions: algorithms can be designed to minimize the deflec-
tions incurred by traffic classes that have high priority. In essence, to
incorporate different treatment of different traffic classes, the rout-
ing logic that makes deflection decisions needs to be made aware of
the class of each packet. Designing such algorithms, while a very
interesting research direction, is beyond the scope of this paper.

5. ADVANTAGES AND DISADVANTAGES
In this section, we provide a qualitative discussion of the advan-

tages and disadvantages of BLESS compared to traditional buffered
schemes. Quantitative comparisons follow in Section 7.

5.1 Advantages
No Buffers: Clearly, this is the key advantage of our approach be-

cause it helps reduce both complexity and, as we show in our evalu-
ation, energy consumption.

Purely Local and Simple Flow Control: Any buffered routing
scheme inherently requires some kind of communication-based flow
control mechanism or rate limitation in order to prevent the buffers
in the routers from overflowing. Flow control is simpler in bufferless
routing. A node safely injects a new packet into the network when at
least one incoming link from another node is free, which can be de-
tected locally without any need for communication between routers.

Simplicity and Router Latency Reduction: Buffered routing algo-
rithms employ virtual channels [10] to improve buffer performance
and flow control mechanisms (e.g. credit based flow control) to con-
trol buffer management in virtual channels. Since bufferless routing
eliminates buffers, there are no virtual channels and there is no need
to manage buffer allocation/deallocation. This reduces complexity in
the router and can enable router latency reductions (see Section 4).

Area saving: As we show in Section 7.7, removing buffers from
routers can result in significant area savings.

Absence of Deadlocks: Deflection-based bufferless routing is free
of deadlock. Since the number of input and output ports are the same,
every packet that enters a router is guaranteed to leave it.

Absence of Livelock: One of the potential challenges in buffer-
less routing is livelocks that could arise if a packet continuously gets
deflected. As shown in Section 3, the combination of oldest-first flit-
ranking and port-prioritization is guaranteed to prevent livelocks in
FLIT-BLESS, WORM-BLESS with and without buffers. In all cases,
the proof is based on the invariant that the oldest flit in the network
always makes forward progress.

Adaptivity: BLESS has the ability to be adaptive “on demand” to
a certain degree. When there is no congestion, BLESS routes pack-
ets along shortest paths. In congested areas, however, the packets
will be deflected away from local hotspots, which allows different
links to be utilized and packets to be routed around congested ar-
eas. As such, BLESS automatically provides a form of adaptivity
that buffered routing schemes must achieve using more sophisticated
and potentially complex means.

For the same reason, BLESS can cope well with temporary bursty
traffic. To a certain degree, the network itself (i.e., its links and
routers) acts as a temporary buffer. In buffered routing, if a traffic
burst occurs and many packets are sent to a router R, the buffers in
routers close to R will gradually fill up. In BLESS, the packets are
continuously deflected in the extended neighborhood of R, until the
burst completes and they can gradually reach R.

5.2 Disadvantages

Increased Latency and Reduced Bandwidth: The key downside of
bufferless routing is that it can increase average packet latency be-
cause deflected flits will take a longer path to the destination than
necessary. Also, bufferless routing effectively reduces the available
network bandwidth as all in-network packets always consume link
resources. Hence, saturation is reached at lower injection rates com-
pared to buffered routing. However, our evaluations show that for
the kinds of low and moderate injection rates commonly seen in on-
chip networks, the performance of BLESS is close to that of buffered
routing. For such application domains, the advantages of BLESS can
thus outweigh its disadvantages.

Increased Buffering at the Receiver: Since bufferless routing de-
flects individual flits, flits of a packet can arrive out-of-order and at
significantly different points in time at the receiver (i.e. destination
node). This likely increases the number of flits/packets that need to
be buffered at the receiver side compared to baseline wormhole rout-
ing.4 In addition, in-order delivery of packets requires buffering of
packets that arrive out of order, both in bufferless and buffered rout-
ing. The increased receiver-side buffering requirements of BLESS
4Note that wormhole routing still requires buffers at the receiver because mul-
tiple virtual channels can interleave the delivery of their flits into the receiver
and the receiver needs to buffer flits for different packets coming from each
virtual channel.

5

Network Configuration 1 (sparse) 4x4 network, 8 cores, 8 L2 cache banks, each node is either a core or an L2 cache bank

Network Configuration 2 (dense) 4x4 network, 16 cores, 16 L2 cache banks, each node is a core and an L2 cache bank

Network Configuration 3 (sparse) 8x8 network, 16 cores, 64 L2 cache banks, each node is an L2 cache bank and may be a core

Processor pipeline 2 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline

Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 64K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency, 32 MSHRs

L2 Caches total 16MB, 16-way set associative, 64-byte block size, 12-cycle latency, 16 MSHRs per bank
DRAM controllers (on-chip) 4 channels; FR-FCFS; 128-entry req. buffer and 64-entry write data buffer each, reads prioritized over writes, XOR mapping [15]

DRAM chip parameters Micron DDR2-800 [37], tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns; 8 banks, 2K-byte row-buffer per bank

Table 3: Baseline CMP and memory system configuration for application simulations

and the additional logic to reorder flits reduces the energy reductions
obtained by eliminating input buffers in routers. However, our evalu-
ations show that the energy reduction due to eliminated router buffers
outweighs the energy increase due to increased receiver-side buffers.

