
15-740/18-740
Computer Architecture

Lecture 5: Precise Exceptions

Prof. Onur Mutlu
Carnegie Mellon University

Last Time …

2

Performance Metrics
Amdahl’s Law
Single-cycle, multi-cycle machines
Pipelining
Stalls
Dependencies

Control dependency stall: what to fetch next

Solution: predict which instruction comes next
What if prediction is wrong?

Another solution: hardware-based fine-grained multithreading
Can tolerate both data and control dependencies
Read: James Thornton, “Parallel operation in the Control Data
6600,” AFIPS 1964.
Read: Burton Smith, “A pipelined, shared resource MIMD
computer,” ICPP 1978.

Issues in Pipelining: Increased CPI

3

BEQ R1, R2, TARGET F D E W
F F F D E W

Issues in Pipelining: Increased CPI
Resource Contention Stall

What if two concurrent operations need the same resource?

Examples:
Instruction fetch and data fetch both need memory. Solution?
Register read and register write both need the register file
A store instruction and a load instruction both need to access
memory. Solution?

4

F D E W
F D E W

F F D E W

LD R1 R2(4)
ADD R2 R1, R5
ADD R6 R3, R4

Issues in Pipelining: Multi-Cycle Execute
Instructions can take different number of cycles in
EXECUTE stage

Integer ADD versus FP MULtiply

What is wrong with this picture?
What if FMUL incurs an exception?
Sequential semantics of the ISA NOT preserved!

5

F D E W
F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W
F D E W

F D E W
F D E W

FMUL R4 R5, R6
ADD R3 R5, R6

F D E WE E E E E E E

Handling Exceptions in Pipelining
Exceptions versus interrupts
Cause

Exceptions: internal to the running thread
Interrupts: external to the running thread

When to Handle
Exceptions: when detected (and known to be non-speculative)
Interrupts: when convenient

Except for very high priority ones
Power failure
Machine check

Priority: process (exception), depends (interrupt)
Handling Context: process (exception), system (interrupt)

6

Precise Exceptions/Interrupts
The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

7

Ensuring Precise Exceptions in Pipelining
Idea: Make each operation take the same amount of time

Downside
What about memory operations?
Each functional unit takes 500 cycles?

8

F D E W
F D E WE E E E E E E

F D E W
F D E W

F D E W
F D E W

F D E W

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

E E E E E E E
E E E E E E E

FMUL R3 R1, R2
ADD R4 R1, R2

Solutions
Reorder buffer

History buffer

Future register file

Checkpointing

Reading
Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors” IEEE Trans on Computers 1988 and ISCA 1985.
Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

9

Solution I: Reorder Buffer (ROB)
Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state
When instruction is decoded it reserves an entry in the ROB
When instruction completes, it writes result into ROB entry
When instruction oldest in ROB, its result moved to reg. file
or memory

10

Register
File

Func Unit

Func Unit

Func Unit

Reorder
Buffer

Instruction
Cache

Reorder Buffer: Independent Operations
Results first written to ROB, then to register file at commit
time

What if a later operation needs a value in the reorder
buffer?

Read reorder buffer in parallel with the register file. How?

11

F D E W
F D E RE E E E E E E

F D E W
F D E R

F D E R
F D E R

F D E RE E E E E E E

W
R

R
W

W
W

W

Reorder Buffer: How to Access?
A register value can be in the register file, reorder buffer,
(or bypass paths)

12

Register
File

Func Unit

Func Unit

Func UnitReorder
Buffer

Instruction
Cache

bypass path

Content
Addressable
Memory
(searched with
register ID)

Simplifying Reorder Buffer Access
Idea: Use indirection
Access register file first

If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register
Mapping of the register to a ROB entry

Access reorder buffer next

What is in a reorder buffer entry?

Can it be simplified further?

13

V DestRegID DestRegVal StoreAddr StoreData BranchTarget PC/IP Control/valid bits

What is Wrong with This Picture?

What is R4’s value at the end?
The first FMUL’s result
Output dependency not respected

14

F D E W
F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W
F D E W

F D E W
F D E W

FMUL R2 R5, R6
ADD R4 R5, R6

F D E WE E E E E E E

Register Renaming with a Reorder Buffer
Output and anti dependencies are not true dependencies

WHY? The same register refers to values that have nothing to
do with each other
They exist due to lack of register ID’s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’s value

Register ID ROB entry ID
Architectural register ID Physical register ID
After renaming, ROB entry ID used to refer to the register

This eliminates anti- and output- dependencies
Gives the illusion that there are a large number of registers

15

Solution II: History Buffer (HB)
Idea: Update architectural state when instruction
completes, but UNDO UPDATES when an exception occurs

When instruction is decoded, it reserves an HB entry
When the instruction completes, it stores the old value of
its destination in the HB
When instruction is oldest and no exceptions/interrupts, the
HB entry discarded
When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

16

History Buffer

Advantage:
Register file contains up-to-date values. History buffer access
not on critical path

Disadvantage:
Need to read the old value of the destination
What about stores?

17

Register
File

Func Unit

Func Unit

Func Unit

History
Buffer

Instruction
Cache

Used only on exceptions

Solution III: Future File (FF)
Idea: Keep two register files:

Arch reg file: Updated in program order for precise exceptions
Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

Future file is used for fast access to latest register values

Architectural file is used for recovery on exceptions

18

Future File

Advantage
No sequential scanning of history buffer: Upon exception,
simply copy arch file to future file
No need for extra read of destination value

Disadvantage
Multiple register files + reorder buffer

19

Future
File

Func Unit

Func Unit

Func Unit

Arch.
File

Instruction
Cache

Used only on exceptions

ROB

VData or Tag

Checkpointing
Idea: Periodically checkpoint the register file state. When
exception/interrupt occurs, go back to the most recent
checkpoint and re-execute instructions one by one to re-
generate exception.

State guaranteed to be precise only at checkpoints.

Advantage:
Allows for aggressive execution between checkpoints
Per-instruction reorder buffer is not needed

Disadvantage:
Interrupt latency depends on distance from checkpoint

Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

20

Summary: Precise Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

Recovers architectural state (register file, IP, and memory)
Flushes all younger instructions in the pipeline
Saves IP and registers (as specified by the ISA)
Redirects the fetch engine to the exception handling routine

Vectored exceptions

21

Pipelining Issues: Branch Mispredictions
A branch misprediction resembles an “exception”

Except it is not visible to software

What about branch misprediction recovery?
Similar to exception handling except can be initiated before
the branch is the oldest instruction
All three state recovery methods can be used

Difference between exceptions and branch mispredictions?
Branch mispredictions more common: need fast recovery

22

Pipelining Issues: Stores
Handling out-of-order completion of memory operations

UNDOing a memory write more difficult than UNDOing a
register write. Why?
One idea: Keep store address/data in reorder buffer

How does a load instruction find its data?

Store/write buffer: Similar to reorder buffer, but used only for
store instructions

Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry
When store address and data become available: Record in store
buffer entry
When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

23

