15-740/18-740

Computer Architecture
Lecture 24: Control Flow

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Midterm II
o2 November 22

Project Poster Session
o December 10 (tentative)

Last 3 Lectures: Superscalar Processing

Fetch (supply N instructions)
Decode (generate control signals for N instructions)
Rename (detect dependencies between N instructions)

Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

Write into Register File (have enough ports to write results
of N instructions)

Retire (N instructions)

l.ast Lecture

Dependency check logic

Renaming

Wakeup, selection, data forwarding (bypass)
Retirement and resource deallocation

Reducing complexity
o Block structured ISA
o Clustering

Readings

= Required:
o McFarling, "Combining Branch Predictors,” DEC WRL TR, 1993.

o Carmean and Sprangle, “Increasing Processor Performance by
Implementing Deeper Pipelines,” ISCA 2002.

= Recommended:
o Evers et al., "An Analysis of Correlation and Predictability: What Makes Two-
Level Branch Predictors Work,” ISCA 1998.
o Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch
Prediction,” ISCA 1992.

o Jouppi and Wall, “Available instruction-level parallelism for superscalar and
superpipelined machines,” ASPLOS 1989.

o Kim et al., “"Diverge-Merge Processor (DMP): Dynamic Predicated Execution
of Complex Control-Flow Graphs Based on Frequently Executed Paths,”
MICRO 2006.

o Jimenez and Lin, "Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

5

The Branch Problem

Control flow instructions (branches) are frequent
o 15-25% of all instructions

Problem: Next fetch address after a control-flow instruction
IS not determined after N cycles in a pipelined processor

o N cycles: (minimum) branch resolution latency

o Stalling on a branch wastes instruction processing bandwidth
(i.e. reduces IPC)

N x IW instruction slots are wasted

How do we keep the pipeline full after a branch?

Problem: Need to determine the next fetch address when
the branch is fetched (to avoid a pipeline bubble)

The Branch Problem

Assume a 5-wide superscalar pipeline with 20-cycle branch resolution
latency

How long does it take to fetch 500 instructions?
o Assume no fetch breaks and 1 out of 5 instructions is a branch

o 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work

2 99% accuracy
100 (correct path) + 20 (wrong path) = 120 cycles
20% extra instructions fetched

o 98% accuracy
100 (correct path) + 20 * 2 (wrong path) = 140 cycles
40% extra instructions fetched

o 95% accuracy
100 (correct path) + 20 * 5 (wrong path) = 200 cycles
100% extra instructions fetched

Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

Approaches to Conditional Branch Handling

Branch prediction
o Static
o Dynamic

Eliminating branches

I. Predicated execution
Static
Dynamic
HW/SW Cooperative
II. Predicate combining (and condition registers)

Multi-path execution
Delayed branching (branch delay slot)
Fine-grained multithreading

Predicate Combining

Complex predicates are converted into multiple branches
a if ((@==Db)&& (c < d) & (a > 5000)) { ..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
Instruction

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code = fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

10

Delayed Branching (I)

Change the semantics of a branch instruction
o Branch after N instructions
o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

o Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on

instructions in delay slots - difficult to fill the delay slot
11

Delayed Branching (1I)

Normal code:

Timeline:

F

E

6 cycles

Delayed branch code:

A
BC X

Timeline:
F |E
A

C A
BC C
B BC
G B
S cycles

12

Fancy Delayed Branching (I11)

Delayed branch with squashing
o In SPARC

o If the branch falls through (not taken), the delay slot
instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:

XA XA A
B B X: | B
C C C

scx | scx | scx
D NOP A
E D D
E E

13

Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions assuming

1. Number of delay slots == number of instructions to keep the
pipeline full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, issue width,
instruction window size.

2. Number of delay slots should be variable with Oo0O
execution. Why?

-- Ties ISA semantics to implementation
-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
14

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts. Each cycle,
fetch engine fetches from a different thread.

o By the time the fetched branch resolves, there is no need to
fetch another instruction from the same thread

o Branch resolution latency overlapped with execution of other
threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for branch prediction, qrstruction Feteh _
(also for dependency checking) operand reteh,

Executicn Phase

-- Single thread performance suffers treamm B InStraction
. Execution Phase
-- Does not overlap latency if not enough
threads to cover the whole pipeline
)) Stream 4 Instruction
-- Extra logic for keeping thread contexts Result Store

15

Branch Prediction

= Processors are pipelined to increase concurrency

= How do we keep the pipeline full in the presence of branches?
o Guess the next instruction when a branch is fetched

Requires guessing the direction and target of a branch

Q

B1

A

Branch condition, TARGET

B3

Pipeline

Fetch Decode Rename Schedule RegisterRead Execute

Fingtt dbainth dietittie Bdtegietd! Flush tMeripiptdmerediction

16

Branch Prediction

Idea: Predict the next fetch address (to be used in the next
cycle) when the branch is fetched

Requires three things to be predicted:

o Whether the fetched instruction is a branch
o Conditional branch direction

o Branch target address (if taken)

Target addresses remain the same for conditional direct
branches across dynamic instances

o Idea: Cache the target address from previous instance

o Called Branch Target Buffer (BTB) or Branch Target Address
Cache

17

Branch Target Buftfer

Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage
Updated only by taken branches

If BTB hit and the instruction is a predicted-taken branch

o target from the BTB (assuming hit) is used as fetch address in the next cycle

If BTB miss or the instruction is a predicted-not-taken branch

o PC+N is used as the next fetch address in the next cycle

ICACHE BTB
entry PC predicted
target
] Tk
E— PC e
I e I N T
— hit? target

Branch Target Buffer in Fetch Stage

prediction

f nPC to Icache

Predicted direction

Pred. target f

> FA-mux
A
| nPC (seq.) =PC+4

Branch .PC | Fetch I
— Predictor
(uiing a BTB) Decode Buffer

BTB Decode
update

(target addr.