Header Transmission with Each Flit: FLIT-BLESS requires that
header information be transmitted with each flit because each flit of
a packet can follow a path that is different from another. This in-
troduces additional overhead. In our design, we increase the width
of the links to accommodate the additional header bits, which in-
creases energy consumption of links. However, our energy consump-
tion evaluation shows that energy reduction due to buffer elimination
outweighs this additional source of energy consumption.

6. EXPERIMENTAL METHODOLOGY
We evaluate the performance and network energy-efficiency of

bufferless routing techniques using a cycle-accurate interconnection
network simulator. The different versions of BLESS (both flit-level
and worm-based) routing is compared to three different baseline rout-
ing algorithms in terms of average/maximum packet delivery latency,
saturation throughput, buffering requirements at the receiver, and net-
work energy consumption: dimension-order routing (DO), an aggres-
sive implementation of minimal adaptive routing (MIN-AD) [3], and
a DO version of the ROMM algorithm (ROMM) [41].

6.1 Interconnection Network Model
The modeled network configuration is a two-dimensional mesh

topology of varying size.5 Each router has 5 input ports and 5 output
ports, including the injection ports. Router latency is 2 cycles; link
latency is 1 cycle. In our standard configuration, we assume that each
link is 128-bit wide and each data packet consists of 4 flits, each of
which is assumed to have 128 bits. Address packets are one flit long.
All packets are fixed length. We model the overhead due to head-flits
required by our mechanism. In the standard configuration, we con-
sider routers with 4 virtual channels [10] per physical input port for
the baseline algorithms. Each virtual channel is 4 flits deep.

6.2 Request Generation
We use a combination of real applications and synthetic traces to

compare BLESS with the baseline algorithms. The main evaluation
comparisons are conducted using SPEC benchmarks and desktop ap-
plications. Synthetic traces are primarily used for various sensitivity
analyses, as well as for comparing the different BLESS algorithms
among each other, with different buffer sizes.

Synthetic Traces: In the synthetic traces, each of the 8×8 routers
is associated with a processor and the destination address of a packet
is determined by the statistical process of the traffic pattern. We use
four different traffic patterns: uniform random (UR), transpose (TR),
mesh-tornado (TOR), and bit complement (BC) (see [45]). Each sim-
ulation experiment is run for 100,000 packet injections per processor.

Applications: We use multiprogrammed mixes of the SPEC
CPU2006 benchmarks6 and Windows Desktop applications (matlab,

5We choose the 2-D Mesh for our investigations because this topology is sim-
ple and has been implemented in the on-chip networks of several large-scale
chip multi-processor prototypes [53, 42, 24].
6410.bwaves, 416.gamess, and 434.zeusmp are not included because we were
not able to collect representative traces for them.

xml parser) for evaluation. Each benchmark was compiled using gcc
4.1.2 with -O3 optimizations and run for 150 million instructions
chosen from a representative execution phase [43]. Due to short-
comings in our infrastructure (which cannot accurately model paral-
lel applications), we do not simulate parallel applications, but we are
investigating this in current work.

Application Simulation Methodology: To model real applica-
tions, we connect our cycle-accurate interconnection network sim-
ulator with a cycle-accurate x86 simulator. The functional front-
end of the simulator is based on Pin [32] and iDNA [4]. We
model the on-chip network and the memory system in detail, faith-
fully capturing bandwidth limitations, contention, and enforcing
bank/port/channel/bus conflicts. Table 3 shows the major proces-
sor and memory system parameters. We model a static non-uniform
cache architecture (S-NUCA) [26] where lower order bits in the ad-
dress of the cache line determines which bank the cache line resides
in. We model all traffic due to instruction and load/store data requests
and replies. Note that our simulation infrastructure cycle-accurately
models stalls in the network and limited buffering capacity of net-
work packets within the processor (due to limited instruction win-
dow size, load-store queue size, and MSHRs [29]) and network in-
terface. Therefore, the system is self-throttling as real systems are: if
the buffers of a processor are full, the processor cannot inject more
packets into the network until the stall conditions are eliminated.
However, note that the processors we model are aggressive, which
penalizes BLESS compared to buffered algorithms. Each core can
support 32 outstanding L1 misses within the 128-entry instruction
window, which is significantly larger than in existing processors (e.g.,
Pentium-4, can support only 8 outstanding L1 misses [5]).

Network Configurations: We repeat all our evaluations in 3 net-
work configurations: 1) 4x4 network with 8 processors, 2) 4x4 net-
work with 16 processors, and 3) 8x8 network with 16 processors, as
shown in Table 3.

6.3 Network Energy Model
To evaluate energy consumption in the network, we use the energy

model provided by the Orion simulator [51], assuming 70nm tech-
nology and 2GHz router at 1.0 Vdd. Link length of adjacent nodes is
assumed to be 2.5mm.

We accurately model the energy consumption of additional hard-
ware required by BLESS. In particular, we model the energy con-
sumed by 1) additional buffers needed on the receiver side, 2) in-
creased link width to transmit header information (we conservatively
assume three extra bytes), and 3) the logic to reorder flits of individ-
ual packets in the receiver. We explicitly partition the network en-
ergy consumption into buffer energy, router energy and link energy
in all our results (including their dynamic as well as static compo-
nents). Buffer energy includes both the input buffers of routers and
the receiver-side buffers needed to reorder packets for in-order deliv-
ery (or re-assembly in flit-level BLESS). Note that even the baseline
DO and MIN-AD routing algorithms require receiver side buffering
1) because flits from the virtual channels arrive in an interleaved or-
der and 2) to support in-order packet delivery. Router energy includes
routing and arbitration energy, the latter of which we found to be neg-
ligible. Each of these can further be divided into static and dynamic
components. In the case of buffer energy, dynamic buffer energy is
consumed whenever a flit is written to or read from a buffer. Sta-

6

tic energy is dissipated because the many transistors constituting the
buffers are imperfect, leaking current even when they do not switch.

