
15-740/18-740
Computer Architecture
Lecture 3: Performance

Prof. Onur Mutlu
Carnegie Mellon University

Last Time …
Some microarchitecture ideas

Part of microarchitecture vs. ISA
Some ISA level tradeoffs

Semantic gap
Simple vs. complex instructions -- RISC vs. CISC
Instruction length
Uniform decode
Number of registers

2

Review: ISA-level Tradeoffs: Number of Registers

Affects:
Number of bits used for encoding register address
Number of values kept in fast storage (register file)
(uarch) Size, access time, power consumption of register file

Large number of registers:
+ Enables better register allocation (and optimizations) by

compiler fewer saves/restores
-- Larger instruction size
-- Larger register file size
-- (Superscalar processors) More complex dependency check

logic

3

ISA-level Tradeoffs: Addressing Modes
Addressing mode specifies how to obtain an operand of an
instruction

Register
Immediate
Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, …)

More modes:
+ help better support programming constructs (arrays, pointer-

based accesses)
-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design
Read Wulf, “Compilers and Computer Architecture”

4

x86 vs. Alpha Instruction Formats
x86:

Alpha:

5

6

x86

register

absolute

register
indirect

register +
displacement

x86

7

indexed
(base +
index)

scaled
(base +
index*4)

Other ISA-level Tradeoffs
Load/store vs. Memory/Memory
Condition codes vs. condition registers vs. compare&test
Hardware interlocks vs. software-guaranteed interlocking
VLIW vs. single instruction
0, 1, 2, 3 address machines
Precise vs. imprecise exceptions
Virtual memory vs. not
Aligned vs. unaligned access
Supported data types
Software vs. hardware managed page fault handling
Granularity of atomicity
Cache coherence (hardware vs. software)
…

8

Programmer vs. (Micro)architect
Many ISA features designed to aid programmers
But, complicate the hardware designer’s job

Virtual memory
vs. overlay programming
Should the programmer be concerned about the size of code
blocks?

Unaligned memory access
Compile/programmer needs to align data

Transactional memory?

9

Transactional Memory

10

enqueue (Q, v) {
Node_t node = malloc(…);
node->val = v;
node->next = NULL;
acquire(lock);
if (Q->tail)
Q->tail->next = node;

else
Q->head = node;

Q->tail = node;
release(lock);

}

begin-transaction

…
enqueue (Q, v); //no locks
…
end-transaction

THREAD 1 THREAD 2

enqueue (Q, v) {
Node_t node = malloc(…);
node->val = v;
node->next = NULL;
acquire(lock);
if (Q->tail)
Q->tail->next = node;

else
Q->head = node;

Q->tail = node;
release(lock);

}

enqueue (Q, v) {
Node_t node = malloc(…);
node->val = v;
node->next = NULL;
acquire(lock);
if (Q->tail)
Q->tail->next = node;

else
Q->head = node;

release(lock);
Q->tail = node;

}

enqueue (Q, v) {
Node_t node = malloc(…);
node->val = v;
node->next = NULL;
acquire(lock);
if (Q->tail)
Q->tail->next = node;

else
Q->head = node;

release(lock);
Q->tail = node;

}

begin-transaction

…
enqueue (Q, v); //no locks
…
end-transaction

Transactional Memory
A transaction is executed atomically: ALL or NONE

If there is a data conflict between two transactions, only
one of them completes; the other is rolled back

Both write to the same location
One reads from the location another writes

11

ISA-level Tradeoff: Supporting TM
Still under research
Pros:

Could make programming with threads easier
Could improve parallel program performance vs. locks. Why?

Cons:
What if it does not pan out?
All future microarchitectures might have to support the new
instructions (for backward compatibility reasons)
Complexity?

How does the architect decide whether or not to support
TM in the ISA? (How to evaluate the whole stack)

12

ISA-level Tradeoffs: Instruction Pointer
Do we need an instruction pointer in the ISA?

Yes: Control-driven, sequential execution
An instruction is executed when the IP points to it
IP automatically changes sequentially (except control flow
instructions)

No: Data-driven, parallel execution
An instruction is executed when all its operand values are
available (data flow)

Tradeoffs: MANY high-level ones
Ease of programming (for average programmers)?
Ease of compilation?
Performance: Extraction of parallelism?
Hardware complexity?

13

The Von-Neumann Model

14

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Von-Neumann Model
Stored program computer (instructions in memory)
One instruction at a time
Sequential execution
Unified memory

The interpretation of a stored value depends on the control
signals

All major ISAs today use this model
Underneath (at uarch level), the execution model is very
different

Multiple instructions at a time
Out-of-order execution
Separate instruction and data caches

15

Fundamentals of Uarch Performance Tradeoffs

16

Instruction
Supply

Data Path
(Functional

Units)

Data
Supply

- Zero-cycle latency
(no cache miss)

- No branch mispredicts

- No fetch breaks

- Perfect data flow
(reg/memory dependencies)

- Zero-cycle interconnect
(operand communication)

- Enough functional units

- Zero latency compute?

- Zero-cycle latency

- Infinite capacity

- Zero cost

We will examine all these throughout the course (especially data supply)

How to Evaluate Performance Tradeoffs

17

Algorithm
Program
ISA
Compiler

ISA
Microarchitecture

Microarchitecture
Logic design
Circuit implementation
Technology

cycles
instruction

time
cycleXX# instructions

program

time
program

=

=Execution time

Improving Performance
Reducing instructions/program

Reducing cycles/instruction (CPI)

Reducing time/cycle (clock period)

18

Improving Performance (Reducing Exec Time)

Reducing instructions/program
More efficient algorithms and programs
Better ISA?

Reducing cycles/instruction (CPI)
Better microarchitecture design

Execute multiple instructions at the same time
Reduce latency of instructions (1-cycle vs. 100-cycle memory
access)

Reducing time/cycle (clock period)
Technology scaling
Pipelining

19

Improving Performance: Semantic Gap
Reducing instructions/program

Complex instructions: small code size (+)
Simple instructions: large code size (--)

Reducing cycles/instruction (CPI)
Complex instructions: (can) take more cycles to execute (--)

REP MOVS
How about ADD with condition code setting?

Simple instructions: (can) take fewer cycles to execute (+)

Reducing time/cycle (clock period)
Does instruction complexity affect this?

It depends

20

