
15-740/18-740
Computer Architecture

Lecture 24: Control Flow

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

  Midterm II
  November 22

  Project Poster Session
  December 10 (tentative)

2

Last 3 Lectures: Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

3

Last Lecture
  Dependency check logic
  Renaming
  Wakeup, selection, data forwarding (bypass)
  Retirement and resource deallocation

  Reducing complexity
  Block structured ISA
  Clustering

4

Readings
  Required:

  McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993.
  Carmean and Sprangle, “Increasing Processor Performance by

Implementing Deeper Pipelines,” ISCA 2002.

  Recommended:
  Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work,” ISCA 1998.
  Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch

Prediction,” ISCA 1992.
  Jouppi and Wall, “Available instruction-level parallelism for superscalar and

superpipelined machines,” ASPLOS 1989.
  Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution

of Complex Control-Flow Graphs Based on Frequently Executed Paths,”
MICRO 2006.

  Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
5

The Branch Problem
  Control flow instructions (branches) are frequent

  15-25% of all instructions

  Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor
  N cycles: (minimum) branch resolution latency
  Stalling on a branch wastes instruction processing bandwidth

(i.e. reduces IPC)
  N x IW instruction slots are wasted

  How do we keep the pipeline full after a branch?
  Problem: Need to determine the next fetch address when

the branch is fetched (to avoid a pipeline bubble)

6

The Branch Problem
  Assume a 5-wide superscalar pipeline with 20-cycle branch resolution

latency

  How long does it take to fetch 500 instructions?
  Assume no fetch breaks and 1 out of 5 instructions is a branch
  100% accuracy

  100 cycles (all instructions fetched on the correct path)
  No wasted work

  99% accuracy
  100 (correct path) + 20 (wrong path) = 120 cycles
  20% extra instructions fetched

  98% accuracy
  100 (correct path) + 20 * 2 (wrong path) = 140 cycles
  40% extra instructions fetched

  95% accuracy
  100 (correct path) + 20 * 5 (wrong path) = 200 cycles
  100% extra instructions fetched

7

Branch Types
Type Direction at

fetch time
Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

8

Different branch types can be handled differently

Approaches to Conditional Branch Handling
  Branch prediction

  Static
  Dynamic

  Eliminating branches
I. Predicated execution

  Static
  Dynamic
  HW/SW Cooperative

II. Predicate combining (and condition registers)

  Multi-path execution
  Delayed branching (branch delay slot)
  Fine-grained multithreading

9

Predicate Combining

  Complex predicates are converted into multiple branches
  if ((a == b) && (c < d) && (a > 5000)) { … }

  3 conditional branches

  Problem: This increases the number of control
dependencies

  Idea: Combine predicate operations to feed a single branch
instruction
  Predicates stored and operated on using condition registers
  A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls
-- Possibly unnecessary work

 -- If the first predicate is false, no need to compute other predicates
  Condition registers exist in IBM RS6000 and the POWER architecture

10

Delayed Branching (I)
  Change the semantics of a branch instruction

  Branch after N instructions
  Branch after N cycles

  Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

  Problem: How do you find instructions to fill the delay
slots?
  Branch must be independent of delay slot instructions

  Unconditional branch: Easier to find instructions to fill the delay slot
  Conditional branch: Condition computation should not depend on

instructions in delay slots  difficult to fill the delay slot
11

Delayed Branching (II)

12

A
B
C
BC X
D
E
F

F E

A
A B
B C

C BC
BC

G X:
--

A

B

C
BC X

D
E
F
G X:

F E

A
A C
C BC

BC B
B G

-- G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)
  Delayed branch with squashing

  In SPARC
  If the branch falls through (not taken), the delay slot

instruction is not executed
  Why could this help?

13

A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A

Delayed Branching (IV)
  Advantages:

 + Keeps the pipeline full with useful instructions assuming
 1. Number of delay slots == number of instructions to keep the

pipeline full before the branch resolves
 2. All delay slots can be filled with useful instructions

  Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)
 1. Number of delay slots increases with pipeline depth, issue width,

instruction window size.
 2. Number of delay slots should be variable with OoO

 execution. Why?
 -- Ties ISA semantics to implementation
 -- SPARC, MIPS, HP-PA: 1 delay slot
 -- What if pipeline implementation changes with the next design?

14

Fine-Grained Multithreading
  Idea: Hardware has multiple thread contexts. Each cycle,

fetch engine fetches from a different thread.
  By the time the fetched branch resolves, there is no need to

fetch another instruction from the same thread
  Branch resolution latency overlapped with execution of other

threads’ instructions

+ No logic needed for branch prediction,
 (also for dependency checking)

-- Single thread performance suffers
-- Does not overlap latency if not enough
 threads to cover the whole pipeline
-- Extra logic for keeping thread contexts

15

16

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3 B1

D

E

F

A B1 A B1 A D B1 A D E B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B3

What to fetch next? Fetch from the correct target

  Processors are pipelined to increase concurrency
  How do we keep the pipeline full in the presence of branches?