6.4 Application Evaluation Metrics
Our main performance metrics for the application evaluations are

energy consumption (taken over the entire execution of all appli-
cations) and system performance. Since we use multiprogrammed
workloads, we evaluate the performance of different algorithm using
two commonly used multiprogram performance metrics [13]. We
measure system throughput using Weighted-Speedup [49, 13]:

WeightedSpeedup =

i

IPCshared
i /IPCalone

i ,

where IPCalone
i and IPCshared

i are the IPC of application i when
running alone (without any interconnection network contention from
any other application) and when running with the other applica-
tions, respectively. We also measure thread turnaround time using
Hmean-Speedup [13], which balances fairness and throughput [33],
but since measured hmean- and weighted-speedup results are qual-
itatively very similar in all our measurements, we mainly present
weighted speedups for brevity. Finally, we measure fairness using the
unfairness index proposed in [40, 16]. This is the ratio between the
maximum and the minimum slowdown among all threads sharing the
network. That is, Slowdowni = CPIshared

i /CPIalone
i and the un-

fairness index is defined as maxi Slowdowni/minj Slowdownj .

7. EXPERIMENTAL EVALUATION
We start with a discussion of several case studies with varying ap-

plication mixes in §7.1. In §7.2, we present aggregate results over
all applications. §7.3–§7.6 present our results using synthetic traces.
Unless otherwise noted, our results for BLESS assume a router la-
tency of 2 cycles, i.e., without the optimization discussed in §4. In
some cases, we write FLIT-1 and FLIT-2 (WORM-1 and WORM-2)
to denote flit-based (or worm-based) BLESS with a router latency of
1 and 2, respectively. All network energy consumption results are
normalized to that of the baseline DO routing algorithm, unless oth-
erwise specified.

7.1 Application Evaluation – Case Studies
We distinguish between homogeneous and heterogeneous case

studies. In the homogeneous case, all applications running on the
different nodes are the same, whereas they are different in the hetero-
geneous case. In many of our evaluations, L2 cache banks are perfect
(i.e., bank miss latency is zero). We do this to evaluate BLESS under
the worst possible conditions for BLESS: perfect L2 caches increase
the pressure of the applications on the on-chip network. We also
present results with non-perfect L2 banks which show that BLESS
performs even better in this realistic scenario.

7.1.1 Homogeneous Case Studies
We classify applications into different categories (heavy, medium,

light), depending on how network-intensive they are, i.e., how much
stress they put on the interconnection network. The stress an ap-
plication puts on the network is proportional to its L1 cache miss
rate since each L1 miss needs to access the network to be satisfied
from an L2 bank. We pick one application from each group: mat-
lab (heavy, L1 MPKI (Misses per 1000 retired instructions): 78.4),
milc (medium, L1 MPKI: 32.4) and h264ref (light, L1 MPKI: 4.7)
respectively. Matlab is the most network-intensive application in our
suite. For each case, weighted speedup and normalized energy con-
sumption are shown in Figs. 2 and 3, respectively. Each case study is
conducted using the three network configurations shown in Table 3.

Performance: In all case studies and in all network configura-
tions, the performance degradation due to not using buffers is rela-
tively small. Several observations are in order:

• In the two sparser network configurations (Config 1 & 3: 4x4 with
8 processors and 8x8 with 16 processors), the maximum reduction
in weighted speedup between the best baseline (typically MIN-
AD) with buffers and the worst BLESS (WORM-2) is 0.5% (in
the case of Matlab on Config 1). In all other case studies, the per-
formance loss of BLESS compared to the best buffered algorithm
is even smaller.

• In the dense network configuration (Config 2: 4x4 with 16 apps),
the reduction in weighted (and similarly hmean) speed-up between
MIN-AD (again, the best baseline algorithm) and the worst BLESS
with router latency 2 (WORM-2) is 16.5% (Matlab), 4.6% (milc)
and 0.1% (h264ref). Thus, the worst-case performance degrada-
tion with BLESS occurs in most network-intensive benchmarks
with dense network configurations.

• If router latency of BLESS is reduced to 1 cycle (see Section 4),
BLESS sometimes significantly outperforms the best baseline al-
gorithm (by ∼10%). This is especially prevalent in the larger 8x8
network where router latency is more important for performance,
as shown in results for matlab and milc. In smaller networks, the
performance improvement due to reduced router latency is smaller.
In Config 1, for instance, the performance of FLIT-1 exceeds FLIT-
2 by 0.8% (Matlab), 0.9% (milc) and 0.02% (h264ref).

• FLIT-BLESS tends to achieve slightly better performance than
WORM-BLESS. This is primarily due to the more efficient alloca-
tion of flits to output ports: the fraction of productively-routed flits
is higher in FLIT-BLESS. In WORM-BLESS, if a header-flit is
deflected, all (or many) of this packet’s flits are deflected, whereas
in FLIT-BLESS, later flits may be routed in productive directions
thus reaching the destination more quickly.

