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Announcements 

  Midterm II 
  November 22 

  Project Poster Session 
  December 10 (tentative) 
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Last 3 Lectures: Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Last Lecture 
  Dependency check logic 
  Renaming 
  Wakeup, selection, data forwarding (bypass) 
  Retirement and resource deallocation 

  Reducing complexity 
  Block structured ISA 
  Clustering 
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Readings 
  Required: 

  McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993. 
  Carmean and Sprangle, “Increasing Processor Performance by 

Implementing Deeper Pipelines,” ISCA 2002. 

  Recommended: 
  Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work,” ISCA 1998. 
  Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch 

Prediction,” ISCA 1992. 
  Jouppi and Wall, “Available instruction-level parallelism for superscalar and 

superpipelined machines,” ASPLOS 1989. 
  Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution 

of Complex Control-Flow Graphs Based on Frequently Executed Paths,” 
MICRO 2006. 

  Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001. 
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The Branch Problem 
  Control flow instructions (branches) are frequent 

  15-25% of all instructions 

  Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 
  N cycles: (minimum) branch resolution latency 
  Stalling on a branch wastes instruction processing bandwidth 

(i.e. reduces IPC) 
  N x IW instruction slots are wasted 

  How do we keep the pipeline full after a branch? 
  Problem: Need to determine the next fetch address when 

the branch is fetched (to avoid a pipeline bubble) 
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The Branch Problem 
  Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 

latency 

  How long does it take to fetch 500 instructions?  
  Assume no fetch breaks and 1 out of 5 instructions is a branch 
  100% accuracy  

  100 cycles (all instructions fetched on the correct path) 
  No wasted work 

  99% accuracy 
  100 (correct path) + 20 (wrong path) = 120 cycles 
  20% extra instructions fetched 

  98% accuracy 
  100 (correct path) + 20 * 2 (wrong path) = 140 cycles  
  40% extra instructions fetched  

  95% accuracy 
  100 (correct path) + 20 * 5 (wrong path) = 200 cycles 
  100% extra instructions fetched 
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Branch Types 
Type Direction at 

fetch time 
Number of 
possible next 
fetch addresses? 

When is next 
fetch address 
resolved? 

Conditional Unknown 2 Execution (register 
dependent) 

Unconditional Always taken 1 Decode (PC + 
offset) 

Call Always taken 1 Decode (PC + 
offset) 

Return Always taken Many Execution (register 
dependent) 

Indirect Always taken Many Execution (register 
dependent) 
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Different branch types can be handled differently 



Approaches to Conditional Branch Handling 
  Branch prediction 

  Static 
  Dynamic 

  Eliminating branches 
I. Predicated execution 

  Static 
  Dynamic 
  HW/SW Cooperative 

II. Predicate combining (and condition registers) 

  Multi-path execution 
  Delayed branching (branch delay slot) 
  Fine-grained multithreading 
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Predicate Combining 

  Complex predicates are converted into multiple branches 
  if ((a == b) && (c < d) && (a > 5000))  { … } 

  3 conditional branches 

  Problem: This increases the number of control 
dependencies 

  Idea: Combine predicate operations to feed a single branch 
instruction 
  Predicates stored and operated on using condition registers 
  A single branch checks the value of the combined predicate 

+ Fewer branches in code  fewer mipredictions/stalls 
-- Possibly unnecessary work 

 -- If the first predicate is false, no need to compute other predicates  
  Condition registers exist in IBM RS6000 and the POWER architecture 
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Delayed Branching (I) 
  Change the semantics of a branch instruction 

  Branch after N instructions 
  Branch after N cycles 

  Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction. 

  Problem: How do you find instructions to fill the delay 
slots? 
  Branch must be independent of delay slot instructions 

  Unconditional branch: Easier to find instructions to fill the delay slot 
  Conditional branch: Condition computation should not depend on 

instructions in delay slots  difficult to fill the delay slot 
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Delayed Branching (II) 
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Fancy Delayed Branching (III) 
  Delayed branch with squashing 

  In SPARC 
  If the branch falls through (not taken), the delay slot 

instruction is not executed 
  Why could this help? 
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Delayed Branching (IV) 
  Advantages: 

 + Keeps the pipeline full with useful instructions assuming  
       1. Number of delay slots == number of instructions to keep the 

pipeline full before the branch resolves 
       2. All delay slots can be filled with useful instructions 

  Disadvantages: 
-- Not easy to fill the delay slots (even with a 2-stage pipeline) 
   1. Number of delay slots increases with pipeline depth, issue width,     

instruction window size.  
   2. Number of delay slots should be variable with OoO 

 execution. Why? 
 -- Ties ISA semantics to implementation 
     -- SPARC, MIPS, HP-PA: 1 delay slot 
     -- What if pipeline implementation changes with the next design? 
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Fine-Grained Multithreading 
  Idea: Hardware has multiple thread contexts. Each cycle, 

fetch engine fetches from a different thread. 
  By the time the fetched branch resolves, there is no need to 

fetch another instruction from the same thread 
  Branch resolution latency overlapped with execution of other 

threads’ instructions 

+ No logic needed for  branch prediction,  
 (also for dependency checking) 

-- Single thread performance suffers  
-- Does not overlap latency if not enough  
    threads to cover the whole pipeline 
-- Extra logic for keeping thread contexts 
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Branch Prediction 

Fetch  Decode  Rename  Schedule RegisterRead Execute 
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  Processors are pipelined to increase concurrency 
  How do we keep the pipeline full in the presence of branches? 