Dispatch Buffer
and history)

I Dispatch

!

| Reservation
Stations

il
R e

Issue

Execute

Finish | Completion Buffer

19

A Frontend with BTB and Direction Prediction

Which direction earlier DPirection predictor (2-bit counters)

branches went

taken? N
Global branch I l
history PC + inst size ——» Next Fetch
. XOR Address
Program } hit?)
_ Counter
Address of the
current branch
2
target address

Cache of Target Addresses (BTB: Branch Target Buffer)

20

Direction Prediction

Compile time (static)

a

Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

Program analysis based (likely direction)

Run time (dynamic)

Q

a
a
a

Last time (single-bit)
Two-bit counter based

Two-level (global vs. local)
Hybrid

21

Static Branch Prediction (I)

Always not-taken
o Simple to implement: no need for BTB, no direction prediction
o Low accuracy: ~40%

o Compiler can layout code such that the likely path is the “not-
taken” path: Good for wide fetch as well!

Always taken
o No direction prediction
o Better accuracy: ~60%

Backward branches (i.e. loop branches) are usually taken
Backward branch: target address lower than branch PC

Backward taken, forward not taken (BTFN)

o Predict backward (loop) branches as taken, others not-taken
22

Static Branch Prediction (II)

Profile-based

o Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the

branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide)

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

[TTTTTTTTTNNNNNNNNNN = 50% accuracy
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

23

Static Branch Prediction (111

Program-based

o Idea: Use heuristics based on program analysis to determine
statically-predicted direction

o Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

o Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

o Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires ISA support

Ball and Larus, "Branch prediction for free,” PLDI 1993.

o 20% misprediction rate
24

Dynamic Branch Prediction

Idea: Predict branches based on dynamic information
(collected at run-time)

Advantages

+ No need for profiling: input set representativeness problem
goes away

+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

Disadvantages
-- More complex (requires additional hardware)

25

ILast Time Predictor

Last time predictor

o Single bit per branch (stored in BTB)
o Indicates which direction branch went last time it executed
[TTTTTTTTTNNNNNNNNNN - 90% accuracy

Always mispredicts the last iteration and the first iteration
of a loop branch

o Accuracy for a loop with N iterations = (N-2)/N
+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

26

Two-Bit Counter Based Prediction

(O Predict NT
() PredictT
—
—

Transistion on T outcome w-m,

Transistion on NT outcome

‘Q‘G’ ‘ 00) 01

Finite State Machine for Finite State machine for
Last-time Predictor 2BC (2-Bit Counter)

Counter using saturating arithmetic
o There is a symbol for maximum and minimum values

27

Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter

One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

28

Can We Do Better?

for (i=1; i<=4; i++) | |

If the loop test 1s done at the end of the body, the corresponding branch will execute
the pattern | 1110, where 1 and O represent taken and not taken respectively, and . is the
number of times the loop 1s executed. Clearly, if we knew the direction this branch had
gone on the previous three executons, then we could always be able to predict the next
branch directon.

= McFarling, "Combining Branch Predictors,” DEC WRL TR
1993.

29

Two Level Branch Predictors

= First level: Branch history register (N bits)
o The direction of last N branches
= Second level: Table of saturating counters for each history entry

o The direction the branch took the last time the same history was

n?
see Pattern History Table (PHT)

00....00
11.... 00 01
2 3
previous on 00....10
BHR _
(branch index 0 1
history
register)
11 ... 11

Prediction and Update Functions

Prediction

o Pattern History Table accessed at fetch time to generate a
prediction

o Top bit of the 2-bit counter determines predicted direction

Update

o Pattern History Table accessed when the branch is retired to
update the counters that generated the prediction

o If branch
actually taken: increment the counter
actually not-taken: decrement the counter

31

Two-Level Predictor Variations

BHR can be global (G), per set of branches (S), or per branch (P)

PHT counters can be adaptive (A) or static (S)
PHT can be global (g), per set of branches (s), or per branch (p)

GAg PAp
Pereddrese
Fanern

Glehat

L " Y atery
Hishery Tuivbes
Tubis "FETY
orem

Lavdhom
=

jHIE
i J

Hi
i

i

1] 1
il !

-

Yeh and Patt, "Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

Global Branch Correlation (I)

GAg: Global branch predictor (commonly called)
Exploits global correlation across branches

Recently executed branch outcomes in the execution path
is correlated with the outcome of the next branch

if (condl)

if (condl AND cond2)

If first branch not taken, second also not taken

branch Y: if (condl)a = 2;
branch X: if (a == 0)

If first branch taken, second definitely not taken

33

Global Branch Correlation (1)

branch Y: if (condl) [JIF 1-Branch Selective History

[J IF 2-Branch Selective History

branch Z: if (cond2) [IF 3-Branch Selective History
e [JIF Gshare
branch X: if (cond1 AND cond2) Il Gshare

100

If Y and Z both taken, then X also taken
If Y or Z not taken, then X also not taken

95

90 —

Only 3 past branches’ directions _
really matter (not necessarily the o
last 3 past branches) |

Evers et al., “"An Analysis of | |
Correlation and Predictability: B ks T
What Makes Two-Level Branch

Predictors Work,” ISCA 1998.

Prediction Accuracy

34