It follows that using BLESS does not result in significant perfor-
mance degradation compared to the best previous baseline, especially
if the applications’ memory intensity is not very high (milc, h264ref)
or if the network configuration is sparse in terms of number of cores
(Config 1 and 3). Performance degradation due to lack of buffering
becomes noticeable only for very intense applications run on a dense
network where every node is a core. Even then, weighted speedup
reduces by at most 17.1% (leslie3d) over the best baseline.

The reason for BLESS’s high performance is twofold. First, the
injection rates of real applications are not high: in our workloads,
on average an L1 miss packet is injected into the network 11.6 times
every 1000 instructions. Second, and related to the first point, real
systems are self-throttling. If a long-latency memory request is not
satisfied, its core will block sooner or later, thereby not issuing any
further requests, which reduces the network’s injection rate.7

Network Energy: Fig. 3 shows the normalized energy consump-
tion of the different algorithms. For all three benchmarks and for
all network configurations, BLESS significantly reduces energy con-
sumption. While link and router energy is slightly higher in BLESS
due to deflections, buffer energy is reduced by almost an order of
magnitude, since only the receive port needs buffers. The energy con-
sumed by increased receiver-side buffering is significantly less than
the energy consumed by eliminated router-based input buffering. En-
ergy savings of WORM-2 over the best baseline in network configu-
ration 1 are 34.0% (Matlab), 39.8% (milc) and 45.0% (h264ref). Re-
sults for Config 3 are similar. In h264ref, WORM-2 is more energy-
efficient than FLIT-2 (45.0% vs. 38.3% energy reduction). This is
because WORM reduces the fraction of head-flits compared to FLIT,
where every flit needs to contain header information.

The energy savings of BLESS are smaller in the most network-
intensive case study (Matlab on Config 2). The reason is twofold:
1) because traffic intensity is relatively high in this case, many flits
are deflected to other routers, leading to an increase in both link and
router energy, 2) the performance degradation caused by BLESS re-

7Notice that we observe this self-throttling behavior even though we assume
a reasonably large, 128-entry instruction window size per core.

7

Figure 2: Homogeneous case studies–Weighted speedup: All applications are matlab (left), milc (middle), and h264ref (right).

Figure 3: Homogeneous case studies–Network energy: All applications are matlab (left), milc (middle), and h264ref (right).

Figure 4: Homogeneous case studies–Maximum buffering requirement (in flits) at the receiver: matlab (left), milc (middle), and h264ref (right).

sults in increased static buffer energy. However, BLESS still reduces
total NoC energy by 15.7% over the best baseline, MIN-AD.

Buffering Requirements at Receiver: BLESS increases buffer-
ing requirement at the receiver compared to the baseline because, due
to deflections, 1) each flit of a packet is more likely to arrive at differ-
ent points in time than the baseline wormhole routing (especially in
flit-level BLESS) and 2) the variance in delivery times of packets in-
creases, which increases buffering requirements to support in-order
delivery. Fig. 4 shows the maximum buffering requirement in flits
at any receiver for the three case studies. Notice that even though
the buffering requirement at the receiver is larger in BLESS com-
pared to the baseline algorithms, the energy results in Fig. 3 show
that in terms of overall network energy consumption, this increase
is overcome by the reduction in energy in the routers themselves.
Further, note that in virtually all cases (e.g. matlab on Config 3), the
receiver-side buffering requirement of WORM is less than FLIT. This
is expected since WORM routes most packets (81% on average) as
complete worms, reducing receiver-side buffering requirement. Fi-
nally, h264ref’s buffering requirement is higher than others due to the
processor-to-cache communication patterns that cause high conges-
tion, increasing the variance of packet delivery times using BLESS.

Impact of Memory Latency: The results shown in Figs. 2–4 as-
sume a memory configuration with perfect caches, i.e., every mem-
ory request to a cache in one of the routers is assumed to hit. As
mentioned above, we use this model since it puts maximum stress
on the interconnection network (and is therefore maximally chal-
lenging for BLESS). With realistic, non-perfect caches, the perfor-
mance degradation of BLESS compared to the baseline algorithms is
smaller. This is because the occurrence of cache misses adds DRAM
latency to the application’s execution time, which in turn reduces
the stress put on the on-chip cache-to-cache network. Fig. 5 shows
the most-intensive case study (Matlab) with realistic caches. Com-
pared to perfect caches, Matlab’s performance degradation caused
by BLESS significantly reduces (1.5% instead of 16.5% weighted
speedup reduction in the dense network configuration), whereas its
network energy reduction further increases (33.7% vs 15.7%). We
conclude that with realistic caches BLESS performs very similarly
to the best baseline algorithm with buffers, while reducing energy
consumption significantly.

7.1.2 Heterogeneous Case Studies
Fig. 6 shows an application mix consisting of the most network-

intensive applications in our suite. We also evaluated two application
mixes, each of which consists of a mix of intensive and non-intensive
applications. Fig. 7 shows the results for the more network-intensive
of these mixes.

• Similarly to the homogeneous case studies, there is only one ex-
periment in which BLESS causes a performance degradation of
more than 3% compared to the baseline. It is the case with all
memory-intensive applications running on the dense network con-
figuration 2. The reduction in weighted speedup in this case is
16.3% compared to MIN-AD routing. Reducing router latency
with BLESS largely improves performance in the larger network.

• BLESS reduces network energy considerably in all cases. In Con-
fig 1 & 3, energy reduction is between 20% and 39% in all work-
loads. In the dense Config 2, the reduction is between 10% (Mix
1) and 31% (Mix 2).