  Guess the next instruction when a branch is fetched 
  Requires guessing the direction and target of a branch 

Branch condition, TARGET 

Verify the Prediction 



Branch Prediction 
  Idea: Predict the next fetch address (to be used in the next 

cycle) when the branch is fetched 

  Requires three things to be predicted: 
  Whether the fetched instruction is a branch 
  Conditional branch direction 
  Branch target address (if taken) 

  Target addresses remain the same for conditional direct 
branches across dynamic instances 
  Idea: Cache the target address from previous instance 
  Called Branch Target Buffer (BTB) or Branch Target Address 

Cache 
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Branch Target Buffer 
  Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage 
  Updated only by taken branches 
  If BTB hit and the instruction is a predicted-taken branch 

  target from the BTB (assuming hit) is used as fetch address in the next cycle 
  If BTB miss or the instruction is a predicted-not-taken branch 

  PC+N is used as the next fetch address in the next cycle 
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Branch Target Buffer in Fetch Stage 
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Direction Prediction 
  Compile time (static) 

  Always not taken 
  Always taken 
  BTFN (Backward taken, forward not taken) 
  Profile based (likely direction) 
  Program analysis based  (likely direction) 

  Run time (dynamic) 
  Last time (single-bit) 
  Two-bit counter based 
  Two-level (global vs. local) 
  Hybrid 
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Static Branch Prediction (I) 
  Always not-taken 

  Simple to implement: no need for BTB, no direction prediction 
  Low accuracy: ~40% 
  Compiler can layout code such that the likely path is the “not-

taken” path: Good for wide fetch as well! 

  Always taken 
  No direction prediction 
  Better accuracy: ~60%  

  Backward branches (i.e. loop branches) are usually taken 
  Backward branch: target address lower than branch PC 

  Backward taken, forward not taken (BTFN) 
  Predict backward (loop) branches as taken, others not-taken 
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Static Branch Prediction (II) 
  Profile-based 

  Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

+ Per branch prediction (more accurate than schemes in 
previous slide) 

-- Requires hint bits in the branch instruction format 
-- Accuracy depends on dynamic branch behavior: 
  TTTTTTTTTTNNNNNNNNNN  50% accuracy 

TNTNTNTNTNTNTNTNTNTN  50% accuracy 
-- Accuracy depends on the representativeness of profile input 

set 
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Static Branch Prediction (III) 
  Program-based 

  Idea: Use heuristics based on program analysis to determine 
statically-predicted direction 

  Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs) 

  Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop) 

  Pointer and FP comparisons: Predict not equal 

+ Does not require profiling 
-- Heuristics might be not representative or good 
-- Requires ISA support 

  Ball and Larus, ”Branch prediction for free,” PLDI 1993. 
  20% misprediction rate 
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Dynamic Branch Prediction 
  Idea: Predict branches based on dynamic information 

(collected at run-time) 

  Advantages 
+ No need for profiling: input set representativeness problem 

goes away 
+ Prediction based on history of the execution of branches 
   + It can adapt to dynamic changes in branch behavior 

  Disadvantages 
-- More complex (requires additional hardware) 
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Last Time Predictor 
  Last time predictor 

  Single bit per branch (stored in BTB) 
  Indicates which direction branch went last time it executed 
    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

  Always mispredicts the last iteration and the first iteration 
of a loop branch 
  Accuracy for a loop with N iterations = (N-2)/N 

+ Loop branches for loops with large number of iterations 

-- Loop branches for loops will small number of iterations 
  TNTNTNTNTNTNTNTNTNTN    0% accuracy 
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Two-Bit Counter Based Prediction 

  Counter using saturating arithmetic 
  There is a symbol for maximum and minimum values 
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Two-Bit Counter Based Prediction 
  Each branch associated with a two-bit counter 
  One more bit provides hysteresis 
  A strong prediction does not change with one single 

different outcome 

  Accuracy for a loop with N iterations = (N-1)/N 
 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

              (assuming init to weakly taken) 

+ Better prediction accuracy 
-- More hardware cost (but counter can be part of a BTB entry) 
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Can We Do Better? 

  McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 
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Two Level Branch Predictors 
  First level: Branch history register (N bits) 

  The direction of last N branches 
  Second level: Table of saturating counters for each history entry 

  The direction the branch took the last time the same history was 
seen? 
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Prediction and Update Functions 
  Prediction 

  Pattern History Table accessed at fetch time to generate a 
prediction 

  Top bit of the 2-bit counter determines predicted direction 

  Update 
  Pattern History Table accessed when the branch is retired to 

update the counters that generated the prediction 
  If branch  

  actually taken: increment the counter 
  actually not-taken: decrement the counter 
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Two-Level Predictor Variations 
  BHR can be global (G), per set of branches (S), or per branch (P) 
  PHT counters can be adaptive (A) or static (S) 
  PHT can be global (g), per set of branches (s), or per branch (p) 

  Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” 
MICRO 1991. 
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Global Branch Correlation (I) 
  GAg: Global branch predictor (commonly called) 
  Exploits global correlation across branches 
  Recently executed branch outcomes in the execution path 

is correlated with the outcome of the next branch 

  If first branch not taken, second also not taken 

  If first branch taken, second definitely not taken 
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Global Branch Correlation (II) 

  If Y and Z both taken, then X also taken 
  If Y or Z not taken, then X also not taken 

  Only 3 past branches’ directions 
really matter (not necessarily the 
last 3 past branches) 

  Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998. 
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