  Guess the next instruction when a branch is fetched
  Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction
  Idea: Predict the next fetch address (to be used in the next

cycle) when the branch is fetched

  Requires three things to be predicted:
  Whether the fetched instruction is a branch
  Conditional branch direction
  Branch target address (if taken)

  Target addresses remain the same for conditional direct
branches across dynamic instances
  Idea: Cache the target address from previous instance
  Called Branch Target Buffer (BTB) or Branch Target Address

Cache

17

Branch Target Buffer
  Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage
  Updated only by taken branches
  If BTB hit and the instruction is a predicted-taken branch

  target from the BTB (assuming hit) is used as fetch address in the next cycle
  If BTB miss or the instruction is a predicted-not-taken branch

  PC+N is used as the next fetch address in the next cycle

18

ICACHE

PC
k

entry PC predicted
 target

=

hit? target

BTB

Branch Target Buffer in Fetch Stage

19

20

target address

A Frontend with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current branch

Direction Prediction
  Compile time (static)

  Always not taken
  Always taken
  BTFN (Backward taken, forward not taken)
  Profile based (likely direction)
  Program analysis based (likely direction)

  Run time (dynamic)
  Last time (single-bit)
  Two-bit counter based
  Two-level (global vs. local)
  Hybrid

21

Static Branch Prediction (I)
  Always not-taken

  Simple to implement: no need for BTB, no direction prediction
  Low accuracy: ~40%
  Compiler can layout code such that the likely path is the “not-

taken” path: Good for wide fetch as well!

  Always taken
  No direction prediction
  Better accuracy: ~60%

  Backward branches (i.e. loop branches) are usually taken
  Backward branch: target address lower than branch PC

  Backward taken, forward not taken (BTFN)
  Predict backward (loop) branches as taken, others not-taken

22

Static Branch Prediction (II)
  Profile-based

  Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide)

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:
 TTTTTTTTTTNNNNNNNNNN  50% accuracy

TNTNTNTNTNTNTNTNTNTN  50% accuracy
-- Accuracy depends on the representativeness of profile input

set

23

Static Branch Prediction (III)
  Program-based

  Idea: Use heuristics based on program analysis to determine
statically-predicted direction

  Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

  Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

  Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires ISA support

  Ball and Larus, ”Branch prediction for free,” PLDI 1993.
  20% misprediction rate

24

Dynamic Branch Prediction
  Idea: Predict branches based on dynamic information

(collected at run-time)

  Advantages
+ No need for profiling: input set representativeness problem

goes away
+ Prediction based on history of the execution of branches
 + It can adapt to dynamic changes in branch behavior

  Disadvantages
-- More complex (requires additional hardware)

25

Last Time Predictor
  Last time predictor

  Single bit per branch (stored in BTB)
  Indicates which direction branch went last time it executed
 TTTTTTTTTTNNNNNNNNNN  90% accuracy

  Always mispredicts the last iteration and the first iteration
of a loop branch
  Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations
 TNTNTNTNTNTNTNTNTNTN  0% accuracy

26

Two-Bit Counter Based Prediction

  Counter using saturating arithmetic
  There is a symbol for maximum and minimum values

27

0 1

Finite State Machine for
Last-time Predictor

00 01

10 11

Finite State machine for
2BC (2-Bit Counter)

Predict NT
Predict T

Transistion on T outcome

Transistion on NT outcome

Two-Bit Counter Based Prediction
  Each branch associated with a two-bit counter
  One more bit provides hysteresis
  A strong prediction does not change with one single

different outcome

  Accuracy for a loop with N iterations = (N-1)/N
 TNTNTNTNTNTNTNTNTNTN  50% accuracy

 (assuming init to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

28

Can We Do Better?

  McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

29

Two Level Branch Predictors
  First level: Branch history register (N bits)

  The direction of last N branches
  Second level: Table of saturating counters for each history entry

  The direction the branch took the last time the same history was
seen?

30

1 1 ….. 1 0

BHR
(branch
history
register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Prediction and Update Functions
  Prediction

  Pattern History Table accessed at fetch time to generate a
prediction

  Top bit of the 2-bit counter determines predicted direction

  Update
  Pattern History Table accessed when the branch is retired to

update the counters that generated the prediction
  If branch

  actually taken: increment the counter
  actually not-taken: decrement the counter

31

Two-Level Predictor Variations
  BHR can be global (G), per set of branches (S), or per branch (P)
  PHT counters can be adaptive (A) or static (S)
  PHT can be global (g), per set of branches (s), or per branch (p)

  Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

32

Global Branch Correlation (I)
  GAg: Global branch predictor (commonly called)
  Exploits global correlation across branches
  Recently executed branch outcomes in the execution path

is correlated with the outcome of the next branch

  If first branch not taken, second also not taken

  If first branch taken, second definitely not taken

33

Global Branch Correlation (II)

  If Y and Z both taken, then X also taken
  If Y or Z not taken, then X also not taken

  Only 3 past branches’ directions
really matter (not necessarily the
last 3 past branches)

  Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

34