• Of particular interest in mixes with applications of different char-
acteristics is the question of fairness, i.e., whether all applications
experience an equal slowdown due to the contention in the net-
work. Figs. 6 and 7 (right) show that using BLESS does not sig-
nificantly increase unfairness compared to baseline. In most cases,
the UnfairnessIndex achieved by BLESS and baseline are within
a few percent. The only exception is Mix 1 run on the dense con-
figuration: in this case, the increase in unfairness due to BLESS is
about 18% due to a large number of deflections experienced by the
less network-intensive applications.

We conclude that BLESS is effective at handling mixes of different
applications efficiently and fairly.

7.2 Application Evaluation – Aggregate Results
Fig. 8 shows performance and normalized network energy of all 29

applications in the network configuration 1 and with perfect caches
(which puts additional stress on the network). The rightmost bars
show the geometric mean across all applications. It can be seen that
BLESS decreases average (worst-case) performance by only 0.5%
(3.2%), whereas it reduces average (worst-case) network energy con-
sumption by 39.4% (28.1%).

8

Figure 5: Homogeneous case study 1 (Matlab), with realistic, non-perfect caches that reduce the stress on the network: weighted speedup (left),

hmean speedup (middle), and network energy (right).

Figure 6: Heterogeneous Mix 1–matlab, mcf, libquantum, leslie3d: weighted speedup (left), network energy (middle), and unfairness (right).

Figure 7: Heterogeneous Mix 2–libquantum, h264ref, astar, omnetpp: Weighted speedup (left), network energy (middle), and unfairness (right) .

Figure 8: Performance and network energy of all applications in network configuration 1. Router latency for BLESS is 2. Weighted speedup (top)

and energy (bottom). Bars from left to right for each application correspond to Best Baseline Algorithm (generally MIN-AD), FLIT-2, and WORM-2.

Table 4 summarizes the average (across all 29 applications) and
worst-case performance and energy impact of BLESS on the sparse
network Config 1 and the dense network Config 2. For example, with
realistic L2 caches in Config 2, the average (worst-case) performance
degradation becomes very small, 0.65% (1.53%), whereas average
(worst-case) energy reduction increases to 42.5% (33.7%). We con-
clude that averaged over a very wide range of applications, BLESS
achieves significant energy savings at negligible loss in performance.

Network Config 1 Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

Network Config 2 Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -32.8% -14.0% -42.5% -33.7%

∆ System Performance -3.57% -17.1% -0.65% -1.53%

Table 4: Average and worst-case (in all cases either leslie3d or Matlab)

network energy and system performance of FLIT-BLESS vs. best previ-

ous buffered routing algorithm (generally MIN-AD): Config 1 (top) and

2 (bottom). Perfect caches (left) and realistic, non-perfect caches (right).

Router latency is 2 cycles.

7.3 Synthetic Traces – Traffic Patterns
As discussed, a key characteristic of real CMP systems running

real applications is that they are self-throttling, preventing the injec-
tion rates into the interconnection network from becoming very high
over an extended period of time. Synthetic traces do not have such a
self-throttling mechanism and it is therefore possible to study the be-
havior of routing algorithms at injection rates much higher than typ-
ically experienced in real networks. Hence, synthetic traces are used
to investigate the saturation points of different routing algorithms.

Fig.9 shows average (top row) and maximum (bottom row) packet
latency of BLESS algorithms compared to the best buffered baseline.
Several comments are in order. First, at low packet injection rates,
bufferless routing provides similar average packet latencies as the
baseline algorithms. For example, for the UR traffic pattern, buffer-
less routing increases the average packet latency by less than 10%
even with a large injection rate of 0.3. For maximum packet laten-
cies, we observe a similar behavior, albeit for slightly lower injection
rates. On the other hand, baseline routing algorithms with buffers can
clearly withstand higher injection rates than BLESS, i.e., buffered
networks achieve higher saturation throughput. This is because, at
very high network utilization, bufferless routing wastes significant
network bandwidth by causing too many deflections. Specifically,

9

Figure 9: Average latency (top) and maximum latency (bottom) as a function of injection rate. From left to right: a) UR, b) TR, c) TOR, d) BC.

Dashed lines are the best buffered baseline.

compared to the best baseline algorithm, the maximum sustainable
injection rate of the best BLESS algorithm is smaller by 35% (UR),
26% (TR), 29% (TOR), and 20% (BC). For traffic patterns with sig-
nificant contention (BC, TR), BLESS has relatively closer saturation
throughput to the best baseline than for the purely random, well-load-
balanced traffic pattern (UR). The reason is the inherent adaptivity of
BLESS: flits get deflected from congested areas, which can help in
circumventing hotspots. The results further show that:

1. For low injection rates, BLESS with 1-cycle router latency
achieves better latencies than buffered baselines.

2. For TR traffic, for instance, BLESS has smaller saturation
throughput than MIN-AD, but has much higher saturation through-
put than the non-adaptive dimension-order routing. This is because
BLESS provides adaptivity without requiring any explicit informa-
tion about congestion. BLESS performs in-between the non-adaptive
DO and the adaptive algorithms because it allows packets to avoid
congested paths by deflecting them toward other parts of the network.

Hence, BLESS routing achieves good performance and can reduce
congestion in on-chip networks if network utilization is not too high.

7.4 Synthetic Traces – Baseline Configurations
So far, we have studied the baseline algorithms in their standard

configuration. In Figure 10 (top), we investigate the performance
and network energy consumption of DO routing with varying buffer
sizes. The left figure shows how the maximum sustainable injection
rate drops significantly as the size of buffers in each router is reduced.
With a single two-flit deep virtual channel, only an injection rate of
0.1 flits/cycle is sustainable, which is significantly smaller than the
0.3 flits/cycle sustainable with BLESS (shown in Fig. 9).

Fig. 10 (top-right) shows energy normalized to that of BLESS. En-
ergy consumption of the baseline algorithm can be reduced some-
what by reducing buffer sizes compared to our standard configura-
tion. However, notice that even if we pick the energy-optimal buffer
configuration for the baseline, for each injection rate, energy sav-
ings would be significantly lower compared to BLESS. For example,
using the buffered DO routing scheme with one 2-flit deep VC per
input port consumes 10% more energy than BLESS while providing
significantly worse latency and saturation throughput (compare DO
in Fig. 10 (top-left) and WORM-2 in Fig. 9 (top-left)).

7.5 Synthetic Traces – BLESS with Buffers
As described, it is possible to use BLESS with buffers, too. Fig-

ure 10(bottom-left) shows that while the saturation throughput of
BLESS does increase with increasing buffer size, the marginal im-
provement is rather small. While pure bufferless BLESS sustains a
maximum injection rate of 0.3, BLESS with a single 2-flit-deep (4-
flit-deep) virtual channel achieves 0.33 (0.35), respectively. Beyond
this, performance increases no further.

Fig. 10(bottom-right) shows that the energy optimal buffer size of
BLESS changes with the injection rate. The figure also provides in-
sight into the behavior of BLESS by showing the breakdown of nor-

malized network energy for different injection rates. At low injec-
tion rates, BLESS eliminates the energy consumed by buffers with-
out significantly increasing the energy consumption in the links and
the crossbar (including arbiter and routing energy). As the injection
rate increases, BLESS causes an increase in link and crossbar energy
consumption compared to the baseline because congestion in the net-
work causes more deflections to happen and more routers and links
to be utilized by the deflected packets.

7.6 Synthetic Traces – BLESS Alternatives
So far, we have shown results only for Oldest-First BLESS (FLIT-

OF and WORM-OF). For the sake of completeness, Fig. 11 shows
that both FLIT-OF and WORM-OF consistently achieve the lowest
average latency compared to other arbitration policies discussed in
§3. This advantage of oldest-first is particularly pronounced for max-
imum latency. In both flit-level and worm-level BLESS, the maxi-
mum latency achieved by oldest-first is significantly lower than for
the other schemes. At injection rate 0.24, for instance, WORM-OF’s
maximum latency is less than half of the maximum latency achieved
by any other scheme. The figure also shows that OF achieves the
lowest average number of deflections per packet, which is important
since a low deflection rate implies higher energy efficiency. We con-
clude that OF arbitration policy outperforms alternative policies.

7.7 Effect on Buffer and Link Area
We express the area occupied by buffers in terms of flits using the

following first-order model:

BufferArea = (IBPR + RSBPR) · NumberOfRouters,

where IBPR and RSBPR are the number of input buffers and re-
ceiver side buffers per router, respectively. BLESS eliminates in-
put buffers per router while increasing receiver-side buffers. Based
on our simulations on Config 1 with all applications, we found that
BLESS increases the receiver-side maximum buffering requirement
over the buffered DO algorithm from 16 to 38 flits. However, BLESS
eliminates all input buffers (note that pipeline latches stay the same
between DO and BLESS). Consequently, we found that BLESS re-
duces the buffer area requirements by 60.4% compared to our DO
baseline. As buffers were shown to occupy 75% of the total on-chip
network area [22] in the TRIPS chip, this simple analysis suggests
that large area savings are possible with BLESS. BLESS does in-
crease the area occupied by links in order to accommodate header
information. Even with a conservative estimate of 3-byte increase
in our 16-byte links, the link area increases by 18.75% to a first or-
der. However, since link area is not a significant fraction of the NoC
area [22], we expect BLESS to provide significant area savings.

8. RELATED WORK
To our knowledge, this is the first work that proposes a wide vari-

ety of routing algorithms for bufferless routing in on-chip networks
and thoroughly evaluates the energy, application performance, la-
tency, throughput, and area characteristics of bufferless routing in on-

10

Figure 10: Impact of buffer size on performance and energy consumption of baseline (top row) and BLESS routing (bottom row) for UR traffic:

Average latency (left) and energy (right). For ease of comparison, all energy results are normalized to bufferless BLESS at injection rate 0.08 (shown

in leftmost bars in the right figure of bottom row).

Figure 11: Comparison of different BLESS algorithms. Flit-based (left

column) and worm-based algorithms (right column). In each case, from

top to bottom: average latency, maximum latency, and average number

of deflections per packet.

chip networks. This work is also the first to 1) describe how to take
advantage of eliminated buffers in NoCs to reduce router latency and
to simplify NoC design, 2) provide an application-level evaluation of
bufferless NoCs, and 3) combine deflection routing with wormhole
routing algorithms. This section briefly surveys related work.

Hot-potato and deflection routing in large scale systems: Hot-
potato routing was first proposed by Baran [2] for distributed com-
munication networks. Several massively parallel machines, such as
the HEP [46, 47], the Tera [1], and the Connection Machine [23]
have used deflection routing to connect different chips. These tech-
niques are not disclosed in detail and, to our knowledge, have not
been publicly evaluated in terms of energy consumption or perfor-
mance. Some of these deflection routing algorithms do not eliminate
buffers [48]. Moreover, their application was to large scale off-chip
networks with large path diversity and long link latencies rather than
on-chip networks with short link latencies. The Chaos router [28]
uses a form of deflection routing when a node is congested, how-
ever it still buffers packets in the router. Our main contributions
beyond these works are: 1) we propose specific, new algorithms
for bufferless routing in on-chip networks, 2) we provide thorough,
application-level energy and performance evaluations of bufferless
on-chip routing, which were not available previously, 3) we show
how in absence of router input buffers the router and network design
can be optimized for reduced latency and simplicity.

Theoretical studies of hot-potato routing: In the theory commu-
nity, there has been work studying algorithms and models for hot-
potato routing, e.g. [14]. Most of these algorithms are static, i.e., all
packets are assumed to be injected at time zero, and the analysis ex-
amines the time needed to deliver the packets. The dynamic analysis
in [8] does not investigate average performance or energy efficiency.

Deflection routing in on-chip networks: Several recent stud-
ies [38, 31, 19, 18] examined the use of bufferless deflection routing
in on-chip networks. [19, 18] require packet dropping when con-
gestion arises, a complexity that is not present in our techniques.
These previous studies mainly consist of evaluation of deflection
routing and packet dropping algorithms on the performance of syn-
thetic workloads. As such, they do not evaluate 1) the energy con-
sumption, routing latency, and area benefits of deflection routing, 2)
effect on real applications. In contrast, our work extends the state-of-
the-art in NoC deflection routing the following ways: 1) it provides
new routing algorithms to combine wormhole routing with deflection
routing, 2) it examines energy, performance, and router latency ben-
efits of bufferless routing, 3) it provides extensive evaluations with
real applications and a realistic system simulator that models the self-
throttling nature of CMP NoCs. The techniques proposed to reduce
deflections or enable dropping in [31, 19] are orthogonal to our de-
sign: BLESS can be combined with them to further improve perfor-
mance, at the expense of extra energy consumption.

Deflection routing in optical networks: Recently, deflection
routing has found popular use in optical transmission networks [52,
7]. Deflection routing reduces the need for optical buffering, which is
expensive. Optical networks have significantly different energy and
performance characteristics than the electrical networks we examine.

Packet dropping: Flow control techniques have been proposed to
reduce buffer sizes by dropping packets/flits if not enough buffer slots
are available [12, 19, 18]. These techniques require retransmission of
packets/flits by the source node. As such, they are likely to be more
complex than bufferless routing. However, the concept of packet/flit
dropping can be used in a bufferless network to reduce congestion
when too many packets are being deflected.

Reducing buffering requirements in on-chip networks: Tech-
niques have been proposed to reduce buffering in routers by pre-
configuring routes [36]. These techniques usually add extra com-
plexity to the router pipeline whereas bufferless routing reduces the
complexity in the router pipeline. Circuit switching [12] can also
remove/reduce buffering requirements but it comes at the cost of
connection setup/teardown overheads that are not present in our pro-
posal. Recently-proposed elastic-buffer flow control mechanism [35]
uses the pipeline flip flops in router channels for packet storage, ef-
fectively using channels as distributed FIFO queues. As such, this
mechanism eliminates input virtual channels and reduces router com-
plexity. However, since it does not employ deflection routing, it re-

11

quires multiple physical channels to avoid deadlock. The benefits of
both BLESS and elastic-buffer flow control can be increased by com-
bining the algorithms proposed in this paper with elastic buffering.

Adaptive Routing: Bufferless routing provides some of the bene-
fits of adaptive routing by naturally routing packets around congested
areas in the network. We compare BLESS in terms of energy and per-
formance with two adaptive routing algorithms [3, 41] and show that
they perform similarly on real applications.

9. CONCLUSIONS & FUTURE WORK
We make the case that bufferless routing could be used beneficially

in on-chip interconnection networks. We show that, by getting rid
of router input/output buffers, significant energy reductions can be
achieved at modest performance loss compared to buffered routing
algorithms, as long as the volume of injected traffic is not extremely
high, which is the case with most real applications. Bufferless rout-
ing can also enable lower router latency, which can result in increased
performance. We believe that bufferless routing algorithms, which
also simplify network and router design by eliminating complex
buffer management/allocation techniques, could thus be the method
of choice for interconnection networks that are known to run at
below-peak throughput most of the time. Our bufferless network de-
sign lacks many functionalities that have been developed for buffered
networks, including support for starvation freedom/avoidance, QoS
and different traffic service classes, fault tolerance in the presence of
faulty links/routers, congestion awareness [21], and energy manage-
ment. Our future work will focus on incorporating such support into
the design of bufferless routing algorithms.

ACKNOWLEDGEMENTS
We thank Xuehai Qian for his help in bringing up the network energy
modeling infrastructure. We thank Reetuparna Das, Eiman Ebrahimi,
Boris Grot, Jim Larus, Kevin Lepak, Burton Smith, and the anony-
mous reviewers for their comments on earlier drafts of this paper.

REFERENCES
[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,

and B. Smith. The Tera computer system. In ICS, 1990.
[2] P. Baran. On distributed communications networks. IEEE Trans. on

Communications, Mar. 1964.
[3] P. E. Berman, L. Gravano, G. D. Pifarre, and J. L. C. Sanz. Adaptive

deadlock- and livelock-free routing with all minimal paths in torus
networks. IEEE TPDS, 12(5), 1994.

[4] S. Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, R. Murray,
M. Drinic, D. Mihocka, and J. Chau. Framework for instruction-level
tracing and analysis of programs. In VEE, 2006.

[5] D. Boggs et al. The microarchitecture of the Intel Pentium 4 processor
on 90nm technology. Intel Technology Journal, 8(1), Feb. 2004.

[6] S. Borkar. Thousand core chips: A technology perspective. In DAC,
2007.

[7] S. Bregni and A. Pattavina. Performance evaluation of deflection
routing in optical ip packet-switched networks. Cluster Computing, 7,
2004.

[8] C. Busch, M. Herlihy, and R. Wattenhofer. Routing without flow
control. In SPAA, 2001.

[9] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. In MICRO, 2006.

[10] W. J. Dally. Virtual-channel flow control. In ISCA-17, 1990.
[11] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed

Computing, 1:187–196, 1986.
[12] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.
[13] S. Eyerman and L. Eeckhout. System-level performance metrics for

multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.
[14] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In

STOC, 1992.
[15] J. M. Frailong, W. Jalby, and J. Lenfant. XOR-Schemes: A flexible

data organization in parallel memories. In ICPP, 1985.
[16] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in

switch on event multithreading. In MICRO-39, 2006.
[17] M. Galles. Spider: A high-speed network interconnect. IEEE Micro,

17(1):34–39, 2008.

[18] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. A bufferless
switching technique for NoCs. In Wina, 2008.

[19] C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. Reducing packet
dropping in a bufferless NoC. In Euro-Par, 2008.

[20] M. K. Gowan, L. Biro, and D. Jackson. Power considerations in the
design of the Alpha 21264 microprocessor. In DAC, 1998.

[21] P. Gratz, B. Grot, and S. W. Keckler. Regional congestion awareness
for load balance in networks-on-chip. In HPCA-14, 2008.

[22] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burger.
Implementation and evaluation of on-chip network architectures. In
ICCD, 2006.

[23] W. D. Hillis. The Connection Machine. MIT Press, 1989.
[24] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-ghz

mesh interconnect for a teraflops processor. IEEE Micro, 27(5), 2007.
[25] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti. Circuit-switched

coherence. In NOCS, 2008.
[26] C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache

structure for wire-dominated on-chip caches. In ASPLOS-X, 2002.
[27] J. Kim, J. D. Balfour, and W. J. Dally. Flattened butterfly topology for

on-chip networks. In MICRO, 2007.
[28] S. Konstantinidou and L. Snyder. Chaos router: architecture and

performance. In ISCA, 1991.
[29] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In

ISCA-8, 1981.
[30] A. Kumar, L.-S. Peh, and N. K. Jha. Token flow control. In MICRO-41,

2008.
[31] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip networks using

deflection routing. In GLSVLSI, 2006.
[32] C.-K. Luk et al. Pin: Building customized program analysis tools with

dynamic instrumentation. In PLDI, 2005.
[33] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and

fairness in SMT processors. In ISPASS, 2001.
[34] M. M. K. Martin et al. Timestamp snooping: An approach for

extending smps. In ASPLOS-IX, 2000.
[35] G. Michelogiannakis, J. Balfour, and W. J. Dally. Elastic-buffer flow

control for on-chip networks. In HPCA-15, 2009.
[36] G. Michelogiannakis, D. Pnevmatikatos, and M. Katevenis.

Approaching ideal NoC latency with pre-configured routes. In NOCS,
2007.

[37] Micron. 1Gb DDR2 SDRAM Component: MT47H128M8HQ-25, May
2007.
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pdf.

[38] M. Millberg, R. Nilsson, R. Thid, and A. Jantsch. Guaranteed
bandwidth using looped containers in temporally disjoint networks
within the Nostrum network on chip. In DATE, 2004.

[39] R. Mullins, A. West, and S. Moore. Low-latency virtual-channel
routers for on-chip networks. In ISCA-31, 2004.

[40] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In MICRO-40, 2007.

[41] T. Nesson and S. L. Johnsson. ROMM: Routing on mesh and torus
networks. In SPAA, 1995.

[42] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Keckler, and
L.-S. Peh. Research challenges for on-chip interconnection networks.
IEEE Micro, 27(5), 2007.

[43] H. Patil et al. Pinpointing representative portions of large Intel Itanium
programs with dynamic instrumentation. In MICRO-37, 2004.

[44] L.-S. Peh and W. J. Dally. A delay model and speculative architecture
for pipelined routers. In HPCA-7, 2001.

[45] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles. GOAL: A
load-balanced adaptive routing algorithm for torus networks. In ISCA,
2003.

[46] B. J. Smith. A pipelined shared resource MIMD computer. In ICPP,
1978.

[47] B. J. Smith. Architecture and applications of the HEP multiprocessor
computer system. In Proc. of SPIE, 1981.

[48] B. J. Smith, Apr. 2008. Personal communication.
[49] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a

simultaneous mutlithreading processor. In ASPLOS-IX, 2000.
[50] M. B. Taylor et al. Evaluation of the Raw microprocessor: An

exposed-wire-delay architecture for ILP and streams. In ISCA-31,
2004.

[51] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection networks. In MICRO,
2002.

[52] X. Wang, A. Morikawa, and T. Aoyama. Burst optical deflection
routing protocol for wavelength routing WDM networks. In SPIE/IEEE
Opticom, 2004.

[53] D. Wentzlaff et al. On-chip interconnection architecture of the Tile
processor. IEEE Micro, 27(5), 2007.

12

